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A theoretical study of correlation has been performed for an electron
pair confined in a vertically coupled double quantum dot by a method,
which transforms the three-dimensional two-electron problem into the ef-
fective one-dimensional two-electron problem. We have found that the elec-
tron correlation cannot be neglected at any interdot distance and becomes
strong at large interdot distances.

PACS numbers: 73.21.-b

A quantum dot (QD) is a physical object of the nanoscale size, in which
we can manipulate with the electronic properties. The electron—electron
correlation is an example of such effect, which can be artificially changed
by changing the QD parameters, e.g., the dot size and interdot separation.
The present paper is devoted to a theoretical study of the correlation in the
two-electron system confined in the coupled QD’s.

We consider the vertically coupled double QD in the nanodevice [1] with a
cylindrical shape, which consists of GaAs, AlGaAs, and InGaAs layers. The
two QD’s are created within the InGaAs layers. The corresponding quantum
wells of 12 nm height and 300 meV depth are separated by by the barrier
with the varying thickness b. In our previous paper [2], we have determined
the confinement potential by solving the Poisson equation for the single
vertical QD [3]|. Based on the results of Ref. [2]|, we approximate the lateral
confinement potential in the QD by the harmonic potential V(r) = ar?,
where @ = mw?/2 = 0.05 meV/nm?. The total confinement potential is
the sum of the double-well (triple-barrier) rectangular potential in the z
direction (cylinder axis) and the harmonic potential in the transverse (z,y)
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directions. Thus, the one-electron wave function can be separated as follows:
U(x,y,z) = P(z,y)p(z), where ¢(z) is the solution of the one-dimensional
eigenproblem in the z direction and

p(x,y) = (28/m)"/” exp[-B(a” + )] (1)

is the solution of the eigenproblem in the x — y plane, where 8 = mw/2h.
If the two potential wells are separated by a sufficiently thick barrier, i.e.,
the tunnel coupling between the QD’s is weak, the electrons can be found
with a high probability in different QD’s. Therefore, the z,y-dependent
part of the wave function is only slightly perturbed by the electron—electron
interaction and the two-electron wave function takes on the approximate
form W (z1,y1,21,72,Yy2,22) = P(z1,y1)9 (22, y2)x (21, 22), where x(z1, 22) is
the the eigenfunction of the effective one-dimensional Hamiltonian

H(z1,20) =T+ V(21) + V(22) + U(21 — 22) + 2hw, (2)

where T'is the kinetic-energy operator for the motion of two electrons in the z
direction and V' (2) is the double-well confinement potential. We have found a
useful one-dimensional approximation for the Coulomb interaction between
the electrons. For this purpose, the effective potential energy U(z; — 29)
has been calculated as the average value of the three-dimensional Coulomb
potential with the use of wave function (1) and integration over the z,y
coordinates. The resulting effective electron—electron interaction potential
energy

U(z) = (€2 /4meges) (mB)'/? exp(B2%)erfe(8'/?|2]) (3)
does not possess any singularity. In Eq. (3), &5 is the static dielectric con-
stant.

The eigenproblem of Hamiltonian (2) depends on the two variables only;
therefore, we can obtain its numerical solution with an arbitrary precision [4].
We will call this solution “exact”. The correlation energy, calculated as the
difference between the “exact” ground-state energy and the corresponding
energy estimate obtained by the restricted Hartree-Fock (RHF) method, is
displayed in Fig. 1(a) for the two lowest energy levels (singlet and triplet).
Fig. 1(a) shows that for the small barrier thickness (b < 2 nm) the correla-
tion effect is small. If, however, b exceeds 2 nm, the absolute value of the
correlation energy considerably increases and for the distinctly separated
QDs the confined electron system becomes strongly correlated. This strong
correlation results from the interelectron interaction induced breakdown of
the two-electron wave function parity symmetry in the external confinement
potential.

We have also performed the calculations with the use of the unrestricted
Hartree-Fock (UHF) method, in which each one-electron orbital is inde-
pendently optimized for each spin state, which allows for a localization of
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Fig.1. (a) Energy difference (AE) between the “exact” and RHF (dashed curve)
[UHF (solid curve)] results for the singlet and triplet states. For the triplet state
AFE calculated by both the methods is almost zero (horizontal line at zero energy).
(b) Contours of the two-electron wave function plotted as functions of the electron
coordinates z; and 29 (in nm) for the barrier thickness b = 0, 1,2, and 4 nm. The
left, central, and right panel display the results obtained by the “exact”, UHF, and
RHF method, respectively.

electrons in different QD’s. We have found that the UHF method leads to
the considerable improvement of the energy estimates with respect to the
RHF results and reproduces — to a large extent — the correlation effect.
Fig. 1(a) shows that the UHF energy estimates are nearly exact both for the
small and large interdot separations. Only for b = 1 + 4 nm the error of the
UHF method is rather large. We note that — in this intermediate barrier-
thickness regime — the external-potential symmetry of the wave function is
broken due to the Coulomb interaction.

In order to get more physical insight into the electron correlation in the
QD’s, we have plotted in Fig. 1(b) the contours of the two-electron wave
function for different b. The case b = 0 corresponds to the single QD with
the two potential wells joined into the one potential well. In this single QD,
the maximum of the electron density is located approximately at the dot
center. However, due to the Coulomb repulsion the electrons are localized
slightly apart. If the interdot barrier is introduced, the electrons prefer to
be localized in different QD’s. For b = 4 nm the probability of finding both
the electrons in the same QD vanishes. On the contrary, the RHF wave
functions do not allow for this separation [cf. right panel in Fig. 1(b)]. Ac-
cording to the RHF results, both the electrons are spread over the two QD’s
independently of each other. The RHF wave function is symmetric with
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respect to the interchange of electron coordinates z; and z2. This symmetry
agrees with the symmetry of the confinement potential, but prohibits the
interelectron correlation to be properly included by the RHF method. The
breaking of the confinement-potential symmetry by the Coulomb interac-
tion is the source of the strong electron correlation. Fig. 1(b) shows that
the wave functions obtained by the UHF method much better reproduce
the true electron distribution. We note that — in the UHF method — the
localization of the electrons in different QD’s appears with some “delay” if
b increases. Nevertheless, for large b the UHF wave-function contours are
almost indistinguishable from the exact ones.

In summary, we have proposed a method for solving the two-electron
eigenproblem in the coupled QD’s and found the effective one-dimensional
electron—electron interaction potential, which allows us to reduce this prob-
lem to the “exactly” soluble one-dimensional problem. We have shown that
the electron correlation becomes strong at large interdot distances. We have
also found that the UHF method fairly well reproduces the correlation ef-
fects. It is interesting that the coupled QD nanostructure can be treated
as the correlated electron system, in which the correlation can be tuned by
changing the interdot distance.

This paper has been partly supported by the Polish State Committee for
Scientific Research (KBN) under grant no. 5P03B 4920.
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