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In this paper both the metal-insulator transition and ferromagnetic or-
dering stabilization have been studied in the framework of the Hubbard
model with correlated hopping and inter-atomic exchange interaction. The
energy spectrum of the model has been calculated, expressions for the en-
ergy gap in the paramagnetic state, the ground state energy, the criterion
of the ferromagnetism stabilization, the magnetization of system have been
obtained and analyzed.

PACS numbers: 71.10.Lp, 71.27.+a, 71.10.Fd, 71.30.+h

1. Introduction

To describe the concentration dependency of the physical properties of
real materials the Hubbard model [1] has to be generalized by taking into
account the non-diagonal matrix elements of Coulomb interaction [2-5]. In
the case of strong and intermediate inter-atomic interactions the correlated
hopping leads to the electron-hole asymmetry [4,6] and the renormalization
of width of energy subbands. In this paper both the metal-insulator tran-
sition (MIT) and ferromagnetic ordering stabilization have been studied in
the framework of the Hubbard model with correlated hopping and inter-
atomic exchange interaction. To this end recently proposed variant [7] of
the generalized Hartree-Fock approximation has been applied.
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2. The energy spectrum of generalized Hubbard model

We start with the Hamiltonian of the narrow-band model with correlated
hopping of electrons and inter-atomic exchange interaction [4,7]:

H = Ho+ H, + H}; (1)
Hy = —HZ(ng‘FXz‘?)+UZXZ'2_“BhZ(XiT_Xi¢)
0 1 1

J -
+5 D0 (XeTXFT+ (X7 + XD)(X] + XD)),

ijo
Hy = Y ti(m)X7OX)7 + Y &;(n)X77X7?,
ijoi] ijoi]
Hi = Y t;(n) (X7°X7? - X7°X7% + He.),
ijoi]

here Xfl denotes the Hubbard operators, p is chemical potential, U is the
energy of intra-atomic Coulomb interaction, J is the parameter of the inter-
atomic exchange interaction, h is the external magnetic field,

tij(n) = tij(1 — nm), (2
t;j(n) =t;;(1 —nm — 79), (3
tij(n) = tij(1 — nm — 27m), (4)

are the effective concentration-dependent hopping integrals [4]. Other nota-
tions are as usual.

The single particle energy spectrum calculated with use of the variant [7]
of generalized Hartree—Fock approximation in Fourier representation has the
form:

Eiy(k) = —p—noh+ % _ +2%m)zJ + (& —; gU)t(k)
F5/lU ~ (e — k)P + A i(k)?. (5)

Here the non-operator coefficients €?(pi), €7 (pi), €] and €3, calculated by the
method of work [4,7], can be written as functions of the electron concentra-
tion n, system magnetization m, hole (¢) and doublon (d) concentrations and
the correlated hopping parameters 71, 7 (the values d and ¢ are connected
by the relation ¢ —d =1 —n).
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3. MIT in a paramagnetic half-filled band
Let us consider the MIT in paramagnetic state at electron concentration
n = 1. From the energy spectrum (5) we find the energy gap width:

+
+Q12Q2’

1
Q12 = (UF2mCw)?+ (1 -7 —27)2w?)?2, C=1-2d+4d> (6)

AFE = EQ(—w) — El(w) = —211}(1 — 2d)(1 —T1 — 7'2)

When the correlation strength % reaches its critical value (%)C the energy
gap opens and the metal-insulator transition occurs. The correlated hopping
leads to the decrease of the (%)C It is important to note, that the used
approach allows to reproduce the exact results, found in the special case of
the model with correlated hopping [8-11]. At #;, = 0 from (6) we obtain
U. = w+ @, where 2w = 2z|t;;| is the width of lower subband, 2w = 2z|t;;|
is the width of upper subband, z is the number of nearest neighbour to a
site. In the paramagnetic ground state one can find the expression for the
doublon concentration. The increase of 71, 7o leads to the decrease of d at
fixed values of % At the increase of % in the point of MIT the slope of
d(Y) dependence changes. For the case 71 = 75 = 0 (Hubbard model) the
obtained results agree with corresponding result of work [12]. The ground
state energy in the metallic and insulating states is also calculated. The
dependencies of the ground state energy on % for different values of 7 also
change its slope in the point of MIT. The increase of the correlated hopping
parameters 71, 7o leads both for the decrease of kinetic energy of electrons
(the band narrowing), and for the decrease of potential energy (decrease
of the doublon concentration). Thus the correlated hopping significantly
influence the ground state energy in the region of MIT. At 71 = 75 = 0
(Hubbard model) the obtained values of the ground state energy lies within
the interval determined in the paper [13].

4. The ground state ferromagnetism
Let us consider the ground state ferromagnetism in the model. In the
limiting case of Hubbard model (71 = 7 = 0) for the case of half-filling we
obtain the condition of ferromagnetism stability in the form:

1al % > 4d(1 — 2d)(3 — 4d). (7)

— +

20 2
From equation (7) one can see that in the case of large % when d — 0 the
critical value of the interatomic exchange interaction tends to zero, on the
absence of interatomic Coulomb interaction (U — 0 and d — %) the critical
value of zJ is equal to the width of the energy band. One can also see
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that the interatomic exchange is the key parameter for the ferromagnetism
realization.

In the case of strong intra-atomic Coulomb interaction the energy spec-
trum (5) describes non-hybridized upper and lower Hubbard subbands. It
is important to investigate the case n # 1 when system is metallic despite
of strong interaction. In the ground state the equation

zJ B n? — m? 8(1—n)(2—mn)
(o)

determines the magnetization of system at n < 1 and corresponding equation
atn>11is

N R L LA
2(1 = nm)w (2—=n)? —m?

(9)

At increase of correlated hopping the region of ferromagnetism becomes
wider. The taking into account correlated hopping leads to the concentration
dependent bandwidth renormalization. Thus for the same values of the
energy parameters the state of system at n < 1 can be paramagnetic and
at m > l-ferromagnetic. Note that real ferromagnetic transition metals
have more than half-filled 3d-band. The paramagnet—ferromagnet transition
can realize both at the change of the electron concentration and at the
change of energy parameters of the system. The calculated dependencies of
magnetization on external magnetic field and temperature agree very well
with experimental results of work [14] for the system CoSa_;Se,.

zJ (2 -n)? —m? 8(1 —n)n
ST Gk L LU T S 2L
2(1 —nrm — )w n? —m? n? —m?
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