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Although the concept of a quantum phase transition has been known
since the nineteen seventies, their importance as a source of radical transfor-
mation in metallic properties has only recently been appreciated. A quan-
tum critical point forms an essential singularity in the phase diagram of
correlated matter. We discus new insights into the nature of this phe-
nomenon recently gained from experiments in heavy electron materials.

PACS numbers: 71.10.Hf, 71.27.4+a, 75.20.Hr, 75.30.Mb

1. The challenge of quantum criticality

Over the past few years, condensed matter physicists have become fas-
cinated by the phenomenon of quantum criticality. Classical phase transi-
tions at finite temperature involve the development of an order parameter 1.
A material that is tuned close to a classical phase transition senses the im-
minent change of state as the order parameter develops thermal fluctuations
over larger and larger regions of the sample, ultimately forming a scale-
invariant state of fluctuating order called a “critical state”. The understand-
ing of the universal nature of the correlations that develop at a classical
critical point is a triumph of twentieth century physics [1].

The analogous idea of quantum criticality was introduced by John Hertz
during the hey-days of interest in critical phenomena, but was regarded as
an intellectual curiosity [2]. Discoveries over the past decade and a half
have radically changed this perspective, revealing the ability of quantum
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phase transitions to qualitatively transform the properties of a material at
finite temperatures. For example, high temperature superconductivity is
thought to be born from a new metallic state that develops at a certain
critical doping in copper—perovskite materials [3]. Near a quantum phase
transition, a material enters a weird state of “quantum criticality”: a new
state of matter where the wavefunction becomes a fluctuating entangled
mixture of the ordered, and disordered state. The physics that governs this
new quantum state of matter represents a major unsolved challenge to our
understanding of correlated matter.

A quantum critical point (QCP) is a singularity in the phase diagram:
a point r = x. at zero-temperature where the characteristic energy scale
kpTo(x) of excitations above the ground-state goes to zero (Fig. 1.) [4-6,8,9].
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Fig.1. Quantum criticality in heavy electron systems. High temperature: local
moments. For z < z. spins become ordered for T < Ty(z) forming an antifer-
romagnetic Fermi liquid; for z > z., composite bound-states form between spins
and electrons at T < Tp(x) producing a heavy Fermi liquid. “Non-Fermi liquid
behavior”, in which the characteristic energy scale is temperature itself, develops
in the wedge shaped region between these two phases.

The QCP affects the broad wedge of phase diagram where T' > Ty(z). In
this region of the material phase diagram, the critical quantum fluctuations
are cut-off by thermal fluctuations after a correlation time given by the
Heisenberg uncertainly principle!
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! Scaling of 7 ~ li/ksT is an example of “naive” scaling and is only expected to occur
in quantum critical systems that lie below their upper critical dimension.
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As a material is cooled towards a quantum critical point, the physics probes
the critical quantum fluctuations on longer and longer timescales. Although
the “quantum critical” region of the phase diagram where T > Ty(z) is
not a strict phase, the absence of any scale to the excitations other than
temperature itself qualitatively transforms the properties of the material in
a fashion that we would normally associate with a new phase of matter.
Heavy electron materials, offer a unique opportunity to study quantum
criticality in a metal where the symmetry and character of the ground-state
on either side of the QCP is unambiguous. These materials contain a dense
array of local moments derived from rare earth or actinide atoms, embedded
in a conducting host. At high temperature they display a Curie—Weiss tem-
perature dependence of the magnetic susceptibility x(7') ~ 1/T that is the
hallmark of local moment metals. Depending on the exact conditions of the
material, these local moments can order, forming an antiferromagnetically
ordered metal, or they form composite bound-states with the surrounding
electrons, giving rise to a highly renormalized Landau—Fermi liquid [10].
There is a growing list of heavy electron materials that can be tuned into
the quantum critical point, by alloying, such as CeCug_Au, [11], through
the direct application of pressure, as in the case of Celns [12] and CePdSiy
[13] or via the application of a magnetic field, as in the case of YbRhsSis
[14,15]. The recently discovered “1-1-5” materials [16-18] also appear to lie
remarkably close to quantum criticality, with examples of chemically, pres-
sure (CeRhlIns [16]) and field-tuned quantum criticality (CeColns [17,18]).

2. Key properties

In the ground-state near a quantum critical point, heavy electron ma-
terials display a linear specific heat Cy =+T, and a quadratic temperature
dependence of the resistivity p = pg+ AT2. Both of these properties are
characteristic of Landau—Fermi liquid. As the QCP is approached, both -~y
and A appear to diverge, indicating a divergence in the effective mass at
the QCP.

Some of the key properties at the QCP are:

e A divergent specific heat coefficient y(T") = Cy /T [19-21], which often
displays a logarithmic temperature dependence [22]

(1) = otos | 7] 1)

e A quasi-linear temperature dependence of the resistivity [13,14,23]

poc T, (2)
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with € in the range of 0-0.6. Many compounds, such as YbRhsSis [24]
and CeCug_zAu, [21] and CeColns [16,17] exhibit a perfectly linear
resistivity, reminiscent of the cuprate perovskites.

e Anomalous exponents in the spin susceptibility, x™'(T) — xy Lo,
with a < 1 for CeCuagAuO.l, YthQ(SilfmGem)Q (I = 005) and
CeNigGey [13]. In CeCug_pAu,, [21] neutron scattering measure-
ments [21]| reveal w/T [25] scaling in the dynamic spin susceptibility

X qw) =f(@)+ (iw+T)", (3)
where f(qg) — 0 at the ordering wave vector(s).

The appearance of temperature as the only energy scale in the critical
spin fluctuations with a non-trivial exponent a < 1, is an example of “naive
scaling”, where the boundary condition (in this case, the periodicity of the
fields over the imaginary time 7 € (0,h/kpT)) determines the correlation
time. This is a hallmark of a system where the critical modes lie beneath
their upper critical dimension [26]. The g-independence of damping in the
critical spin fluctuations suggests a local element to the underlying physics,
and has stimulated efforts to develop a “locally quantum-critical” theory of
the heavy electron QCP [27].

Recently, it has become possible to examine the evolution of the Fermi
liquid properties at asymptotically low temperatures in the approach to
a quantum critical point. Particularly interesting insights have been ob-
tained from the material YbRhoSio. This material has a 70 mK Neel temper-
ature. By doping this material with Germanium, toform YbRhs (Si;—,Ge,)o,
(x ~ 0.05), the Néel temperature is driven to zero. In this quantum critical
state, a tiny magnetic field is sufficient to drive the material into a Fermi
liquid state. These studies indicate the presence of a single field-tuneable
energy scale in both the specific heat Cy /T and the resistivity p(T"). The
resistivity shows a field dependent cross-over between quadratic and linear
temperature dependence, whilst the specific heat shows a field-dependent
cross-over between a low-temperature upturn of the form Cy /T ~ 1 /Tl/ 3
at T >> b and Cy /T ~ 1/b'/3, where b = B — B, in the field-tuned Fermi
liquid. These results can be parameterized in the following form

7~ (7m)
7~ () g

where Ty(b) o b, and f(z) ~ min(z,1), () ~ (min(z,1))"/? (see Fig. 2).
The existence of a single scale both the thermodynamics and the transport
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Fig.2. Cartoon illustrating how the evolution of the resistivity and specific heat in
YbRh,(Si;—»Gez)2 (2 ~ 0.01) is determined by a single scale To(B) ~ (B — B.),
after [28]. (a) Linear resistance at criticality develops into quadratic dependence
away from the QCP, (b) scaling of dp/dT (error bars indicate spread of data),
(c) field dependence of specific heat coefficient and (d) scaling of the specific heat
coefficient Cy /T.

properties is striking evidence for the idea that the Fermi temperature goes
to zero at a heavy fermion QQCP. These results place very severe constraints
on our understanding of the physics, as we now discuss.

3. Difficulties with the standard model

The standard model of heavy fermion quantum criticality, is provided by
the Moriya—Hertz—Millis quantum spin density wave (QSDW) theory [2,6-8|.
In this approach, critical behavior results from Bragg diffraction of electrons
off quantum fluctuations in the spin density, described by an interaction of
the form Hr = ¢ LTMtT' 1/1;2766'1/1]5. When the fermions are integrated out

of the physics, the effective action for the slow quantum spin density modes
is assumed to be local, and given by

% = Z IM(Q)*x 1(Q % / dT/ddIM x,T) (5)
B .
Q=(qsivn)

The inverse susceptibility

x Q) = ((ff— Qo) +&77+ |;;|) Xo " (6)
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has an Orenstein—Zernicke form, where £ is the correlation length, QO is the
ordering wave-vector and the damping term, linear in frequency v, derives
from coupling to the particle-hole excitations of the Fermi sea.

Critical fluctuations in this model strongly scatter electrons on “hot lines”
around the Fermi surface which are separated by momentum Qo — see
Fig. 3(a) (41). On the hot lines, the electron scattering rate I's. < max(w,T")
is linear in energy and temperature, and the quasiparticles masses are driven
to infinity. This “marginal” Fermi liquid behavior [29] is confined to a narrow
region of width 6k ~ /T around the hot lines, and even at criticality, the
remainder of the Fermi surface would form a tranquil Landau—Fermi liquid.

@ O
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-
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Fig.3. (a) 3D QSDW scenario in which (i) the critical fluctuations focus around
a point in momentum space giving rise to (i) hot lines around the Fermi surface.
(b) 2D QSDW scenario, in which (i) frustration leads to layers of decoupled spin
fluid, (%) rods of critical scattering in momentum space and (%4) non Fermi liquid
behavior across the entire Fermi surface.

In the 3D QSDW scenario, the spin correlation time 7 = FQOfQ so time
scales as z = 2 spatial dimensions. The effective spatial dimensionality of the
phase space is D = d + z, and since D, = 4 is the upper-critical dimension
of this kind of “¢?” field theory, naive scaling behavior is only expected for
d<dy=4—2z=2. The 3D QSDW model is thus inconsistent with

e F/T scaling in the spin correlations with a non-trivial exponent.
e A divergence in the specific heat.

e The cross-over to a linear resistivity at T > Ty(z).
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It is worth noting that the resistivity of Celns follows a T''*% variation that
is said to be consistent with the 3D scenario [30]. However, recent NMR
measurements suggest that this material has a first order transition, so that
electrons never feel the full force of quantum criticality [31].

4. Is the spin fluid two-dimensional?

The failure of the 3D QSDW scenario has stimulated the proposal that
magnetic frustration causes the spins to decouple into layers of independent
two dimensional spin fluids [12,32]| (Fig. 3(b)). This scenario does predict
a logarithmic divergence in the specific heat of the form

Cv Tsf
? ~ ln <max(T3D,T)) ’ (7)

where Ty is the characteristic scale of spin fluctuations and T3p is the scale at
which the planes become coupled. Furthermore, the critical spin fluctuations
are then critical along “rods” in momentum space?, and in this situation large
regions of the Fermi surface become “hot”.

Part of the problem with the 2D QSDW, is that we know of no mechanism
to produce such perfectly decoupled 2D spin fluids within three dimensional
metals. FEven in lattices where frustration decouples spin layers to first
order in the interlayer coupling .J', zero point spin fluctuations couple the
spin layers to second order in the coupling via the mechanism called “order-
from-disorder” [34-36], Tsp ~ (J')2/J and for this reason, it is difficult
to suppress T3p more than an order of magnitude smaller than Ty using
frustration. Yet no such crossover has been observed, indeed, YbRhsSis, the
specific heat diverges faster than logarithmically at low temperatures.

Conventional heavy electron materials form Landau—Fermi liquids which
are characterized by local scattering amplitudes. One of the consequences of
this local scattering, is the constancy of the called Kadowaki-Woods ratio
K = A/+? between the quadratic temperature coefficient of the resistivity
and the square of the specific heat coefficient [37]. This is not expected in
the 2D QSDW picture, which will produce strongly momentum dependent
scattering. Experimentally, the quadratic A coefficient of the resistivity di-
verges in the approach to quantum criticality. From the scaling results on
field-tuned criticality in YbRhySis mentioned above, A ~ 1/(Ty(b)) ~ 1/b
(B = B—B.). Such behavior can be obtained in a two dimensional spin fluid
model in which the inverse squared correlation length is assumed to be pro-
portional to b, 2 och [7,38]. The same model predicts a weak dependence
of the linear specific heat on magnetic field ;, oclog(1/b), sothat

2 In quantum critical CeCus—>Au, (z = 0.1) there is evidence for rod-like regions of
critical fluctuations [32,33].
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Early experiments by Gegenwart et al., [15] suggested that the Kadawaki—
Woods ratio is independent of field. More extensive scaling results at lower
fields and temperatures [28] indicate that v ~ 1/b'/3 so that

A
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This weak field dependence of the Kadowaki—Woods ratio indicates that the
scattering amplitudes in the Fermi liquid do not develop a strong momentum
dependence in the approach to the QCP, arguing against the exchange soft
magnetic fluctuations in a 2D spin fluid as the predominant origin of the
scattering.

5. The search for new mean field theories

Traditionally, theories of critical fluctuations are built upon an under-
lying mean-field theory, which becomes exact above the upper critical di-
mension. The spin density wave scenario is a consequence of examining
fluctuations about the Stoner and Slater mean-field theory for itinerant mag-
netism. The failure of this starting point may indicate that we should search
for a new kind of mean-field theory. Two ideas have been recently explored:

e Local spin criticality. The momentum independence of the spin
damping at the QCP point [21] has led to the suggestion that the
spin correlations are critical in time, yet spatially local [39-41| permit-
ting their treatment via the “extended dynamical mean field theory”
(EDMFT). This is a bold departure from the Wilson-Kadanoff ap-
proach to criticality, for ultimately only one dimension time is active
in the critical fluctuations.

e Traditional RG approach on a new Lagrangian. If we em-
brace a Wilson—Kadanoff approach to quantum criticality, then we
must seek a new Lagrangian description to of magnetism, and the way
it couples to the Fermi liquid. One idea here, is that at the quantum
critical point, the heavy electron breaks-up into its spin and charge
components [42].

The momentum-independent scaling term in the inverse dynamic suscep-
tibility (6) certainly does suggests that the critical behavior associated with
the heavy fermion QCP contains some kind of local critical excitation [21].
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Si, Rabello, Ingersent and Smith [27] et al. have pursued the idea that the lo-
cally critical degree of freedom is spin itself. In their picture, in order that the
characteristic energy scale of local spin fluctuations goes to zero at the QCP,
there must be a divergent local spin susceptibility xioe = qu X(q, w)|w=0 -
The phenomenological form (3) appears naturally as part of the EDMFT
scheme adopted by Si et al., and by using this form to compute the local
spin susceptibility,

1 —2)a
Xioc(T') ~ /ddqW ~ T(@=2)0/2 (8)

Si et al., conclude that if a divergence of the local spin response requires
atwo dimension spin fluid. They find, based on this assumption, that it is
possible to reproduce the anomalous frequency dependence seen in neutron
scattering [27,43].

This intriguing proposal for heavy electron quantum criticality still has
some important technical hurdles to clear. In one interesting development,
Pankov, Kotliar and Motome recently reported that the finite temperature
solutions to the EDMFT give rise to a first order phase transition between
the antiferromagnetic and paramagnetic phases [44]. The transition might
become second order at zero temperature, but it is not clear how any scenario
with a first order line can be simply reconciled with the finite temperature
scaling behavior and the “fan” of quantum criticality observed in the vicinity
of a heavy fermion QCP (Fig. 4.)
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Fig.4. In the extended dynamical mean-field theory description of local quantum
critical theory, each spin behaves as a local moment in a fluctuating Weiss field.
Recent work [44] indicates that the phase transition predicted by this approach
may be first order at finite temperature, with a possible QCP at zero temperature
as shown in (b).



700 P. CorLEmMAN, C. PEPIN

6. A new Lagrangian for the emergence of magnetism?

Another alternative, is that the heavy fermion quantum criticality is
a simply three-dimensional phenomenon. In this case we need to begin
asearch for a new class of critical Lagrangian with an upper critical spatial
dimension d, > 3 [45]. There are a number of elements that might be
expected in such a theory:

¢ First, to produce a qualitative departure from conventional spin fluc-
tuation theory, we should in all probability seek a new description of
the coupling between the magnetic modes and the heavy electrons.

¢ Second, there is a suspicion that in order to obtain a break-down of
the quasiparticles over the whole Fermi surface, some aspect of the
quantum criticality should be local.

One idea that the current authors have explored, is the notion that the
critical magnetic modes in a heavy fermion system and their coupling to the
Fermi fluid may be spinorial in character. We know, from various lines of
reasoning that in a Kondo lattice the Luttinger sum rule [46-48| governing
the Fermi surface volume Vgg “counts” both the electron density n. and the
number of the number of local moments per unit cell ng:

Vrs
(2m)3

= Ne + Ng. (9)

The appearance of the spin density in the Luttinger sum rule reflects the
composite nature of the heavy quasiparticles, formed from bound-states be-
tween local moments and high energy electron states. Suppose the spinorial
character of the magnetic degrees of freedom seen in the paramagnet also
manifests itself in the decay modes of the heavy quasiparticles. This would
imply that at the QCP, the staggered magnetization factorizes into a spino-
rial degree of freedom M(z) = bf(x)3b(x), where b is a two-component
bosonic spinor. “Spinorial magnetism” affords a direct coupling between the
magnetic spinor b, and the heavy electron quasi-particle fields 1 ~via an
inner product, over the spin indices

Lg*?‘)—M =9 Z [QSL b};,qgwkg + h.c.] , (10)
k,q

where conservation of exchange statistics obliges us to introduce of a spinless
charge e fermion ¢. This would imply that the composite heavy electron
decays into a neutral “spinon” and a spinless charge e fermion e, = s, +¢ .

This line of reasoning leads suggests that the break-up of the heavy
fermion QCP may involve spin—charge separation. In the antiferromagnet, the
magnetic spinors will condense, and the ¢ fermion will propagate coherently.
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At the QCP, the vanishing of the ordered magnetic moment will mean that
all coherent motion of this object will cease. In such a scenario, it is then
a “locally critical” fermion rather than spin that drives the non-Fermi liquid
behavior.

Additional support for this line of reasoning comes from a quite unex-
pected direction: from the re-examination of a venerable model of mag-
netism, the underscreened Kondo model (UKM). The underscreened Kondo
effect, whereby a spin is partially quenched from spin S to S* = S — 1/2.
occurs in an impurity model when the number of screening channels is in-
sufficient to quench the local moment. In impurity models, this only arises
when S > 1/2. In the Kondo lattice, underscreening may be an intrinsic
feature of the quantum critical point for S = 1/2. The Curie-like power-
law dependence x (T — Xal ~ T of the spin susceptibility [15,21] seen
at criticality might indeed be interpreted as circumstantial evidence for the
existence of partially quenched moments at criticality.

The UKM model is written H = Hy + Hj;, where Hy describes the
conduction sea and

HI = JS" Ql}Ta&aBQl}Ba (11)

where S denotes a spin S > 1/2 and 1/)‘La =Y ¢l creates a conduction
electron at the impurity site.

In recent work, we have found that the essential physics of the UKM is
captured by a Schwinger boson representation of the local moments [49]. In
an unexpected surprise, we have also found that the model exhibits a unique
kind of field-tuned criticality, forming a tunable Fermi liquid in a magnetic
field, but a non-Fermi liquid at B = 0. In this approach, the interaction
between magnetism and the Fermi fluid in the UKM takes the form

Hy = T3 dlabablsts = [3 8ot +0lobod] — 206, (12)
a,B
where ¢ is a Grassman field. The Gaussian fluctuations of this field describe
a fermionic resonance which couples to the conduction sea. The form of this
coupling is suggestively close to the phenomenological form (10) discussed
above.
In a magnetic field B, the Schwinger boson condenses, (by) = V2Md,+,
where M is the magnetization, so that

H; — V2M [¢ 14 + h.c.] + fluctuations (13)

giving rise to a resonance in the Fermi sea. What is unexpected about this
resonance, is that its characteristic weight Z or wave-function renormaliza-
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Fig.5. Schematic phase diagram of the underscreened Kondo model. In a finite
field, the ground-state is a Fermi liquid with a field-tuned Fermi energy. In zero
field, a residual ferromagnetic coupling between the electron sea and the untethered
moment leads to a break-down of Fermi liquid behavior and a divergence of v =
Cy /T with temperature.

tion scales with the magnetic field B, Z « B, giving rise to a resonance with
a characteristic energy scale Ty(B) o< B. As the field is reduced to zero, so
the width of the resonance narrows and the linear specific heat can be shown

to diverge as
1

Bln? (%) '

At zero field the specific heat actually develops a divergence

’)/N

1
i ()

which is reminiscent of the low-temperature upturn in the specific heat seen
in YbRhs Sis. This field-tunability of the Fermi temperature curiously went
unnoticed in the Bethe Ansatz solutions of this model for two decades [50].
In the new context it is fascinating because it provides a concrete example
of a system of field-tuned criticality in a model where the coupling between
the magnetism and the Fermi sea exhibits an explicit spinorial character.
One of the open questions about this model, is whether the temperature
dependent inelastic scattering it gives rise to will mimic the a cross-over
between quadratic and T-linear scattering behavior around T' ~ B seen in
real heavy electron systems.

~
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Finally, we should note that if the transition between the antiferromagnet
and the paramagnet involves the formation (or destruction) of new kinds of
fermionic resonance at the Fermi surface, then the geometry of the Fermi
surface will change far radically at the heavy electron QCP. This kind of
behavior is expected to give rise to discontinuities in the Hall conductivity
and the extrapolated de Haas—van Alphen frequencies at the QCP. This is
clearly an area where we could benefit immensely from further experimental
study.

7. Summary

We have reviewed the basic physics of heavy electron quantum critical-
ity. The various properties of the antiferromagnetic heavy electron quantum
critical point, most notably the observation of F/T scaling and the appear-
ance of a single scale Ty(x)governing the cross-over from Fermi liquid, to
non-Fermi liquid behavior in both the resistivity and the thermodynamics,
suggest the existence of a new universality class of critical electronic behavior
that lies beyond the reach of quantum spin density wave theories of quantum
criticality. This motivates a search for a new class of theory for the emer-
gence of magnetism in heavy electron systems. One idea, is that the heavy
electron quantum critical point involves spin correlations that are singular
and critical in time, but only weakly correlated in space, but this leads to
the conclusion that non-trivial behavior requires a frustrated, quasi-two di-
mensional spin fluid. Alternatively, heavy electron quantum criticality may
be intrinsically three dimensional in character, but involve a kind of spin—
charge decoupling that develops as the spins bound within composite heavy
electrons emerge into ordered magnetism. Our theoretical and experimental
explorations of this phenomenon are still very much in their infancy, and it
is clear that much work remains to be done.

The work described in this project was supported under grant NSF-DMR
9983156 (Coleman). The authors gratefully acknowledge their discussions
with N. Andrei, J. Custers, P. Gegenwart, I. Paul, F. Steglich and J. Rech
for discussions related to this work.
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