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STRONG ELECTRON CORRELATIONS
AND QUANTUM INTERFERENCE EFFECTS IN
ELECTRONIC TRANSPORT THROUGH A WIRE
WITH SIDE-ATTACHED KONDO QUANTUM DOTS*
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Smoluchowskiego 17, 60-179 Poznan, Poland

(Received July 10, 2002)

Conductance through a system consisting of a wire with two side-
attached quantum dots is calculated. Both the quantum dots take part
in destructive interference with ballistic channel through the wire. Such
geometry of the device allows to control the strength of the quantum in-
terference and suppression of the conductance through the system. The
minimum present in the gate voltage characteristics of the conductance
can be turned into plateau. We propose an experimental setup where the
strength of the quantum interference can be smoothly controlled by chang-
ing the level positions inside quantum dots by appropriate gate voltages.

PACS numbers: 72.15.Qm, 73.63.-b

Kondo effect, a fascinating phenomenon investigated intensively for last
three decades, has been observed in resonant electronic transport through
nanodevices [1] recently. In geometry where a quantum dot (QD) is side-
coupled to the quantum wire, it acts as Kondo scattering centre. There
appear two transmission channels for traveling electronic waves: ballistic
channel through a wire and a channel formed by the QD Kondo resonance at
the Fermi level. Destructive interference of both channels causes suppression
of the transmission. This geometry is conceptually analogous to the Fano
model [2] consisting of a continuous spectrum and a discrete level.

A single quantum dot side-attached to a perfect wire was investigated
in resonant regime in [3-5]. Quantum interference in a QD bridged by a
direct channel was also investigated by us [6]. In this paper we study a
double-side-QD arrangement (see the diagram inset in Fig. 1).

* Presented at the International Conference on Strongly Correlated Electron Systems,
(SCES 02), Cracow, Poland, July 10-13, 2002.
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Fig.1. Conductance vs QD spatial level position for the system depicted in the
inset. Curves are calculated for T' = 0, U = 1 meV ey = —U/2 and coupling to
the wire ¢, = 5.3 meV (y =1, 2). Two curves for finite temperatures (circles) are
also included. Curve with stars corresponds to T' = 0 and €3 = 0.1 meV. Curve
for t; = 3.8 meV (triangles) depicts QD; in Coulomb blockade regime.

Hamiltonian of the nanodevice is taken in the form:

H = Z Zewdigd%g + Z Uynyrng,
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where y-index numbers quantum dots. We assume spin-only degeneracy of
the discrete QD’s levels. ¢, represents hopping between the wire and the
quantum dots and t,- hopping between the wire and the electrode «. The
last two terms in Eq. (1) represent the perfect single-mode quantum wire
and the electrodes. Density of states in the wire and in the electrodes have
been assumed to have Lorentzian shape with a halfwidth much larger than
Kondo temperature of each QD.

To calculate conductance through the considered nanodevice, total den-
sity of states should be known at the point where both quantum dots are
attached to the wire. It has been calculated with the use of Dyson equa-
tion written in the form of scattering T-matrix for interacting case. At the
first stage the calculation has been performed for electron G, propagating
through the wire in the presence of one quantum dot only (Eq. (2)). Then
Dyson equation (Eq. (3)) has been written in the presence of the second QD,
but with a Green function already dressed in the first step G . As a result
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we have:

Gl,a(w) = GO,U(‘U) + GO,O’(w)Tl,U w)GO,a(w) s (2)
Goo(w) = G15W) + G1o(w)Th 6 (W)G1 6 (w), (3)

with the scattering matrix T, ;(w) = t%Gd%g(w) which contains electronic
correlations causing Kondo effect. A bare conduction electron retarded prop-
agator is taken in the form Go,(w) = —iTpwire(w). Gdy,o(w) is a dressed
propagator of the electron localized in QD,,. The interference effects be-
tween Gy, (G1,,) and Gg1» (Gao,r) are comprised in the terms [Go 2T »
([G1,0]2T2,U)-

In Eq. (3) apart from terms of the type Goq(w)Ty,q(w)Goe(w),
(v = 1,2), which describe scattering of the electronic wave in a particular
dot 7, also terms of the form Gg 5 (w)7T1,4(w)Go,0(w) T2, (w)Go,»(w) appear,
describing processes of multiple scattering, when both DQs are involved. We
have analyzed the influence on the conductance of each term separately.

Calculations of dressed propagators Gy (w) and Ggo(w) including many-
body effects have been performed within interpolative perturbative scheme
(IPS) [7] which is an extension of the selfconsistent second order perturbation
in Coulomb repulsion U [8] to the atomic limit. This method fulfills Friedel-
Langreth sum rule [9] and allows to calculate density of states of quantum dot
coupled to electrodes and conductance for various temperatures and coupling
to electrodes. Spectral density of the nanodevice has been calculated from
the relation pnano,s(w) = —(1/m)ImGo ,(w + id).

Linear-response zero bias conductance has been calculated [10] for the
symmetric coupling to the leads I'(w) = 27t2pe;(w) (tr, = tg = 1):

(
(

) 00
G(Vgla VQQ) = 2% Z / F(g) <_afa(;)> pnano,a(‘ga Vgl’ Vg?)d67 (4)

where f(¢) is the Fermi distribution function, and gate voltage dependence
on the quantum dots level positions has been written explicitly.
Conductance through the nanodevice wvs level position of QD and rep-
resentative values of QD5 level position is plotted in Fig. 1. A perfect res-
onance at 7' = 0 for the Anderson impurity takes place when e, = —U/2,
i.e. for the symmetric Anderson model. In the considered symmetry it cor-
responds to a full strength of destructive interference and total extinction
of the transmission. When the dot level is empty (e, > 0) or fully occupied
(ey + U < 0) the dot very weakly disturbs the transport through the wire.
Thus, by setting e9 = 0.1 meV (see Fig. 1) QD3 is driven far from resonance.
In this case conductance vs level position €1 resembles the curve for one side-
coupled quantum dot [3-5]. When the level ¢; is shifted towards the Fermi
level, ep = 0, by an appropriate gate voltage, the QD; is gradually tuned
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to a maximum resonance. In the range of ey < 0 and 1 + U > 0 (i.e. when
level €7 is singly occupied) the electronic transport is completely blocked at
T = 0. Picture drastically changes when QD5 is driven to a perfect reso-
nance by setting e9 = —0.5 meV (see the curve with black squares). In this
case, when €1 is doubly occupied or empty, the conductance is destroyed in
turn by perfect Kondo resonance of QD3 (it is seen that conductance goes to
zero when | €1 | = 00). When ¢, is shifted towards Fermi level, the multiple
scattering increases and enhances the conductance to the unitary limit when
1 reaches the value —U/2. These terms exactly compensate destructive
influence of QD5 in this region. Thus, the conductance is fully blocked by
resonant scattering of QD;. When e crosses Fermi level multiple scattering
decreases and conductance is diminished by destructive interference of QDo
again.

At finite temperatures, neither QD nor QD4 are able to fully block the
conductance because Kondo effect is partially diminished. In this case, an
intermediate situation takes place when both QDs have comparable destruc-
tive influence on electronic wave propagating through the wire and a plateau
of conductance is observed (see the curves for finite temperatures).

For weaker coupling of the QD to the wire (¢; = 3.8 meV) the dot enters
Coulomb blockade regime and two peaks with a separation of the order of
U become visible in conductance.

This work was supported by the Polish State Committee for Scientific
Research (KBN) under Grant No. 2 P03B 087 19.
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