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Finding the mean of the total number Ntot of stationary points for N -
dimensional random Gaussian landscapes can be reduced to averaging the
absolute value of characteristic polynomial of the corresponding Hessian.
First such a reduction is illustrated for a class of models describing en-
ergy landscapes of elastic manifolds in random environment, and a general
method of attacking the problem analytically is suggested. Then the ex-
act solution to the problem [Y.V. Fyodorov, Phys. Rev. Lett. 92, 240601
(2004) and Phys. Rev. Lett. 93, 149901(E) ( 2004)] for a class of landscapes
corresponding to the simplest, yet nontrivial “toy model” with N degrees
of freedom is described. For N ≫ 1 our asymptotic analysis reveals a
phase transition at some critical value µc of a control parameter µ from a
phase with finite landscape complexity: Ntot ∼ eNΣ, Σ(µ < µc) > 0 to
the phase with vanishing complexity: Σ(µ > µc) = 0. This is interpreted
as a transition to a glass-like state of the matter.

PACS numbers: 05.40.–a, 75.10.Nr

Characterising geometry of a complicated landscape is an important
problem motivated by numerous applications in physics, image processing
and other fields of applied mathematics [2]. The simplest, yet non-trivial
task is to find the mean number of all stationary points (minima, maxima
and saddles), which is a relevant question in statistical physics of disordered
(glassy) systems [3–7], and more recently in string theory [8].

Assuming that the landscape is described by a sufficiently smooth ran-
dom function H of N real variables x = (x1, . . . , xN ) the problem amounts
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to finding all solutions of the simultaneous stationarity conditions ∂kH = 0
for all k = 1, . . . , N , with ∂k standing for the partial derivative ∂

∂xk
. The

total number N
(D)
tot of its stationary points in any spatial domain D is given

by N
(D)
tot =

∫

D ρ(x) dN
x, with ρ(x) being the corresponding density of the

stationary points. The ensemble-averaged value of such a density can be
found according to the so-called Kac–Rice formula as

ρav(x) =

〈

|det
(

∂2
k1,k2

H
)

|
N
∏

k=1

δ(∂kH)

〉

, (1)

where δ(x) stands for the Dirac’s δ-function.
Whenever the underlying physical problem necessitates to deal with an

absolute value of the determinant, its presence considered to be a seri-
ous technical challenge, see [11] and references therein. In particular, an
intensive work and controversy persists in calculating the so-called ther-
modynamic complexity of the free energy for the standard Sherrington–
Kirkpatrick model of spin glasses [7] or its generalisations [6]. Several heuris-
tic schemes based on various versions of the replica trick were proposed in
the literature recently to deal with the problem, see discussion and further
references in [7]. Despite some important insights, the present status of the
methods is not yet completely satisfactory. On the other hand, keeping ab-
solute value of the determinant is instrumental for dealing with the systems
whose energy function displays many extrema in the configuration space. A
famous example is the notoriously difficult case of the random field Ising
model, where disregarding the absolute value induces an additional symme-
try leading to the so-called “dimensional reduction” prediction [12], which
proved to be wrong [13].

In this paper we are specifically addressing the problem of stationary
point counting for energy functionals describing an elastic d-dimensional
manifold embedded in a random media of N + d dimensions, see Fig. 1.
This may serve either as a model of domain walls in the random field Ising
model [14], or it is directly related to directed polymers in a random envi-
ronment.

In a discretized (lattice) version, the simplest form of the energy func-
tional can be written as

H =
µ

2

∑

i

X
2
i +

t

2

∑

〈i,j〉

(Xi − Xj)
2 +

∑

i

Vi [Xi] , µ ≥ 0, t ≥ 0 . (2)

Here the index i serves to number points in a d-dimensional lattice approx-
imating the internal space of the elastic manifold, and the N -component
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Fig. 1. Sketch of an elastic manifold for dimensions d = 2, N = 1.

vectors Xi =
(

X
(1)
i , . . . ,X

(N)
i

)

parametrise transverse deviations of the

manifold from its reference position Xi = 0 at a given site of the lattice.
The first term in (2) is a parabolic confining potential serving to stabilise the
reference plane Xi = 0, second term stands for the elastic energy interaction
between the nearest neighbours in the lattice, and the last one is considered
to be a random Gaussian function of both i and X, with zero mean and the
variance specified by the pair correlation function chosen in the form:

〈Vi [Xi] Vj [Xj]〉 = NV 2δijf

(

1

2N
(X i − Xj)

2

)

, (3)

where f(x) is any smooth function, with suitable decay at infinity. The
stationarity conditions then amount to the set of simultaneous equations:

∂H
∂X

(l)
i

= µX
(l)
i + t

∑

j

(

X
(l)
i − X

(l)
j

)

+
∂Vi

∂X
(l)
i

= 0 , l = 1, . . . ,N (4)

so that the mean total number of the stationary points of H amounts ac-
cording to the Kac–Rice formula to

〈Ntot〉 =

∞
∫

−∞

∏

i

N
∏

l=1

dX
(l)
i

〈

∏

δ

(

∂H
∂X

(l)
i

)〉

×
〈∣

∣

∣

∣

∣

det

(

µδijδl1l2 + tδl1l2∆ij + δij
∂2Vi

∂X
(l1)
i ∂X

(l2)
i

)∣

∣

∣

∣

∣

〉

. (5)
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In the above expression we introduced the matrix ∆ij for a discrete Laplacian
operator ∆ corresponding to the underlying lattice and defined via:

∆mn =
∂2

∂Xm∂Xn





1

2

∑

<i,j>

(Xi − Xj)
2



 (6)

and used that the first and the second derivatives of V [X] are (locally) sta-
tistically independent due to Gaussian nature of the disorder, so that the two
factors in the integrand can be averaged independently, which is an immense
simplification. In fact, the averaging of the product of δ-functions in (5) is a
rather straightforward task, using independence of the random potential in
different lattice sites and its overall Gaussian nature. Moreover, the mean
value of the modulus of the determinant is apparently independent of the

coordinates X
(l)
i which allows to perform the integration explicitly. After

necessary manipulations, we arrive at an important intermediate expression

〈Ntot〉 =

〈
∣

∣

∣

∣

det

[

δij

(

µδl1l2 + ∂2Vi

∂X
(l1)
i

∂X
(l2)
i

)

+ tδl1l2∆ij

]
∣

∣

∣

∣

〉

detN (µδij + t∆ij)
. (7)

To proceed further one should be able to calculate the ensemble average
of the modulus of the characteristic determinant of a lattice Laplacian ∆
perturbed by a kind of random potential. This problem in full generality
is apparently rather difficult, and we will only discuss here a promising
approach inspired by an analogy with the field of the Anderson localisation of
a quantum particle by static disorder. Indeed, in the latter field the problem
of finding the ensemble average of products of one-particle Green’s functions
of the lattice operators with disorder was most successfully tackled in the
framework of the so-called supersymmetry approach due to Efetov [15], see
also a recent review article by Zirnbauer [16]. Following this analogy, we
suggest a technique of evaluating the absolute value of the determinants for
a real symmetric matrix µ + H via the following useful identity [1, 17]:

|det (µ + H)| = lim
ε→0

[det (µ + H)]2
√

det (µ + iε + H)
√

det (µ + iε + H)
. (8)

The two factors in the denominator of the right hand side of (8) can be
represented in terms of the Gaussian integrals absolutely convergent as long
as ε > 0. Further representing the determinantal factors in the numerator in
terms of the Gaussian integral over anticommuting (Grassmann) variables
we thus get a bona fide supersymmetric [15] object to be analysed. Actual
implementation of this method is far from being trivial and we leave it as an
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interesting problem for future investigations. Nevertheless, it is important
to stress that a possibility to perform the ensemble average explicitly exists
whenever matrix entries of H are Gaussian-distributed. Similar strategy
may be even employed when H is a stochastic differential operator with
certain Gaussian part, as in the notoriously difficult case of the random field
Ising model [12]. For this reason it is natural to hope that the suggested
method may appear of certain utility for a broad class of disordered models.

In the rest of the present paper we discuss briefly an explicit and rigorous
solution [1] of the counting problem for a simple, yet nontrivial limiting case
of a “zero-dimensional” manifold (d = 0) whose energy functional is of the
form

H =
µ

2

N
∑

k=1

x2
k + V (x1, . . . , xN ) (9)

with a random Gaussian-distributed potential V (x) characterised by a par-
ticular pair correlation function f as in (3). This expression follows from (2)
after neglecting the elastic coupling: t = 0, and as such just serves to de-
scribe behaviour of a single particle in a random potential. Despite seeming
simplicity, the problem of studying this “toy model” [14] dynamics and ther-
modynamics is still rather non-trivial, with many features typical of complex,
glassy systems. In particular, it is known to display a very nontrivial glassy
behaviour at low enough temperatures — an unusual off-equilibrium relax-
ation dynamics attributed to a complex structure of the energy landscape.
Although particular dynamical as well as statical properties may differ sub-
stantially for different functions f(x) (e.g. “long-ranged” vs “short-range”
correlated potentials, see [10]), the very fact of glassy relaxation is common
to all of them. In fact, the same model admits an alternative interpretation
as a spin-glass, with xi being looked at as “soft spins” in a quadratic well
interacting via a random potential V [9]. From this point of view it is most
interesting to concentrate on the limit of large number of “spins” N ≫ 1.
The experience accumulated from working with various types of spin-glass
models [6] suggests that for the energy landscape to be complex enough
to induce a glassy behaviour the total number of stationary points Ntot(µ)
should grow exponentially with N as Ntot(µ) ∼ exp NΣ(µ). The quantity
Σ(µ) > 0 in such a context is natural to call the landscape complexity. On
the other hand, it is completely clear that the number of stationary points
should tend to Ntot = 1 for very large µ when the random part is negligible
in comparison with the deterministic one. In fact, when N → ∞ we will
find that a kind of sharp transition to the phase with vanishing complexity
occurs at some finite critical value µc, so that Σ(µ) = 0 as long as µ > µc,
whereas Σ(µ) > 0 for µ < µc and tends to zero quadratically when µ → µc.
Such a transition is just the glass transition observed earlier in a framework
of a different approach in [9, 10].
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For small N = 1, 2 statistics of stationary points of (9) were investigated
long ago in a classical study of specular light reflection from a random sea
surface [3] and addressed several times ever since in various physical contexts,
see [4, 5]. Let us demonstrate that the case of arbitrary N can be very
efficiently studied by reducing it to a problem typical for the well-developed
theory of large random matrices [18]. Indeed, adopting formula (7) to the
present case we see that the total number of stationary points in the whole
space is given by:

Ntot(µ) =
1

µN
〈|det(µ − H)|〉 , (10)

where −Ĥ stands for the matrix of second derivatives of the potential:
Hk1k2 ≡ ∂2

k1,k2
V . We see that the problem basically amounts to evaluating

the ensemble average of the absolute value of the characteristic polynomial
det(µIN−H) (a.k.a. spectral determinant) of a particular random matrix H.
Statistical properties of the potential V result in the following second-order
moments of the entries Hij {(i, j) = 1, . . . ,N}:

〈HilHjm〉 =
J2

N
[δijδlm + δimδlj + δilδjm] , (11)

where we denoted J2 = f
′′
(0). This allows one to write down the density of

the joint probability distribution (JPD) of the matrix H explicitly as

P(H)dH ∝ dH exp

{

− N

4J2

[

Tr
(

H2
)

− 1

N + 2
(TrH)2

]}

, (12)

where dH =
∏

1≤i≤j≤N dHij and the proportionality constant can be easily
found from the normalisation condition and will be specified later on. It is
evident that such a JPD is invariant with respect to rotations H → O−1HO
by orthogonal matrices O ∈ O(N), but it is nevertheless different from
the standard one typical for the so-called Gaussian Orthogonal Ensemble
(GOE) [18]. However, introducing one extra Gaussian integration it is in
fact straightforward to relate averaging over the JPD (12) to that over the
standard GOE. In particular,

〈|det (µ − H)|〉 =

∞
∫

−∞

dt√
2π

e−N t
2

2 〈|det [(µ + Jt) − H0]|〉GOE , (13)

where the averaging over H0 is performed with the GOE-type measure:
dH0 CN exp

{

− N
4J2 TrH2

0

}

, with CN = N1/2/[(2πJ2/N)N(N+1)/42N/2] being
the relevant normalisation constant.
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To evaluate the ensemble averaging in (13) in the most economic way
one can exploit explicitly the mentioned rotational O(N)−invariance and at
the first step in a standard way [18] reduce the ensemble averaging to the
integration over eigenvalues λ1, . . . , λN of the matrix H0. After a convenient
rescaling λi → J

√

2/Nλi the resulting expression acquires the following
form:

〈|det [(µ + Jt) − H0]|〉GOE

∝
∞
∫

−∞

dλ1 . . .

∞
∫

−∞

dλN

N
∏

i<j

|λi − λj|
N
∏

i=1

∣

∣

∣

∣

∣

√

N

2
(m + t) − λi

∣

∣

∣

∣

∣

e−
1
2
λ2

i , (14)

where we denoted m = µ/J . One may notice that the above N -fold integral
can be further rewritten as a N + 1 fold integral:

e
N

4
(m+t)2

∞
∫

−∞

dλ1 . . .

∞
∫

−∞

dλN+1

×
N+1
∏

i=1

e−
1
2
λ2

i δ

(

√

N

2
(m + t) − λN+1

)

N+1
∏

i<j

|λi − λj | . (15)

Such a representation makes it immediately evident that, in fact, the ex-
pectation value of the modulus of the determinant in question is simply
proportional to the mean spectral density νN+1[m + t] (a.k.a one-point cor-

relation function R
(N+1)
1

[

√

N/2(m + t)
]

, see [18]) of the same GOE matrix

H0 but of enhanced size (N + 1) × (N + 1):

〈|det [(µ + Jt)IN − H0]|〉GOE ∝ e
N

4
(m+t)2νN+1[(m + t)] ,

νN [λ] =
1

N
〈Tr δ(λ IN − H0)〉GOE . (16)

The last relation provides the complete solution of our original problem for

any value of N , since the one-point function R
(N+1)
1 [x] is known in a closed

form [18] for any value of N in terms of the Hermite polynomials Hk(x).
Being interested mainly in extracting the complexity

Σ(µ) = lim
N→∞

N−1 ln Ntot(µ) ,

we have to perform an asymptotic analysis of the mean eigenvalue density,
and substitute the resulting expression into the integral (13). In the latter we
can exploit the saddle-point method for asymptotic analysis. For 0 < m < 1
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the relevant saddle point is ts = m satisfying 0 < λs = ts + m < 2, and
validating the use of the semicircular spectral density ν[λs] = 1

2π

√

4 − λ2
s in

the calculation. This yields

〈|det (µIN − H)|〉 ∝ e
N

2
(m2−1)

√

1 − m2 , 0 < m < 1 . (17)

For m > 1, however, it turns out that one has to use exponentially small
(“instanton”) value for the spectral density:

ν[λ] ∝ exp

{

−N

[

1

4
λ
√

λ2 − 4 − ln
λ +

√
λ2 − 4

2

]}

, λ > 2 , (18)

where we only kept factors relevant for calculating the complexity in the
limit of large N . The corresponding saddle-point value ts in the t-integral is
given by the solution of the equation m = 1

2(λs +
√

λ2
s − 4) for the variable

λs = ts + m. The solution is easily found to be simply λs = m + m−1 (note
that λs > 2 ensuring consistency of the procedure) which yields the resulting
value for the modulus of the determinant to be given by

〈|det (µIN − H)|〉 ∝ eN lnm, m > 1 . (19)

Invoking our basic relation Eq. (10) for Ntot we see that the landscape com-
plexity Σ(µ) of the random potential function (9) is given by:

Σ(µ) =
1

2

(

µ2

J2
− 1

)

− ln
(µ

J

)

, µ < µc = J , (20)

Σ(µ) = 0, µ > µc = J . (21)

Earlier works referred to the critical value µc = J as, on one hand, signalling
the onset of a nontrivial glassy dynamics [10], and, on the other hand, corre-
sponding to the point of a breakdown of the replica-symmetric solution [9].
Our calculation provides an independent support to the point of view at-
tributing both phenomena to extensive number of stationary points in the
energy landscape. At the critical value the complexity vanishes quadrati-
cally: Σ(µ → µc) ∝ (µc − µ)2/µ2

c .
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erence [8] to his attention. The work was supported by EPSRC grant
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