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We investigate the Holstein model, which describes the coupling of a lo-
cal phonon mode to a band of conduction electrons, in d = cc. In the limit
of large phonon frequency wy, this model can be mapped onto a Hubbard
model with effective attractive electron—electron interaction. The latter
model is known to exhibit a metal-insulator transition at half filling for
large enough coupling strengths. We show that the system with small
phonon frequencies also develops a gap as function of the electron—phonon
coupling. The physics of the gap formation differs for small and large
phonon frequencies, e.g. the “hysteresis” seen for large wg disappears for
smaller values.

PACS numbers: 71.10.Fd, 71.30.+h, 71.38.-k

The simplest model to describe the coupling between electronic and lat-
tice degrees of freedom is the Holstein model [1|. Here a local non-degenerate
phonon mode is coupled to the electron density of a single conduction band,

H=Y e(F)el e +> woblbi+> gl +b)> (nis —3). (1)
ko 7 7 o

The phonon frequency is given by wyg, the electron—phonon coupling strength g.
We are interested in the particle-hole symmetric situation and consider the
model in the limit of infinite dimensions. Despite its simplicity this model
is not exactly solvable for finite electron density.

Contrary to previous calculations which take the static limit [2], we treat
the phonons quantum mechanically. Also since perturbative approaches
(e.g. Migdal-Eliashberg) are known to break down at strong coupling [3,4],
we apply a combination of the dynamical mean-field theory (DMFT) [5]
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and the numerical renormalization group (NRG) [6]. The DMFT maps the
Holstein model onto the Anderson—Holstein impurity model [7]. This map-
ping becomes exact in the limit of infinite spatial dimensions (d = oo) [8].
The application of the NRG to the Anderson—Holstein model is presented
in Ref. [7].

In the limit of wy — oo one can map the Holstein model onto the attrac-
tive Hubbard model with an effective interaction strength |U| = 2¢%/wq [9].
This model can subsequently be mapped onto the repulsive Hubbard model
with the charge and spin channels exchanged. When anti-ferromagnetism
is suppressed in that model, it is known to show a Mott—-Hubbard metal-
insulator transition in d = oo. The properties of this transition are well
understood [5,10]. Therefore, at least in this limit such a metal-insulator
transition is also to be expected in the Holstein model if charge order is
suppressed.

One of the aims of this paper will be to clarify the range of validity
of the mapping of the Holstein to the Hubbard model and investigate how
the physical properties evolve from those of the Hubbard model as wy is
decreased. Here we want focus on the gap formation in the electronic spectral
density as function of coupling strength g.

In our numerical evaluations, we take the non-interacting conduction
band to be semielliptical with the bandwidth W = 1 defining the energy
unit. Typical phonon frequencies are much smaller than W, though in some
cases (Fullerides) [11] the phonon frequencies can be as large as 0.2W. To
clarify the relation to the Hubbard model, we have extended the calculations
to include the regime wy > W.

In Fig. 1, we have plotted the electronic spectral density for the Holstein
model for various phonon frequencies wg and coupling strengths g. For all
phonon frequencies the low-energy properties show a number of common
features: For weak electron—phonon coupling g, the system is a Fermi liquid
with the spectral function pinned at the Fermi energy Fr = 0. The spectra
for all wy develop a narrow low-energy resonance when most of the spectral
weight shifts to higher energies. Above a critical coupling g, a gap opens
at the Fermi energy. The quasiparticle weight vanishes continuously for all
values of wg. The energy scale of the gap formation depends strongly on wy.

The structure of the high-energy sub-bands differs for the various val-
ues of wg. For small wp, only two sub-bands emerge, for larger wg four. The
lower-energy ones can be termed “bipolaron bands” and are positioned at the
bipolaron binding energy A = 2g* /wy. The higher-energy features positioned
roughly at +wg are “multi-phonon peaks” known from the atomic limit [7].
Only for wy = 3 these are totally split off from the other sub-bands and not
visible on the plotted scale. Also their weight vanishes with increasing wq
(see Ref. [7]). For very large wg ~ 3, they can be neglected, and the system
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Fig.1. Electron spectral functions for different wy and ¢ as indicated. The chosen
values of g correspond to 0.7 gc, 0.99 g. and 1.01 g, respectively, with g. denoting
the critical value where the quasiparticle weight vanishes and the gap in the spectral
function opens for each value of wy.

can be described by two sub-bands separated by the bipolaron binding en-
ergy A which becomes the effective attractive Hubbard interaction. Only in
this limit is the mapping onto a Hubbard model precise.

The Mott metal-insulator transition in the Hubbard model shows a
co-existence regime, where both the metallic and insulating solutions ex-
ist (“hysteresis”). For large wpg, the gap formation in the Holstein model
should correspond to this, and also show this hysteresis. This can be seen in
Fig. 2, where the upper and lower values for the critical coupling strength
are plotted. On reducing wy, the critical coupling strength rapidly moves to
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Fig. 2. Critical values of the coupling strength g. and |U| = 2¢g2/wq for the metal-
insulator transition in the Holstein model. The two lines show the upper and
lower boundary of the co-existence region of metallic and insulating solution. The
increase in slope around wy & 2 coincides with the separation of bipolaron- and
multiphonon subbands. For wy > 3 both the lower and the upper critical value of
U are constant.

lower values and simultaneously the size of the co-existence regime shrinks.
Finally, for the (physically most relevant) case of wy = 0.05, we do not see
any hysteresis at all. Due to the numerical nature of our investigation, we
cannot strictly rule out the existence of an extremely narrow coexistence
region for these small values of wq, but, if existing, it would need to be very
small.

Using the NRG technique in conjunction with the DMFT we have ex-
amined the Holstein model for all coupling strengths and ranges of phonon
frequency. A more extensive presentation of the electronic and phonon re-
sponse functions and a more detailed discussion of the physics involved will
be published elsewhere.
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