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We discuss recent results of the replica approach to statistical mechanics
of a single classical particle placed in a random N(≫ 1)-dimensional Gaus-
sian landscape. The particular attention is paid to the case of landscapes
with logarithmically growing correlations and to its recent generalizations.
Those landscapes give rise to a rich multifractal spatial structure of the as-
sociated Boltzmann–Gibbs measure. We also briefly mention related results
on counting stationary points of random Gaussian surfaces, as well as on-
going research on statistical mechanics in a random landscape constructed
locally by adding many squared Gaussian-distributed terms.

PACS numbers: 05.40.–a, 75.10.Nr

One of the simplest models with quenched disorder — a single classical
particle subject to a superposition of random Gaussian potential V (x) and
a non-random confining potential Vcon(x), with x ∈ R

N — turns out to
be a surprisingly rich system, characterized by a non-trivial dynamical be-
havior as well as interesting thermodynamics. Denoting the total potential
energy as H(x) = Vcon(x) + V (x), the statistical mechanics of the model is
controlled by the free energy:

FN = −β−1 〈ln Z(β)〉V , Z(β) =

∫

|x|≤L

exp−βH(x) dx , (1)

as a function of the inverse temperature β = 1/T , and the sample size L, with
brackets standing for the averaging over the Gaussian potential distribution.
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The covariance function of the random part is usually chosen in the form
ensuring stationarity and well-defined large-N limit:

〈V (x1) V (x2)〉V = N fV

(

1

2N
(x1 − x2)

2

)

. (2)

Important information about the structure of the Gibbs–Boltzmann equi-
librium measure pβ(x) = 1

Z(β) exp−βH(x) can be extracted from the knowl-

edge of moments

mq =

∫

|x|≤L

pq
β(x) dx =

Z(βq)

[Z(β)]q
. (3)

In the thermodynamic limit of the sample volume VL → ∞ one expects
typically

mq ∼ V
−τq

L , (4)

where the set of exponents τq reflects the spatial organization of the Gibbs–
Boltzmann weights. For example, if the weights are of the same order of
magnitude across the sample volume, the normalization condition implies
locally pβ(x) ∼ V −1

L and a simple power counting predicts the exponents
τq = q − 1. In such a situation it is conventional to speak about a delo-
calised measure. The opposite case of a fully localized measure describes the
situation when essential Gibbs–Boltzmann weights concentrate in the ther-
modynamic limit in a domain with the finite total volume Vξ ≪ VL → ∞,
and are vanishingly small outside that domain. This situation is obviously
characterized by trivial exponents τq>0 = 0 and τq<0 = ∞. Finally, in
many interesting situations the exponents τq may depend on q nonlinearly,
and in this case one commonly refers to the multifractality of the measure.
Equations (3) and (4) imply the following expression for the characteristic
exponents τq in the general case

τq = |q|βF(|q|β) − qβF(β) (5)

relating them to the appropriately normalized free energy of the system:

F(β) = − lim
VL→∞

ln Z(β)

β ln VL
. (6)

The investigation of multifractal measures of diverse origin is a very ac-
tive field of research in various branches of physics for more than two decades.
In recent years important insights were obtained for disorder-generated mul-
tifractality, see [1] for a comprehensive discussion in the context of the Ander-
son localization transition, and also [2] for an example related to statistical
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mechanics with disorder. The multifractality of random Gibbs–Boltzmann
measures in a context related to ours appeared in the insightful paper [3].
A popular way of characterizing multifractality invokes the so-called singu-
larity spectrum function f(α). The latter function is used to characterize

the number dN(α) = V
f(α)
L dα of sites in the sample where the local Gibbs–

Boltzmann measure scales as pβ(r) ∼ V −α
L in the thermodynamic limit.

The definition allows to extract the typical characteristic exponents τq as,
see e.g. [1]

τq = − lim
VL→∞

ln
∫

f(α)≥0

e− lnVL[αq−f(α)] dα

ln VL
. (7)

Performing the α-integration by the Laplace method we obtain that the pos-
itive values of the multifractality spectrum f(α) are related by the Legendre
transform to the set of exponents τq:

τq = α∗q − f(α∗) , q = f ′(α∗) . (8)

Thus, the knowledge of the free energy F(β) in (6) allows one to characterize
the positive part of the multifractality spectrum of the Boltzmann–Gibbs
measure.

Early works by Mezard and Parisi [4], and Engel [5] used the replica trick
to calculate the free energy Eq. (1) of an infinite system, L = ∞, confined by
the simplest parabolic potential Vcon(x) = 1

2µx
2, µ > 0. Employing the so-

called Gaussian Variational Ansatz (GVA) the authors revealed the existence
of a low-temperature phase with broken replica symmetry, hence broken
ergodicity. They were followed by Franz and Mezard [6] and Cugliandolo
and Le Doussal [7] papers on the corresponding dynamics revealing long-
time relaxation, aging, and other effects typical for glassy type of behaviour
at low enough temperatures. The nature of the low-temperature phase was
found to be very essentially dependent on the type of correlations in the
random potential, specified via the covariance function described in Eq. (2).
Namely, if the covariance fV (u) decayed to zero at large arguments u, the
description of the low temperature phase was found to require only the
so-called one-step replica symmetry breaking (1RSB) Parisi pattern. This
effect correctly captures the statistics of the low-lying minima of associated
Gaussian energy landscapes [8].

In contrast, for the case of long-ranged correlated potentials with fV (u)
growing with x as a power-law1 the full infinite-hierarchy Parisi scheme of
replica symmetry breaking (FRSB) had to be used instead.

1 To be more precise, at large separations we require the structure function
˙

[V (x1)−V (x2)]
2
¸

V
∝ (x1−x2)

2γ
, 0<γ <1. However, one can easily satisfy oneself

that in the present model under consideration the difference between the structure
function and the covariance is immaterial for the free-energy calculations. This will
be no longer the case for the model discussed in the end of this article.
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Based on formal analogies with the Hartree–Fock method Mezard and
Parisi [4] argued that GVA-based calculations should become exact in the
limit of infinite spatial dimension N . In a recent paper [9] the replicated
problem was reconsidered in much detail by an alternative method which
directly exposed the degrees of freedom relevant in the limit N → ∞, and
in this way allowed to employ the Laplace (a.k.a. saddle-point) evaluation
of the integrals. The results obtained in [9] by this method for the parabolic
confinement case fully reproduced those obtained by GVA in [4, 5].

The method of [9] also works for statistical mechanics of a single par-
ticle inside any spherical sample |x| < L of a given radius L which makes
it particularly suitable for studying, e.g., multifractality of the associated
Gibbs–Boltzmann measure. To this end it is easy to understand that the ra-
dius L must be scaled with the dimension as L = R

√
N to ensure nontrivial

results when N → ∞. The effective size R < ∞ (which is actually half of
the length of an edge of the cube inscribed in this sphere) can be used as an
additional control parameter of the model. In particular, the chosen scaling

L = R
√

N ensures that the sample volume VL = πN/2 LN

Γ (N/2+1) retains in

the limit N → ∞ the natural scaling with size R and dimension N . Namely,
for R ≫ 1 we have ln VL = N ln R+ smaller terms, which is very essential
for the analysis of multifractality.

In what follows we thus concentrate on the case of no confinement po-
tential Vcon(x) = 0, and choose R to have any fixed value (eventually we
will be interested in a kind of thermodynamic limit R → ∞). One of the
observations made in [9] is the existence of a simple mathematical criterion
which formally differentiates between the short-range correlated potentials
and their long-ranged counterparts. Namely, assume the covariance func-
tion fV (u) in (2) to satisfy technical conditions f ′

V (u) < 0, f ′′
V (u) > 0 and

f ′′′
V (u) < 0 for all u ≥ 0, and also f ′

V (u) → 0 when u → ∞. The criterion is
based on considering a combination A(u) expressed in terms of f(u) as2

A(u) =
3
2 [f ′′′

V (u)]2 − f ′′
V (u)f ′′′′

V (u)

[f ′′
V (u)]2

, (9)

where dashes indicate the order of derivatives taken. Then any potential
satisfying A(u) > 0, ∀u ≥ 0 (this family includes, e.g., the potentials with
fV (u) = exp [−(a + bu)α], such that a > 0, b > 0 and 0 < α ≤ 1) turned
out to have the low-temperature phase which is necessarily of 1RSB type.
The standard replica stability analysis of this 1RSB low-temperature phase
revealed that the stability is controlled by two eigenmodes, denoted in [9]
as Λ∗

0 and Λ∗
K (see equations (B.29) and (B.30) of the Appendix B of that

2 This eventually coincides, up to the overall sign, with the standard definition of the
so-called Schwarzian derivative {f ′(u), u}.



On Statistical Mechanics of a Single Particle in . . . 4059

paper). If both are positive, all other eigenvalues of the stability matrix
are positive and the 1RSB solution corresponds to an extremum of the free
energy functional stable with respect to small variations. And those two
eigenvalues were indeed found to be strictly positive as long as A(u) > 0.

The situation was found to be very different for the potentials with
A(u) < 0,∀u ≥ 0 (this family includes, most notably, the power-law-
correlated potentials with the covariance of the form fV (u) = f(0) − g2×
(u+a)γ , f(0)>g2 aγ , 0<γ<1). The low temperature phase is now of FRSB
type, and it is only “marginally stable”. Indeed, the stability matrix for this
type of the replica symmetry breaking can be shown to contain always a fam-
ily of zero “replicon” modes, see e.g. [10] for a calculation in the framework
of GVA.

Finally, the above criterion naturally singles out the random potentials
satisfying A(u) = 0, ∀u ≥ 0 as a boundary case between the two regimes.

Denoting f̃(x) = f ′′
V (u) and noticing that A(u) = 0 implies f̃ ′/f̃3/2 = const,

we find the function fV (u) to be equal to fV (u)=C−2
0 ln (C0u+C1)+C2u+C3,

where Ci are arbitrary constants. The condition f ′
V (u) → 0 when u → ∞

then selects the case of logarithmic correlations as the only possible, which
we write as

fV (u) = f0 − g2 ln (u + a2) . (10)

This latter choice turns out to be in many respects the most interesting
situation. Indeed, in [9] it was shown that it leads to a phase diagram
which combines features typical for the short-ranged behavior with others
characteristic of the long-ranged disorder. As a particular interesting feature
we would like to mention that although the low-temperature phase can be
thought of as described by a special case of 1RSB breaking scheme, the
relevant eigenvalues Λ∗

0 and Λ∗
K of the stability matrix identically vanish

everywhere in the low-temperature phase3, rendering 1RSB phase in this
special case marginally stable.

The qualitative difference between the three cases — short-ranged, long-
ranged, and logarithmic, is most clearly seen in the thermodynamic limit
of large sample size R → ∞. One finds that for a typical short-ranged po-
tential the domain of existence of 1RSB phase vanishes as long as R → ∞.
For example, the transition (de-Almeida–Thouless [11], AT) temperature
signaling of instability of the replica-symmetric solution typically behaves
as TAT(R) ≈ R2

√

f ′′
V (R2) and rapidly tends to zero for decaying correla-

tions. For any fixed temperature T > 0 in the limit R → ∞ the system
is effectively in the high-temperature replica symmetric phase, and the free

3 This fact, though not explicitly mentioned in [9], immediately follows from definitions
(B.29) and (B.30) after substituting for q1 − q0 = Q and qd − q1 = y the expressions
(74) and (79) of that paper.
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energy behaves asymptotically like F (T ) ≈ −T N lnR. Actually this result
can be seen as a purely entropic contribution, and in particularly implies via
Eqs. (5), (6) the trivial scaling of the exponents τq = q − 1, corresponding
to the totally de-localized Boltzmann–Gibbs measure.

In contrast, for a power-law growth of correlations one finds that the low-
temperature glassy phase occupies bigger and bigger portion of the phase
diagram with growing radius R. Indeed, the transition temperature can be
shown to grow with R as TAT(R) ∼ Rγ , and increasing the system size R at
any fixed temperature T > 0 results in the free energy given asymptotically
by the temperature-independent value F (T )|R→∞ ∼ −NRγ. This expres-
sion actually coincides with the typical minimum of the energy function for
our system. The corresponding exponents τq>0 = 0. In a sense the system
of this type is always “frozen” in the thermodynamic limit, and indeed the
Boltzmann–Gibbs measure is localized on a few deep minima.

Only for the logarithmic case Eq. (9) the transition temperature tends
in the thermodynamic limit to a finite value TAT(R → ∞) = g, and the free
energy asymptotics depends non-trivially on the temperature:

F (T )|R→∞ ≈ −N ln R

{

T (1 + g2/T 2), T > g ,
2g, T < g .

(11)

This is natural to interpret as a freezing transition, precisely of the same
sort as appeared in the celebrated Random Energy Model (REM) by Der-
rida [14]. The same expression for the free energy appeared actually in
studies of a zero-energy wavefunction for Dirac particles in dimension N = 2
and random magnetic field [3], after a mapping to a problem of statistical
mechanics. The Boltzmann–Gibbs measure in this particular case is char-
acterized via a set of non-trivial multifractality exponents τq, see [3] and
also [12]. The ensuing multifractality spectrum f(α) is simple parabolic for
all temperatures, and shows interesting “freezing” behavior for α → 0 at
T = g, i.e. at the point of ergodicity breaking.

We thus see that our results have counterparts in the finite-dimensional
systems. Actually, understanding the generic statistical-mechanical beha-
viour of disordered systems for finite N remains very challenging problem.
To this end, rather detailed attempt of investigating our model for finite
dimensions N < ∞ in the thermodynamic limit L → ∞ was undertaken in
a very insightful paper by Carpentier and Le Doussal [12]. That paper also
can be warmly recommended for describing the present model in a broad
physical context and elucidating its relevance for quite a few other interest-
ing and important physical systems, as e.g. directed polymers on trees [13].
The work was based on employing a kind of real-space renormalization group
(RG) treatment augmented with numerical simulations. The authors con-
cluded that for finite spatial dimensions neither models with short-ranged,
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nor with long-ranged correlations can display a true phase transition at finite
temperatures T > 0. And only if correlations grow logarithmically with the
distance, for such marginal situation the true REM-like freezing transition
indeed happens at some finite T > 0 at any dimension N ≥ 1. Fortunately,
the logarithmic growth is not at all an academic oddity, but rather emerges
in quite a few systems of actual physical interest, see [12] for a detailed
discussion and further references.

We thus see that the picture following from the results of [9] for the
thermodynamic limit (understood as R → ∞) of the model in infinite di-
mension is in overall qualitative agreement with the N < ∞ renormalization
group studies of the same model in the limit L → ∞. Another fact which is
perhaps worth mentioning is that a recent work [15] claimed that 1RSB low-
temperature phase fails to survive in finite spatial dimensions, the fact being
related to absence of marginally stable modes in the fluctuation spectrum.
If one assumes that the validity of that claim extends beyond the particular
model considered in [15], then in our case 1RSB phase in finite dimensions
has no chance of survival for any short-range potentials, but in the loga-
rithmic case it could survive due to the mentioned marginal stability. This
picture would be indeed in agreement with the above-discussed RG results
of [12]. We consider further work in this direction highly desirable, although
it is clear that performing any perturbative expansion around N = ∞ limit
is expected to be a rather technically challenging task.

We end up our presentation by giving a brief overview of a few most
recent advances in understanding the statistical mechanics of a single particle
in random high-dimensional potentials.

1. Multiscale logarithmic potential

As revealed by Bouchaud and the present author in [16, 17], the picture
of potentials with short-ranged, long-ranged, and logarithmic correlations
presented above is still incomplete, and misses a rich class of possible be-
havior that survives in the thermodynamic limit R → ∞. Namely, given any
increasing positive function Φ(y) for 0 < y < 1, one can consider potential
correlation functions fV (u) in the right-hand side of Eq. (2) which take the
following scaling form

fV (u) = −2 ln R Φ

(

ln (u + a2)

2 ln R

)

, 0 ≤ u < R2 . (12)

This type of potential can be constructed by a superposition of several loga-
rithmically correlated potentials of the type (10) with different cutoff scales
ai, and allowing those cutoff scales to depend on the system size R in a power-
law way: ai ∼ Rνi , 0 < νi < 1 [16].
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The thermodynamics of such system in the limit R → ∞ turns out to
be precisely equivalent [16] to that of the celebrated Derrida’s Generalized
Random Energy Model (GREM) [18,19]. The REM-like case Eq. (10) turns
out to be only a (rather marginal) representative of this class: Φ(y) = g2y.

The leading term in the equilibrium free energy turns out to be of the
form F (T ) = N lnRF(T ), where for 0 ≤ T ≤ TAT =

√

Φ′(1)

−F(T ) = Tν∗(T ) +
[Φ(ν∗) − Φ(0)]

T
+ 2

1
∫

ν∗

√

Φ′(y) dy , (13)

where the parameter ν∗ is related to the temperature T via the equation

T 2 = Φ′(ν∗) . (14)

For T > TAT the free energy is instead given by

−F(T ) = T +
[Φ(1) − Φ(0)]

T
. (15)

These expressions for the free energy can be given a clear interpretation as
describing a continuous sequence of “freezing transitions” of REM type, with
freezing happening on smaller and smaller spatial scales [16, 17].

The form Eq. (13,15) can give rise to a rather rich multifractal behavior
of the Boltzmann–Gibbs measure [17]. The associated singularity spectrum
f(α) calculated via Eq. (8) is positive in an interval α ∈ (αmin, αmax), where
the zeroes αmin, αmax of the function f(α) are given by

αmin = −βF(β) − 2β

1
∫

0

√

Φ′(y) dy , αmax = −βF(β) + 2β

1
∫

0

√

Φ′(y) dy .

The singularity spectrum is symmetric with respect to the midpoint of the
interval of interest, αm = (αmin + αmax)/2 = −βF(β) > 0, where it has
the maximum f(αm) = 1 as expected. Close to this maximum, namely,
in the subinterval α ∈ (α−, α+) with α± = αm ± 2A(β)T/(TAT), where
A(β) = β2(Φ(1) − Φ(0)) the singularity spectrum has a simple parabolic
shape:

f(α) = 1 − 1

4A(β)
(α − αm)2 , α− ≤ α ≤ α+ . (16)

In particular, at the boundaries f(α±) = 1−β2
AT (Φ(1) − Φ(0)). Note that in

the REM-like limit Φ(y) = g2y we have αmin/max → α−/+ and the parabolic
behavior is the only surviving, in agreement with the results of [3, 12].
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At the same time outside the interval of parabolicity the general GREM-
like model shows a much richer multifractal structure manifesting itself via
a quite unusual behavior of the singularity spectrum close to the zeros
αmin, αmax. To illustrate this fact, we consider a broad class of functions
Φ(y) behaving at small arguments y ≪ 1 as Φ(y) ≈ C2 y2s+1 with s ≥ 0 and
the coefficient 0 < C < ∞. In particular, in the limiting case s → 0 we are
back to the old REM-like model. Now we can extract the behavior of the
f(α) when approaching the endpoints αmin or αmax. It is given by

f(α) ≈ s + 1

ss/(s+1)
αs/(s+1)

c |α − αmin/max|
1

s+1 , (17)

where

αc =
2s2

(s + 1)(2s + 1)
(βC

√
2s + 1)−

1
s . (18)

We see that for any s > 0 the derivative of the singularity spectrum diverges

as f ′(α) ∼ |α−αmin/max|−
s

s+1 → ∞. This is very different from the standard
behavior observed in other disordered systems [1, 2]: f ′(α) < ∞ at zeros of
f(α). At the level of multifractal exponents τq this feature is translated to

a rather unusual behavior for large enough |q|, namely: τq−qαmin = −αcq
− 1

s

for q > T/TAT, and a similar formula for q < −T/TAT. Note, that in the stan-
dard situation one always observes linear behavior τq = qαmin,max starting
from some value of |q|, see the formula (2.42) in [1] and discussions around it.

2. Extrema of random landscapes and ergodicity breaking

Another set of recent works on the random Gaussian model with cor-
relations specified by Eq. (2) which deserves mentioning is a continuing
attempt [20] to relate the phenomenon of ergodicity breaking occurring
at the level of statistical mechanics to statistical properties of the minima
(and other stationary points) of high-dimensional Gaussian random surfaces
H(x), see [21] for introduction to the problematic. The authors managed
to show that for a generic smooth, concave confining potentials Vcon(x) the
condition of the zero-temperature replica symmetry breaking coincides with
one signaling that both mean total number of stationary points in the en-
ergy landscape, and the mean number of minima are exponential in N . For
a generic system of this sort the (annealed) complexity of minima vanishes
cubically when approaching the transition, whereas the cumulative annealed
complexity vanishes quadratically. One also can investigate how the com-
plexity depends on the index of stationary points [20, 22]. In particular,
in the vicinity of the transition the saddle-points with a positive annealed
complexity must be close to minima, as they were found to have a vanishing
fraction of negative eigenvalues in the corresponding Hessian.
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3. Statistical mechanics in a sum of squared

Gaussian-distributed potentials

Finally, let us mention recent work [23] on the statistical mechanics in

the energy landscape given by H(x) = µ
2x

2 +
∑K

i=1 W 2
i (x). Here Wi(x),

with i = 1, . . . ,K are assumed to be independent, identically distributed

Gaussian functions with zero mean, the variance 〈W 2
i 〉 = σ

(

x
2

N

)

and the

structure function
〈

[Wi (x1) − Wi (x2)]
2
〉

= 2φW

(

(x1−x2)2

N

)

. Note impor-

tant differences from the Gaussian case: (i) the absence of the factor N
in front of the (co)variance, in contrast to Eq. (2), and (ii) necessity of
specifying both functions σ and φW , as the phase diagram will actually de-
pend on both of them, in contrast to the the discussion in the footnote 1.
The free energy of such a system turns out to have a well-defined large-N
limit provided we scale K = Nκ, and consider the parameter 0 < κ < ∞.
Naively one may think that the central limit theorem (CLT) would imply
that the sum of K = O(N) random terms effectively behaves as a Gaussian
potential. A thorough consideration shows that such a reasoning is how-
ever deficient for the statistical mechanics problem in hand. Indeed, with
lowering the temperature deep minima of the resulting potential start play-
ing most prominent role, and the description of those minima goes beyond
the applicability of CLT. This fact suggests that the statistical mechanics
of such model may have features rather different from the former Gaussian
case due to different statistics of deep minima [8]. The dynamics in this case
may also be rather different, see interesting related results in [24].

The free energy can be evaluated in the limit N → ∞ by extending the
methods of [9], and the system shows both similarities and dissimilarities
to the Gaussian case. In particular, the difference between the short-range
and long-range potentials remains to be important, but manifests itself in
a somewhat different way. One again finds that the replica-symmetric solu-
tion is unstable at low enough temperatures. Let us discuss here only the
simplest case of a short-ranged potential with position-independent variance

σ
(

x
2

N

)

= σ ≡ fW (0), where fW (u) stands for the covariance function of

the field W , related to the structure function as φW (u) = fW (0) − fW (u).
The equation for the transition (de-Almeida–Thouless) line TAT(µ) is then
given in terms of the structure function by:

[φ′
W (τAT)]2 − φ′′

W (τAT) [σ − φW (τAT)]
[

1 + φW (τAT)
TAT

]2 =
µ2

κ
, τAT =

TAT

µ
. (19)

By investigating this expression one finds that the phase with broken replica
symmetry may exist only as long as the parameter κ exceeds some critical
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value

κ > κcr =
1

1 +
fW (0)f ′′

W
(0)

f ′2
W

(0)

. (20)

Moreover, for every such κ the curvature of the confining potential must
satisfy the inequality

µ < µcr =
√

κ [fW (0)f ′′
W (0) + f ′2

W (0)] + f ′
W (0) . (21)

In the case of long-range potentials one has to take into account the fact
of position-dependent variance, which makes the analysis more complicated,
and the corresponding phase diagram quite intricate. These features are
currently under investigation [23].
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