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Ground-state properties of the periodic Anderson model with a dis-
persion of f-electrons are investigated at half-filling in infinite dimensions.
We determine the magnetic phase diagram by using dynamical mean field
theory combined with a perturbative treatment of the f-f Coulomb inter-
action. Nonmonotonic behavior is found in the phase boundary when a
dispersion of f-electrons is changed, the origin of which is discussed in the
light of formation of renormalized quasi-particles.

PACS numbers: 71.10.—w, 71.27.+a, 75.10.Lp

1. Introduction

There has been much interest in heavy fermion systems, which exhibit
a variety of remarkable phenomena [1]. The periodic Anderson model is a
simplified model, which may describe essential physics of heavy fermions.
This model has been intensively studied by various analytical and numerical
methods. Among others, dynamical mean field theory (DMFT) [2], which
is justified in infinite dimensions [3, 4], allows systematical studies of ther-
modynamic as well as dynamical properties [5-7].

In this paper, we investigate a modified version of the periodic Anderson
model with a f-electron dispersion. By combining DMFT with a pertur-
bation method, we determine the magnetic phase diagram at half-filling.
In particular, we discuss how a dispersion of f-electrons affects a magnetic
phase transition by calculating the density of states (DOS) for f-electrons.
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2. Model and method

The Hamiltonian we study here is a modified version of the periodic
Anderson model,
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where ¢g, (fko) is the annihilation operator of a conduction- (f)-electron
with momentum £ and spin o(1,]). Here, V is the hybridization between
two bands, U the f—f Coulomb interaction, and N the number of total
lattice sites. We focus on the effects of a f-electron dispersion,

¢ = ac, 2)
by changing the ratio a continuously.

In DMFT [2], electron correlations are treated by mapping the lattice
system to an effective impurity one, which is further supplemented by self-
consistent procedures to reproduce the original lattice system. We combine
DMFT with an iterated perturbation theory [2], in which the f—f inter-
action U is treated via a self-consistent second-order perturbation. Fur-
thermore, in order to deal with a commensurate magnetic order, we con-
sider an antiferromagnetic state with the two-sublattice structure [2,7, 8].

For simplicity, we employ the semielliptic DOS for conduction electrons,
D(e) = 2v/D? — €2 /rD? with the bandwidth D.

3. Numerical results

We numerically iterate the self-consistent procedure in DMFT until the
calculated quantities converge within desired accuracy. In the following dis-
cussions, the bandwidth D is taken to be unity and we shall deal with the
commensurate magnetization at half-filling and absolute zero temperature.

In Fig. 1, we show the magnetic phase diagram obtained. Note that
our results for @« = 0 are consistent with those of Rosenberg [7]. Let
us now observe what happens for a quantum phase transition, when « is
changed. In the small U region, a paramagnetic insulator (PI) is realized for
a = 0. As increasing «, the hybridization gap disappears, and consequently
a paramagnetic metal (PM) emerges. Note that the phase boundary be-
tween PI and PM hardly depends on the strength of U. On the other hand,
as U increases, an antiferromagnetic insulator (AFI) is stabilized. In all the
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results shown in the inset, the phase boundary exhibits nonmonotonic be-
havior as a function of a: as « increases, the phase boundary goes down and
then increases again. For sufficiently large «, the system favors PM state,
which is caused by an itinerant character of f-electrons. To see the origin

P M N
0 02040608 1
a

0 02 04 06 08 1
a

Fig.1. a — U phase diagram for V' = 0.3. The inset shows phase diagram for
several choices of V. The phase boundary between the paramagnetic phase (para)
and AFT exhibits nonmonotonic behavior. In order to refrain from complexity, we
do not show the phase boundary between PI and PM in the inset.

T T T T
33 0 —a=0.0 T
52 —---a=02
Kl R I I I I I a=04
oL rM r=03. U=0.6
3| % 01020304/
—~ a i
Q Y
1k i
AN
0 -1 0 1
w

Fig.2. DOS for f-electrons in the paramagnetic regime for V"= 0.3 and U = 0.6.
The inset shows the DOS at the Fermi level (w = 0) as a function of a.

of this nonmonotonic behavior clearly, we show the DOS for f-electrons in
Fig. 2. Note that a paramagnetic solution is stable regardless of « in these
parameters. For a = 0, where the Kondo insulator is realized, the spectrum
has a renormalized hybridization gap around the Fermi level (w = 0). As
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« increases, the hybridization gap disappears and then heavy quasiparticles
appear. The inset in Fig. 2 shows the DOS at the Fermi level, where its
maximum is located around « ~ 0.15. This value roughly corresponds to
an inflection point of the phase boundary for V' = 0.3 (Fig. 1). We can thus
say that the introduction of a f-electron dispersion drives the system from
the insulator to a metallic phase with the enhanced DOS at the Fermi level,
and therefore the system becomes somewhat unstable against an antiferro-
magnetic order. However, further increase in o decreases the DOS at the
Fermi level, making the system more stable against such a magnetic insta-
bility. This gives rise to the nonmonotonic behavior observed in the phase
boundary. Therefore, the dispersion of f-electrons is expected to play a role
for the magnetism when the f-electron dispersion is comparable to the gap
in the spectral function.

4. Summary

We have investigated the periodic Anderson model with a dispersion of
f-electrons. By using dynamical mean field theory combined with a self-
consistent perturbation method, we have discussed how the phase diagram
is affected by the itineracy of f-electrons. It has been shown that when
the dispersion of f-electrons is introduced, the paramagnetic phase becomes
once unstable, but further increase in «a again favors a paramagnetic phase.
This nonmonotonic behavior has been shown to be related to formation of
renormalized quasi-particles.
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