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The spectral properties of financial correlation matrices can show fea-
tures known from completely random matrices. A major reason is noise
originating from the finite lengths of the financial time series used to com-
pute the correlation matrix elements. In recent years, various methods have
been proposed to reduce this noise, i.e. to clean the correlation matrices.
This is of direct practical relevance for risk management in portfolio opti-
mization. In this contribution, we discuss in detail the power mapping, a
new shrinkage method. We show that the relevant parameter is, to a cer-
tain extent, self-determined. Due to the “chirality” and the normalization
of the correlation matrix, the optimal shrinkage parameter is fixed. We
apply the power mapping and the well-known filtering method to market
data and compare them by optimizing stock portfolios. We address the
rôle of constraints by excluding short selling in the optimization.

PACS numbers: 89.65.Gh, 05.45.Tp

1. Introduction

Precise knowledge of the correlations between stocks or, more generally,
risk elements in a portfolio is crucial for risk management [1]. However, the
computation of the correlation coefficients Ckl, k, l = 1, . . . ,K for company
k and l from the recorded time series does not always yield reliable results.
An important reason is the finiteness of the time series which adds a specific
type of noise to the correlation coefficients. This noise dressing was analyzed
for empirical data in Refs. [2–4] by establishing a connection to random ma-
trices [5]. It was shown that many spectral properties of financial correlation
matrices C tend to be indistinguishable from those of purely random matri-
ces. It should be emphasized that the random matrices in question belong
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to the class of chiral random matrices which are important in the statistical
analysis of lattice quantum chromo dynamics [6].

Numerous studies are devoted to noise dressing and a variety of methods
were proposed for noise reduction. For a brief review, we refer the reader
to Ref. [7]. Of the more recent work, we mention the interesting studies of
Refs. [8] and [9]. Other contributions to these proceedings also address noise
dressing, noise reduction and related issues. Here, we focus on the power

mapping [7] and on a comparison between filtering [4, 10, 11] and power
mapping.

For later purposes, we recall that the spectral density of a correlation
matrix consists of, first, a generic bulk part which is well described by the
analytically known spectral density for chiral random matrices and, second,
a part reflecting the industrial branches [4, 10, 11]. This implies that only
the information in the latter can directly be used, while the information in
the bulk is buried under noise. In the filtering method, one determines a
cut-off eigenvalue λc, separating the bulk and the large eigenvalues due to
the industrial branches. Only the latter eigenvalues are re-expressed in the
original basis, while the former are discarded. This gives the filtered, noise
reduced correlation matrix C(filtered). The filtering has to be done in such a

way that the normalization is preserved, i.e. one must have C
(filtered)
kk = 1.

2. Power mapping

The filtering is a powerful and robust method. However, some question
arise. For example, if the dimension K of the correlation matrix is relatively
small, the random matrix properties have not reached the ergodic limit, im-
plying that the cut-off λc is ambiguous. Also, if some branches are small, the
corresponding eigenvalues are small and might even slide into the bulk such
that the filtering would remove relevant information. The power mapping
proposed in Ref. [7] is an alternative method. Our main motivation in de-
veloping it was the observation that, to the best of our knowledge, all other
noise reduction methods require some choice of parameters (such as the cut-
off λc in the filtering) or other type of input. This introduces ambiguity. We
will show that the power mapping is, to some extent, parameter-free. It is
thus a black box method which does not even require to compute and inspect
the eigenvalues or any other feature of the correlation matrix.

2.1. Idea and basic features

In the present context, “chirality” means that, by definition, every el-
ement Ckl of the correlation matrix C is a scalar product of the properly
normalized time series for companies k and l. Importantly, this implies that
each element contains the information about the length of the time series.
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We now show that this can be exploited. We map the correlation matrix C
via the power mapping

Ckl −→ sign (Ckl) |Ckl|q = C
(q)
kl (2.1)

onto another correlation matrix C(q). In this matrix, the noise-dressed infor-
mation is partly recovered [7]. The optimal power q ≈ 1.5 is automatically
determined by the very definition and normalization of the correlation ma-
trix. The effect is illustrated in Fig. 1 for the bulk part of the spectral
density. These correlation matrices were generated from a one-factor-model.

0.5 1. 1.5 2.
Λ

0.2

0.4

0.6

0.8

1

1.2

ΡT0

HqL
HΛL q=1

0.5 1. 1.5 2.
Λ

0.5

1

1.5

2
ΡT0

HqL
HΛL q=1.5

Fig. 1. Bulk part of the spectral density for correlation matrices, generated with a

one-factor-model, before (left) and after (right) the power mapping. Taken from

Ref. [7].

After the power mapping, two peaks are seen: the left one stems from the
true correlations, while the right one is produced by remainders of the noise
around the unit normalization of all diagonal elements — before and after
the power mapping. This clearly shows that even the information in the
bulk can partly be reconstructed. The power mapping can be viewed as an
“effective prolongation” of the time series.

We stress that the power mapping affects the entire correlation matrix
and thus changes all eigenvalues. In the sequel, we will mainly discuss how
the bulk changes. However, this does not mean that the larger eigenvalues
due to the industrial branches are removed by the power mapping or oth-
erwise omitted. Their numerical value is a bit lowered, but they are always
there and contribute significantly to the power mapped correlation matrix
C(q). We focus on the bulk because it turns out that some important prop-
erties of the power mapping, in particular the dependence on the length of
the time series, can conveniently be deduced from there.

Heuristically, one can explain the effect as follows. Some elements Ckl

comprise a true part u, say, and a noisy part v which scales with 1/
√

T
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where T is the length of the time series. Purely noisy elements have no true
part. The power mapping gives

(

u +
v√
T

)q

= uq + q
uq−1v√

T
+ O

(

1

T

)

,

(

v√
T

)q

=
vq

T q/2
. (2.2)

Thus, the elements which only contain noise are stronger suppressed than
those with a true part, if q > 1. The power mapped correlation matrices C(q)

are used as they stand instead of the original ones for risk management. We
mention that the 1/

√
T scaling of the noise results from the Gaussian statis-

tics which we assume in our one-factor-model. If one uses other statistics, it
might change to 1/Tα with some parameter α. This does not spoil our line

of arguing, because one simply has to replace 1/
√

T with 1/Tα everywhere
in Eq. (2.2). Thus, the noise goes with 1/T qα after the power mapping,
while the correction to the true correlation still goes with 1/Tα. We con-
clude that the power mapping can handle any statistics. This is important
for the applications to be presented later on. Here, we only aim at clarifying
the mechanisms of how the power mapping works. Hence, it is sufficient to
keep the simple Gaussian statistics for the discussion.

2.2. Parameter-free “effective prolongation” of the time series

At first sight, Eq. (2.2) seems to imply that a value of q higher than
q ≈ 1.5 would give even better results. This is not so, as can be seen in
Fig. 2 which shows spectral densities for increasing values of q. Beyond
q ≈ 1.5, the two peaks that emerged because of the power mapping, grow
together again. The reason is simply that the true part u in Eq. (2.2) is
bound, i.e. |u| < 1. A q value too high suppresses the true part too much.
Consequently, there is an optimal value for q which, by visual inspection,
is found to be q ≈ 1.5. In Ref. [7], more quantitative arguments are given.
However, very recently, it has been shown that there is a dependence of the
parameter q on controllable overall properties of the correlation matrix, but
not on its internal structure [12]. This independence is the important one.
In any case, more work on these issues is called for.

We now show that the power mapping can indeed be viewed as an “effec-
tive prolongation” of the time series. To this end, we fit the two peaks of the
bulk with two Gaussians. We do that for q = 1, 1.25, 1.5 and for different
length T of the time series. In Fig. 3, the standard deviations of these two
Gaussians are displayed as functions of T . The predicted scaling 1/

√
T for

the correlation peak and 1/T q/2 for the noise peak is realized. One should
keep in mind that the predictions of the scaling were only rough estimates.
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Fig. 2. Bulk part of the spectral density for correlation matrices, generated with

a one-factor-model, for different values of the parameter q = 1, 1.25, 1.5 (top) and

q = 1.75, 2, 2.25 (bottom). Taken from Ref. [7].
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Fig. 3. Standard deviations of the fitted Gaussians as function of the length T of the

time series for q = 1, 1.25, 1.5 from top to bottom. Results form the fits (crosses,

diamonds, triangles) compared with the scaling behavior (solid lines). The standard

deviations of the left peaks stemming from the true correlations scale with 1/
√

T

(left), while those of the right peaks stemming from the noise scale with 1/T q/2

(right). Taken from Ref. [7].

Nevertheless, the trend clearly confirms our claim: the standard deviation
that one would expect for a correlation matrix computed from much longer
time series is effectively reached for much shorter time series.
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3. Application to market data

3.1. Procedure

We compare the two noise reduction methods by optimizing stock port-
folios. To this end, we use the standard Markowitz theory. The correlation
matrices for our empirical data are computed by sampling over a certain
(longer) period. Then, two noise reduced correlation matrices are obtained
by applying the two methods. The portfolio is evaluated over a certain
(shorter) period with the noise reduced correlation matrices, and for addi-
tional comparison, with the original, not noise reduced correlation matrix
(referred to as sample). Historical data are employed, implying that we
can compare, at the end of the evaluation period, risk and return involving
the correlation matrices without noise reduction with risk and return after
noise reduction has been applied. To reach a basic statistical significance,
the lengths of sample and evaluation period are chosen considerably shorter
than the total length of the available time series. Hence, the procedure can
be applied several times by moving through the available data. The data
are daily Swedish stock returns [13] for 197 companies from July 12th, 1999,
to July 18th, 2003, sampling period one year, evaluation period one week.

3.2. Results

To always achieve a solution of the Markowitz optimization, we set the
desired return to 0.3% per week. Higher values were not possible in this
study, because the performance of the market was in general weak during
that time. We estimate the expected returns on the individual stocks by
fitting their drift. We compute the daily risk and the monthly return as
functions of time. In a first step, we impose no constraints in the Markowitz
optimization, the results are shown in Fig. 4. The yearly actual risk which
amounts to 20.7% without noise reduction is considerably lowered by the
noise reduction, we find 11.3% for power mapping and 11.4% for filtering.
Due to the uncertainties stemming from the expected returns for the indi-
vidual stocks, statements about the return on the portfolio are, in general,
less meaningful in such a study. Nevertheless, we believe that they are still
of interest as relative information, when comparing the results for the two
noise reduction methods — and the latter with the results without noise
reduction. The yearly actual return is 11.1% without noise reduction and
is given by 5.0% and 10.5% for power mapping and filtering, respectively.
Thus both methods reduce the risk very efficiently, but the filtering seems
to be at an advantage regarding the return. In a second step, we impose a
constraint by forbidding short selling. The results are quite different, they
are shown in Fig. 5. The yearly actual risk of 10.1% without noise reduction
is only very slightly lowered to 9.9% for both noise reduction methods. The
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Fig. 4. Daily risk (top) and monthly return (bottom) for the Swedish market data,

no constraints imposed: no noise reduction, i.e. plain sample (circles), power

mapping (crosses) and filtering (dashes).

yearly actual return is 0.5% without noise reduction and is improved to 1.1%
for power mapping and 0.7% for filtering. Being aware of the ambiguities
in evaluating returns in this context, we find it interesting that the power
mapping seems to perform better than the filtering in this case

The remarkable difference between the results in these two steps without
and with constraints becomes clearer by looking at the fractions of wealth
invested in the individual companies as obtained form the Markowitz opti-
mization. Without constraints, the fractions scatter almost symmetrically
around zero. Hence, there are many negative fractions and short selling is
very important to reach the optimal portfolio. When short selling is for-
bidden and all weights are confined to non-negative values, the situation is
dramatically changed. The power mapping handles this situation well by
diversifying with less fluctuations than filtering.
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Fig. 5. Daily risk (top) and monthly return (bottom) for the Swedish market data,

no short selling allowed: no noise reduction, i.e. plain sample (circles), power

mapping (crosses) and filtering (dashes).

4. Conclusions

We applied the power mapping to our market data as a black box, with
the parameter q = 1.5 and no further adjustments whatsoever. Given this
simplicity, we are very pleased with the results. The risk is reduced in exactly
the same way as for the filtering. The return is worse in one, but better in
another case. We are now experimenting with modifications of the power
mapping and with hybrid methods, including variations of q. Some very
recent findings [12] seem to make this even more interesting.

The two noise reduction methods are based on completely different ideas.
Thus, it is not surprising that also the results produced are different. Never-
theless, comparing the curves in Figs. 4 and 5, one sees that power mapping
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and filtering do rather similar things, more similar than what one would
naively have expected. At present, the theoretical understanding of the
power mapping is not deep enough to explain this in detail. Work is in
progress.

TG thanks Marc Potters for fruitful discussion and helpful comments on
the results presented in this contribution. We acknowledge financial support
from Det Svenska Vetenskapsrådet.
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