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In this theory, an object is a mass density field in the fabric of space (FS)
that satisfies mass–energy equivalence. In contrast with General Relativ-
ity (GR), the theory posits a preferred reference frame — namely the ref-
erence frame in which the FS is at rest. Also in contrast with GR, grav-
ity between two objects results from the interaction of their mass density
fields integrated over the entire FS. This interaction results in two types
of gravity: Type I gravity which includes classical gravity, and under cer-
tain conditions, Type II gravity which includes a very strong wave gravity.
Gravity exerted by large on small objects reduces to classical gravity. Grav-
ity exerted by small on large objects is 3 times the classical value at small
kinetic energies. When the small object becomes relativistic, then gravity
becomes much larger. Every object has a gravity wavelength, and for the
object being acted upon, classical type gravity occurs at distances less than
its gravity wavelength while wave gravity occurs at distances greater than
its gravity wavelength. The theory yields a set of 8 logarithmic singular-
ities in the gravity force as well as a first-order singularity in the gravity
potential. If the FS is quantized into discrete units, these singularities act
on the FS to effect changes and interactions in mass density fields instan-
taneously. As a result, gravity acts instantaneously. We suggest that the
3 degree K cosmic background radiation results from kinetic energy released
by the FS units. The theory then predicts that the rest mass of each FS unit
is 2 proton masses and its characteristic length is approximately 2 mm. We
extend the gravity theory to photons and predict the same results as GR
for the classical experimental tests as well as for the change in period of
binary pulsars. Finally, we show that the gravity theory makes possible
a derivation of the Coulomb force.

PACS numbers: 04.50.–h, 04.80.Cc, 04.90.+e, 95.30.Sf
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1. Introduction

The observation of the cosmic background radiation suggests the exis-
tence of a preferred reference frame and calls into question the relativistic in-
variance foundation of General Relativity (GR). Even with GR’s widespread
acceptance and numerous precise validations (Will 1993), we can ask whether
there is another gravity theory that might explain the nature of the cosmic
background radiation and its preferred reference frame.

The derivation of such a gravity theory began as an attempt to answer
where kinetic energy is stored and how the storage of kinetic energy af-
fects gravity. Since we could find no answers to these questions, we started
with the only equation that seemed relevant, namely that of mass–energy
equivalence (Einstein 1905).

We believed that both rest mass and kinetic energy distort the fabric of
space (FS) — not space-time as in GR. Accordingly, we looked for a rest
mass and kinetic energy density function that when integrated over all space
would give the answer predicted by mass–energy equivalence. We found only
one function and that was in the table of Fourier cosine transforms of Bessel
functions (Erdelyi, Magnus, Tricomi 1954). The transform was originally
derived by Weber and is also called a Weber discontinuous integral.

Thus we hypothesize that an object is the following mass density field
DG(r) in the FS:

DG(r) = M/4πλG J0(r/λG) cos(vr/cλG)/r2 , (1)

where M is the rest mass of the object, λG is its gravity wavelength, J0 is
the 0th order Bessel function of the first kind, r is the distance from the
object, v is the speed of the object, and c is the speed of light. The J0

Bessel function (also called a cylindrical harmonic) corresponds to the space
distortion due to rest mass, while the cosine function corresponds to the
space distortion due to kinetic energy.

The integral over all space in spherical coordinates of the mass density
field DG(r) reduces to the Fourier cosine transform of the J0 Bessel func-
tion (Erdelyi, Magnus, Tricomi 1954):

2π
∫

0

dϕ

π
∫

0

dθ sin θ

∞
∫

0

drr2DG(r) = M/
√

(1− v2/c2) , v/c < 1 ,

= 0 , v/c > 1 . (2)

The integral over all space of the mass density field DG(r) now predicts
mass–energy equivalence and also that the speed of an object is limited
by the speed of light. The mass density field may have v = 0 since in that
case the integral reduces to the Bessel function normalization integral
(Wolfram 1998):
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M/4πλG

2π
∫

0

dϕ

π
∫

0

dθ sin θ

∞
∫

0

drJ0(r/λG) = M . (3)

The mass density field differs from those in current theories of gravity
since it includes negative values and must be integrated to infinity. We in-
terpreted the negative values as resulting from rest mass waves and kinetic
energy waves in the FS. The speed of an object is defined relative to the FS
since the mass density field of the object exists in the FS. Thus the reference
frame in which the FS is at rest is the preferred reference frame. This con-
clusion is consistent with the cosmic background radiation, since we suggest
that this radiation results from kinetic energy being released from the FS.

In contrast with GR, gravity between two objects results from the in-
teraction of the two individual mass density fields integrated over the en-
tire FS. For the object being acted upon, the theory predicts either classical
type gravity or wave gravity, depending upon the distance between the two
objects and the object’s gravity wavelength. The derivation of the gravity
force is exact and the values of the constants in the theory are determined
from observational data.

If gravity acts at the speed of light, the integration of the mass density
fields to infinity poses a serious problem. This problem is resolved as the
theory includes a set of 8 logarithmic singularities (i.e. proportional to
− log(ε)|ε=0) and a first-order singularity (i.e. proportional to 1/ε|ε=0) in
the gravity force. As we develop later, if the FS is quantized into discrete
units, the singularity equations show that both types of singularities act
on the FS to effect any changes and interactions in the mass density fields.
Since the singularities are infinite forces, the changes and interactions occur
instantaneously and hence gravity acts instantaneously.

We also describe the gravitational interaction of photons and compare
the predictions of the gravity theory with the experimental tests of GR.
Our theory predicts the same results for the classical tests as well as for the
change in period of binary pulsars.

It is noteworthy that the singularities of Type I and Type II gravity
display many of the same characteristics as phenomena such as Cooper pairs,
Brownian motion, and Aurora Borealis whose forces are not well explained
by conventional theory.

We should add what this theory is not. It is not a quantum theory
of gravity but rather a classical theory, even though the FS is quantized
into discrete units. This theory is not Lorentz invariant since gravity acts
instantaneously. Gravity is also not symmetric in that gravity exerted by
an object A on an object B is not the same as gravity exerted by object B
on object A. As we show later, Newton’s third law is preserved in a two-
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body system, but the gravity theory does violate the equivalence principle
in a novel way. Also, the gravity force is not applied directly by the object
exerting the gravity, but by the FS. As a result, energy and momentum are
conserved if the FS is included. This is possible since the theory requires that
the FS has mass and kinetic energy and we suggest, based on observational
data, that each FS unit has a rest mass of 2 proton masses, a characteristic
length of approximately 2mm, and the capability to store and transfer kinetic
energy as vibration energy.

2. Gravity constants

We hypothesize that the gravity wavelength λG of an object is linearly
proportional to its rest mass and is referenced to the gravity wavelength λFS

of a FS unit as follows:
λG = λFS M/mFS , (4)

where M is the object rest mass and mFS is the rest mass of a FS unit. We
use the atomic mass formula to replace the rest mass of a FS unit:

aFS = NAmFS

[

kg mole−1
]

, (5)

where aFS is the atomic mass of a FS unit in kilograms per mole and NA is
Avogadro’s number. We define a constant κ and rewrite the gravity wave-
length of an object as:

κ = aFS/λFS

[

kg mole−1 m−1
]

, (6)

λG = NA/κ M . (7)

The constant κ is the FS atomic mass linear density since the gravity wave-
length λFS of a FS unit is its characteristic length.

To determine the constant NA/κ from observational data, we suggest
that the yellow–green glow occurring in nuclear reactions (Rohringer 1968)
corresponds to the electron gravity wavelength. As we show later, wave
gravity exerted by fusion or fission byproducts in motion strongly vibrates
electrons at the electron gravity wavelength. As a result, the electrons release
the vibration kinetic energy as radiation at the electron gravity wavelength.
We divide the electron gravity wavelength λe ≈ 0.55×10−6 m (yellow–green
light) by its rest mass me and obtain:

NA/κ = λe/me ≈ 6.0 × 1023
[

m kg−1
]

. (8)

This result provides observational support that the value of NA/κ is Avo-
gadro’s number and that the value of the FS atomic mass linear density κ
is one.



Gravity Theory Based on Mass–Energy Equivalence 2827

Wave gravity can transfer kinetic energy not only to electrons, but also
to FS units by strongly vibrating the units at the FS gravity wavelength.
As with electrons, the units release the vibration kinetic energy as radiation
which we should observe at the FS gravity wavelength. One type of radiation
connected with the FS is the 3 degree K cosmic background radiation. If
we assume that this radiation results from cosmic kinetic energy stored in
the FS at the instant of the Big Bang and released since that time, then
the FS gravity wavelength λFS is the wavelength of the cosmic background
radiation (Penzias, Wilson 1965):

λFS ≈ 2.0× 10−3 m . (9)

We now use Eq. (7) for the gravity wavelength to obtain the rest mass of
a FS unit:

mFS = λFS/(NA/κ) = 2mp . (10)

The result is so close to 2 proton masses that we hypothesize that the rest
mass mFS of a FS unit is indeed 2 proton masses (2mp). We would further
hypothesize that a FS unit is, in fact, a vibrating proton–antiproton pair.

3. Gravity fields

We show later that the gravity force exerted by an object A on an ob-
ject B that reduces to classical gravity is:

FG(rB) = AGGmAmBJ0(rB/λB)/r2
B , (11)

where AG is an amplification factor, G is the gravitational constant, mA

is the mass of object A, mB is the mass of object B, rB is the distance of
object A from object B, and λB the gravity wavelength of object B. For
example, aside from relativistic rest mass corrections, AG = 1 for gravity
exerted by large on small objects. The deviation of gravity from an inverse
square force arises from the J0 Bessel function.

Classical gravity corresponds to gravity in the near-zero region of the J0

Bessel function. If rB/λB ≪ 1, the near-zero expansion of the Bessel function
J0(x) = 1− x2/4 + . . . shows that J0(rB/λB) ≈ 1 and we have the classical
gravity force times the amplification factor. Since an object’s gravity wave-
length in meters is 6.0 × 1023 times its rest mass in kilograms, an object’s
gravity wavelength is extremely large except for elementary particles and
nuclei. As a result, the near-zero region for larger objects is very large and
gravity reduces to classical gravity for most objects and distances.

Wave gravity occurs in the region rB/λB > 1 as the Bessel function
J0(rB/λB) becomes harmonic. For example, in the asymptotic region
rB/λB ≫ 1 we have:
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J0(rB/λB) ≈
√

(2λB/πrB) cos(rB/λB − π/4) , (12)

FG(rB) ≈ AGGmAmB

√

(2λB/π) cos(rB/λB − π/4)/r
5/2

B
. (13)

However, the wave gravity region for planetary masses like the Earth or Sun
is very far away since λEarth = 3.8 × 1032 light-years and λSun = 1.3 × 1038

light-years. These gravity wavelengths should be compared to the size of
the observable universe — about 4.2×1010 light-years. Thus gravity for
planetary masses as for most objects is a classical 1/r2 force. But, as we show
later, gravity is on the average larger than classical gravity since AG = 3 in
the case of gravity exerted by small on large objects and AG has a logarithmic
singularity as the masses become equal. In the former case, when the small
object is relativistic, AG ≫ 3 and gravity is also very much larger than
classical gravity.

If we examine the mass density field in the asymptotic region r/λG ≫ 1,
we obtain:

DG(r)≈M/4πλG

√

(λG/2π)

×{cos((1+v/c)r/λG−π/4)+cos((1−v/c)r/λG−π/4)}/r5/2 . (14)

This asymptotic behavior suggests that gravity can be best understood using
wave theory. In this view, the kinetic energy creates a mass density wave
that has no carrier but only two sidebands. This is an extremely efficient
method to transfer information or energy. Wave theory also suggests that
the mass density field of the receiving object acts as a receiving antenna and
demodulator. Accordingly, we hypothesize that the gravity force occurs at
the mass density field level.

The calculation of the gravity force experienced by an object follows the
standard calculation of classical gravity exerted by an object with a spher-
ically symmetric mass density. However, we use the mass density fields of
both objects and a coupling constant between the two mass density fields.
In order that gravity experienced by a very large object reduces to classical
gravity, the coupling constant must be G4πλG where G is the gravitational
constant and λG is its gravity wavelength. Thus the gravity force exerted
by an object A with mass mA, gravity wavelength λA, and speed vA on
an object B with mass mB, gravity wavelength λB, and speed vB is:

FG(rB) = GmAmB/4πλA

∞
∫

0

drAr2
A

π
∫

0

dθ sin θ

2π
∫

0

dϕJ0(rA/λA)

× cos (vArA/cλA) /r2
A J0

(

(

r2
B + r2

A − 2rBrA cos θ
)1/2

/λB

)
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× cos
(

vB

(

r2
B + r2

A − 2rBrA cos θ
)1/2

/cλB

)

×(rB − rA cos θ)/
(

r2
B + r2

A − 2rBrA cos θ
)3/2

. (15)

We integrate over ϕ and twice by parts over θ, collect terms, and then make
the substitution x = (r2

B + r2
A − 2rBrA cos θ)1/2 with the result:

FG(rB) = GmAmB/2λAr2
B

∞
∫

0

drAJ0(rA/λA) cos(vArA/cλA)

×{[J0((rB + rA)/λB) cos(vB(rB + rA)/cλB) + J0((rB − rA)/λB)

× cos(vB(rB − rA)/cλB)]− 1/2λB

rB+rA
∫

rB−rA

dx/x
(

r2
A − r2

B + x2
)

/rA J ′

0(x/λB)

× cos(vBx/cλB) + vB/c2λB

rB+rA
∫

rB−rA

dx/x
(

r2
A − r2

B + x2
)

/rA J0(x/λB)

× sin(vBx/cλB)} . (16)

There are really three integrals here. The first integral which includes the
two J0 terms is gravity that arises from the density of space and is evaluated
in Appendix A. The second is gravity that arises from the change in the
density of space due to the rest mass and is evaluated in Appendix B. The
third is gravity that arises from the change in the density of space due to
kinetic energy and is evaluated in Appendix C. The integration shows that
there are two types of gravity which we call Type I and Type II gravity.

4. Type I gravity

We now calculate what we call Type I gravity which reduces to classical
gravity in the classical limit. We bring the integrals back together, grouping
them by whether they contain a “cos(rA . . .)” or “sin(rA . . .)rA” term. We
evaluate the “cos(rA . . .)” integrals first. If we define s = rB/λB and the
functions A(s), B(s), and C(s), we then have:

FG1(rB) = GmAmBλB/4λAr2
B A(s) , (17)

A(s) = 1/λB

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ{exp(iys)

×[cos(rA(y/λB+vA/cλA))+cos(rA(y/λB−vA/cλA))]+exp(izs)

×[cos(rA(z/λB+vA/cλA))+cos(rA(z/λB − vA/cλA))]} , (18)
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where

y = cos θ + vB/c ,

z = cos θ − vB/c .

FG22(rB) = GmAmBλB/4λAr2
B B(s) , (19)

B(s) = 1/λB

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iys)
(

s/iy − 1/(iy)2
)

[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))] + exp(izs)
(

s/iz − 1/(iz)2
)

×[cos(rA(z/λB+vA/cλA))+cos(rA(z/λB−vA/cλA))]
}

,(20)

FG31(rB) = GmAmBλB/4λAr2
B C(s) , (21)

C(s) = −ivB/c 1/λB

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ

×{exp(iys)[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))]/iy

− exp(izs)[cos(rA(z/λB+vA/cλA))

+ cos(rA(z/λB − vA/cλA))]/iz} . (22)

We now reverse the order of integration, noting that the integrals over rA

are the same Weber discontinuous integrals as for the mass density integral.
However, as we show in Appendix D, the “sin(rA . . .)rA” terms cancel the
integrals when the resulting inverse square root terms are imaginary. The
integration over rA gives:

A(s) = 1/π

π
∫

0

dθ exp(iys)
[

(

λ2
B/λ2

A−(y+vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A−(y−vAλB/cλA)2
)

−1/2
]

+1/π

π
∫

0

dθ exp(izs)
[

(

λ2
B/λ2

A−(z+vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A−(z−vAλB/cλA)2
)

−1/2
]

, (23)
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B(s) = 1/π

π
∫

0

dθ
(

1− cos2 θ
)

exp(iys)
(

s/iy − 1/(iy)2
)

×
[

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2
]

+1/π

π
∫

0

dθ
(

1− cos2 θ
)

exp(izs)
(

s/iz − 1/(iz)2
)

×
[

(

λ2
B/λ2

A − (z + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (z − vAλB/cλA)2
)

−1/2
]

, (24)

C(s) = −ivB/c 1/π

π
∫

0

dθ exp(iys)/iy

×
[

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2
]

+ivB/c 1/π

π
∫

0

dθ exp(izs)/iz

×
[

(

λ2
B/λ2

A − (z + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (z − vAλB/cλA)2
)

−1/2
]

. (25)

The integrals are non-zero for all values of λB/λA, but the integration limits
may be reduced so that the inverse square root terms are real. For the most
part, when λB/λA > 1 (i.e. gravity exerted by object A on object B that has
larger mass), the integral limits are 0 to π as the zeros of the Weber terms
lie outside the integration interval. As λB/λA approaches one, the zeros of
the Weber terms approach the integration interval and the limits must be
carefully specified. When λB/λA < 1 (i.e. gravity exerted by object A on
an object B that has smaller mass), the integration limits are the zeros of
the Weber inverse square root terms even though we may display the limits
as 0 to π.
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We first show, however, that the Type I gravity force experienced by
object B is an amplification factor multiplied by J0(rB/λB)/r2

B. We do this
by showing that the Type I gravity force satisfies Bessel’s equation of order
zero. If we add the function A(s) and its second derivative, we obtain:

d2/ds2A(s)+A(s)=1/π

π
∫

0

dθ exp(iys)
[(

1−cos2 θ
)

−yvB/c−cos θvB/c
]

×
[

(

λ2
B/λ2

A−(y+vAλB/cλA)2
)

−1/2
+

(

λ2
B/λ2

A−(y−vAλB/cλA)2
)

−1/2
]

+1/π

π
∫

0

dθ exp(izs)
[(

1− cos2 θ
)

+ zvB/c + cos θvB/c
]

×
[

(

λ2
B/λ2

A−(z+vAλB/cλA)2
)

−1/2
+

(

λ2
B/λ2

A−(z−vAλB/cλA)2
)

−1/2
]

.(26)

Taking the derivative of B(s) and dividing by s gives:

1/s d/ds B(s) = 1/π

π
∫

0

dθ exp(iys)(1 − cos2 θ)

×
[

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2
+

(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2
]

+1/π

π
∫

0

dθ exp(izs)
(

1− cos2 θ
)

[

(

λ2
B/λ2

A − (z + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (z − vAλB/cλA)2
)

−1/2
]

. (27)

The function C(s) is the kinetic energy correction term that contributes to
the second derivative of A(s) to remove the first of its kinetic energy terms.
Thus we take the second derivative of C(s) to obtain:

d2/ds2 C(s) = 1/π

π
∫

0

dθ exp(iys)yvB/c

×
[

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2
+

(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2
]

−1/π

π
∫

0

dθ exp(izs)zvB/c

×
[

(

λ2
B/λ2

A−(z+vAλB/cλA)2
)

−1/2
+

(

λ2
B/λ2

A−(z−vAλB/cλA)2
)

−1/2
]

.(28)
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We show in Appendix E that the remaining kinetic energy term in the second
derivative of A(s) integrates to zero and so the Type I gravity force satisfies
an equation that we compare to Bessel’s equation:

d2/ds2{A(s) + C(s)} − 1/s d/ds B(s) + A(s) = 0 , (29)

d2/ds2Jn(s) + 1/s d/ds Jn(s) +
(

1− n2/s2
)

Jn(s) = 0 . (30)

Thus the Type I gravity force is a Bessel function of order zero and the
functions A(s) and C(s) are proportional to J0(s) and B(s) to −J0(s). By
grouping together the terms in s and noting that exp(is cos θ) is a Bessel
generating function, we can replace the terms in s by J0(s). We begin with
the A(s) term, changing the integration variable to t = cos θ:

exp(is cos θ) = J0(s) + 2
∞

∑

n=1

inJn(s) cos(nθ) , (31)

A(s) = J0(s) 1/π

1
∫

−1

dt
(

1− t2
)

−1/2

×
{

((t+vB/c+α)(β−t−vB/c))−1/2+((t + vB/c+β)(α−t−vB/c))−1/2

+((t−vB/c+α)(β−t+vB/c))−1/2+((t−vB/c+β)(α−t+vB/c))−1/2
}

,(32)

where

α = λB/λA(1 + vA/c) ,

β = λB/λA(1− vA/c) .

When the integral limits are −1 to 1 or the Weber zeros, each integral has
the following form where K(m) is the complete elliptic integral K of the
first kind (Wolfram 1996):

1
∫

−1

dt
(

1− t2
)

−1/2
(a + t)−1/2(b− t)−1/2 = 2((1 + a)(1 + b))−1/2K(m) , (33)

where m = 2(a + b)/((1 + a)(1 + b)).
When object A is much smaller than object B (i.e. λB/λA ≫ 1), then

a≫ 1 and b≫ 1, and the argument of the complete elliptic integral K(m)
is very small. We can then use the identity K(0) = π/2 to approximate each
of the 4 integrals:

A(s) ≈ 4J0(s)(αβ)−1/2 , (34)

FG1(rB) ≈ GmAmB

(

1− v2
A/c2

)

−1/2
J0(rB/λB)/r2

B , (35)

where λB/λA ≫ 1.



2834 S.A. Lipinski, H.M. Lipinski

Now we take the classical limit in which the mass of object B is large
(i.e. rB/λB ≪ 1) and recover classical gravity with a rest mass increase for
object A relativistic:

FG Classical(rB) = GmAmB

(

1− v2
A/c2

)

−1/2
/r2

B , (36)

where λB/λA ≫ 1, rB/λB ≪ 1.
When object A is much larger than object B (i.e. λB/λA ≪ 1), then

α ≪ 1 and β ≪ 1. If λB/λA ≪ (1 − v2
B/c2), then m ≪ 1, K(m) ≈ π/2,

and A(s) ≈ 4J0(s)(1 − v2
B/c2)−1/2. Therefore the contribution of A(s) to

the gravity of a larger object on a smaller object is negligible.
We now examine the 8 logarithmic singularities in the functions A(s)

and C(s) which occur whenever λA, λB, vA, and vB satisfy one of the 4
following conditions:

λB/λA = (1± vB/c)/(1 ± vA/c) . (37)

The singularities occur when the zeros of the Weber terms are coincident
with the zeros at the edge of the Bessel integration region and result in
a factor 1/(1 − t) or 1/(1 + t). Since the singularities are at the integration
limits, this results in Type I gravity having two logarithmic singularities
from each of its four terms.

For example, we evaluate the first A(s) term in Eq. (32) when the Weber
zeros in Eq. (33) occur at a = 2λB/λA − 1 and b = 1, corresponding to
λB/λA = (1 + vB/c)/(1 − vA/c). The integration region is from −1 to 1
since λB/λA ≥ 1 and we have:

A1(s) = J0(s) 2/π ((1 + a)(1 + b))−1/2K(m) , (38)

where

m = 2(a + b)/((1 + a)(1 + b)) ,

a = λB/λA(1 + vA/c) + vB/c ,

b = λB/λA(1− vA/c) − vB/c .

The argument of the complete elliptic integral K(m) is close to 1 so
K(m) ≈ −1/2 log(1−m) + log(4) and we obtain at the singularity:

FG11(rB) = GmAmBJ0(rB/λB)/r2
B 1/8π (λB/λA)1/2

×{log(32λB/λA/(λB/λA − 1)) − log(b− 1)|b=1} , (39)

where λB/λA = (1 + vB/c)/(1 − vA/c) .
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The other singularity in the first term occurs at a=1 and b=2λB/λA−1,
corresponding to λB/λA = (1− vB/c)/(1 + vA/c). The integration region is
from −1 to b since λB/λA ≤ 1. Such integrals with mixed limits have the
following form (Wolfram 1996):

b
∫

−1

dt
(

1− t2
)

−1/2
(a + t)−1/2(b− t)−1/2 = 2(2(a + b))−1/2K(1/m) . (40)

The argument of the complete elliptic integral K(1/m) is again close to 1
and we obtain:

FG11(rB) = GmAmBJ0(rB/λB)/r2
B 1/8π (λB/λA)1/2

×{log(32λB/λA/(1−λB/λA))−log(a−1)|a=1} , (41)

where λB/λA = (1− vB/c)/(1 + vA/c) .
The singularities in the B(s) terms give rise both to gravity exerted by

a larger object A on a smaller object B and to gravity exerted by a smaller
object A on a larger object B. We also show that this gravity reduces to
classical gravity in the classical limit. We first note that the singulari-
ties in B(s) are removed by differentiation so that its J0(s) nature arises
from the combination of both the 1/iy and 1/(iy)2 terms. As a result, we
replace the common terms in s and the Bessel generating functions (i.e.
“(s − 1/iy) exp(iys)” and “(s − 1/iz) exp(izs)”) by −J0(s). In addition, we
change the integration variable to t = cos θ:

B(s) = −J0(s) 1/iπ

1
∫

−1

dt
(

1− t2
)1/2

×
{[

(t + vB/c + α)−1/2(β − t− vB/c)−1/2

+(t + vB/c + β)−1/2(α− t− vB/c)−1/2
]

/(t + vB/c)

+
[

(t− vB/c + α)−1/2(β − t + vB/c)−1/2

+(t− vB/c + β)−1/2(α− t + vB/c)−1/2
]

/(t− vB/c)
}

. (42)

For gravity exerted by a larger object A on a smaller object B, the zeros
of the Weber terms lie inside the integration interval 0 to π and so the
integration interval is really between the zeros of each Weber term. We shift
the integration variable so that each integral has the following form where
Π(n|m) is the complete elliptic integral Π of the third kind (Wolfram 1996):
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b
∫

−a

dt(e + t)1/2(d− t)1/2(a + t)−1/2(b− t)−1/2/t

= 2(d− b)((a + d)(b + e))−1/2{Π((a + b)/(a + d)|m)

+e/b Π(d(a + b)/(b(a + d))|m)} , (43)

where m = 2(a + b)/((a + d)(b + e)) .
If λB/λA ≪ 1, then a ≪ 1 and b ≪ 1. If (a + b) ≪ ed, then m ≪ 1

and we can use the identity Π(n|0) = (1 − n)−1/2π/2 to approximate the

terms. The integral evaluates to {π(d − b)1/2(b + e)−1/2(1 − ie(ab)−1/2)}.
Thus gravity exerted by a much larger object A on a smaller object B is:

B(s) ≈ 4J0(s)(αβ)−1/2(ed)1/2 , (44)

FG22(rB) ≈ GmAmB(1− v2
A/c2)−1/2(1−v2

B/c2)1/2J0(rB/λB)/r2
B , (45)

where λB/λA ≪
(

1− v2
B/c2

)

.
We note that the gravity exhibits a rest mass increase for object A rela-

tivistic, but a rest mass decrease for object B relativistic. We now take the
classical limit in which the mass of object B is large (i.e. rB/λB ≪ 1) and
we obtain classical gravity with a rest mass increase for object A relativistic,
but with a rest mass decrease for object B relativistic:

FG Classical(rB) = GmAmB

(

1− v2
A/c2

)

−1/2 (

1− v2
B/c2

)1/2
/r2

B , (46)

where

λB/λA ≪
(

1− v2
B/c2

)

, rB/λB ≪ 1 .

When object A is smaller than object B, the integration limits are the
Bessel limits. We shift the integration variable so that each integral has the
following form (Wolfram 1996):

d
∫

−e

dt(e + t)1/2(d− t)1/2(a + t)−1/2(b− t)−1/2/t

= 2(b− d)((a + d)(b + e))−1/2{−(b + e)/b K(m)

+Π(2/(b + e)|m) + e/b Π(2b/((b + e)d))|m)} , (47)

where m = 2(a + b)/((a + d)(b + e)).
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If λB/λA ≫ 1, then a ≫ 1, b ≫ 1, m ≪ 1, and we can use the identi-

ties K(0) = π/2 and Π(n|0) = (1 − n)−1/2π/2 to approximate the terms.
Consequently the K(m) term cancels the first Π(n|m) term and we have:

B(s) ≈ 4J0(s)(αβ)−1/2(ed)1/2 , (48)

FG22(rB) ≈ GmAmB(1−v2
A/c2)−1/2(1−v2

B/c2)1/2J0(rB/λB)/r2
B , (49)

where λB/λA ≫ 1.
While this result implies that gravity exerted by a smaller object A on

a much larger object B is now twice the classical value, it is in fact three
times the classical value since we show later that Type II gravity also gives
the same result. However, in the case of Type II gravity, the gravity is only
the same for vA/c ≪ 1. As object A becomes relativistic, Type II gravity
becomes much larger than just a relativistic increase in the rest mass of
object A.

We conclude Type I gravity by evaluating the kinetic energy correction
term C(s). We show that C(s) is negligible in the classical limit when
object A is larger than object B and integrates to zero when object A is
smaller than object B. As with A(s), we replace the terms in s by J0(s) and
change the integration variable to t = cos θ to obtain:

C(s) = −vB/c J0(s) 1/π

1
∫

−1

dt
(

1− t2
)

−1/2

×
{[

(t + vB/c + α)−1/2(β − t− vB/c)−1/2

+(t + vB/c + β)−1/2(α− t− vB/c)−1/2
]

/(t + vB/c)

−
[

(t− vB/c + α)−1/2(β − t + vB/c)−1/2

+(t− vB/c + β)−1/2(α− t + vB/c)−1/2
]

/(t− vB/c)
}

. (50)

For gravity exerted by a larger object A on a smaller object B, the zeros of
the Weber terms lie inside the integration interval 0 to π and so the integra-
tion interval is between the zeros of each Weber term. We shift the integra-
tion variable so that each integral has the following form (Wolfram 1996):

b
∫

−a

dt(e + t)−1/2(d− t)−1/2(a + t)−1/2(b− t)−1/2/t

=2((a+d)(b+e))−1/2{1/d K(m)+(d−b)/bd Π(d(a+b)/(b(a+d))|m)},(51)

where m = 2(a + b)/((a + d)(b + e)).
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If λB/λA ≪ 1, then a≪ 1 and b≪ 1. If (a + b)≪ de then m≪ 1, and

we can use the identities K(0) = π/2 and Π(n|0) = (1 − n)−1/2π/2 to ap-

proximate the terms. The integral evaluates to {π(de)−1/2(1/d− i(ab)−1/2)}
with the result that the imaginary part of the 4 terms in C(s) cancel and
the real part is negligible.

When object A is smaller than object B, the integration limits are the
Bessel limits. The first and fourth terms and the second and third terms
cancel as they are mirror images with respect to the integration interval
and occur with opposite sign. Thus the kinetic energy correction term C(s)
integrates to zero.

5. Type II gravity

We can follow a similar procedure for Type II gravity and find that this
gravity is far stronger than classical gravity. For Type II gravity, we evaluate
the “sin(rA . . .)/rA” integrals. We define s = rB/λB and the functions E(s)
and F (s) as follows:

FG23(rB) = GmAmBλB/4λAr2
B E(s) , (52)

E(s) =

∞
∫

0

drA/rA J0(rA/λA) i/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iys)
(

1/(iy)3 − s/(iy)2
)

[

sin(rA(y/λB + vA/cλA))

+ sin(rA(y/λB − vA/cλA))
]

+ exp(izs)
(

1/(iz)3 − s/(iz)2
)

[

sin(rA(z/λB + vA/cλA))

+ sin(rA(z/λB − vA/cλA))
]}

, (53)

where

y = cos θ + vB/c ,

z = cos θ − vB/c .

FG32(rB) = GmAmBλB/4λAr2
B F (s) , (54)

F (s) = iv2
B/c2

∞
∫

0

drA/rA J0(rA/λA) 1/π

π
∫

0

dθ

1
∫

0

dt

×
{

exp(iyts)
(

1/(iyt)
3 − s/(iyt)

2
)
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×
[

sin(rA(yt/λB + vA/cλA)) + sin(rA(yt/λB − vA/cλA))
]

+ exp(izts)
(

1/(izt)
3 − s/(izt)

2
)

×
[

sin(rA(zt/λB+vA/cλA))+sin(rA(zt/λB−vA/cλA))
]}

, (55)

where

yt = cos θ + vBt/c ,

zt = cos θ − vBt/c .

The F (s) term is the kinetic energy correction term and has the same func-
tional form as E(s). When object A is the same size or larger than object B
(i.e. λB/λA ≤ 1), E(s) has a first-order singularity while F (s) does not,
so we neglect the F (s) term. When object A is smaller than object B
(i.e. λB/λA > 1), we show later that F (s) integrates to zero.

To determine the functional form of E(s), we first define the functions
P (s) and Q(s) as:

E(s) = P (s)− sQ(s) , (56)

P (s) =

∞
∫

0

drA/rA J0(rA/λA) i/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iys) 1/(iy)3
[

sin(rA(y/λB + vA/cλA))

+ sin(rA(y/λB − vA/cλA))
]

+ exp(izs) 1/(iz)3
[

sin(rA(z/λB + vA/cλA))

+ sin(rA(z/λB − vA/cλA))
]}

, (57)

Q(s) =

∞
∫

0

drA/rA J0(rA/λA) i/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iys) 1/(iy)2
[

sin(rA(y/λB + vA/cλA))

+ sin(rA(y/λB − vA/cλA))
]

+ exp(izs) 1/(iz)2
[

sin(rA(z/λB + vA/cλA))

+ sin(rA(z/λB − vA/cλA))
]}

. (58)
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We can then write the following equation which removes the singularities
in E(s), add and subtract Q(s), and use that Q(s) = d/dsP (s) to obtain:

d/ds(1/s d/ds(P (s)− sQ(s))) = −d/ds(P ′′(s)) , (59)

d/ds(P ′′(s)+1/s P ′(s)+P (s))−(Q′′(s)+1/s Q′(s)+
(

1−1/s2
)

Q(s))=0 . (60)

Since Q(s) = d/dsP (s), this equation is zero only if both the equations in
P (s) and Q(s) are zero. Thus P (s) is the J0(s) Bessel function and Q(s) is
the J1(s) Bessel function. To try to simplify E(s), we use that P (s) satisfies
Bessel’s equation of order zero, Q(s) = P ′(s), and Q(s) satisfies Bessel’s
equation of order one to obtain:

E(s) = −2/s Q(s) + sQ′′(s) . (61)

Rather than evaluate the Type II gravity force at this time, we calculate the
Type II gravity potential as seen by object B. We integrate the second term
in E(s) twice by parts and find that the resulting integral cancels the first
term in E(s):

VG23(rB) = GmAmB/4λA VE(s) , (62)

VE(s) =

∫

dsE(s)/s2 = −P (s)/s . (63)

Thus the Type II gravity potential is proportional to −J0(rB/λB)/rB. We
replace the Bessel generating functions in the P (s) integrals by J0(s) as
follows:

P (s) = J0(s)

∞
∫

0

drA/rA J0(rA/λA) i/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

1/(iy)3
[

sin(rA(y/λB + vA/cλA)) + sin(rA(y/λB − vA/cλA))
]

+1/(iz)3
[

sin(rA(z/λB+vA/cλA))+sin(rA(z/λB−vA/cλA))
]}

.(64)

We reverse the order of integration and note that the integrals over rA are
the Fourier sine transform (a > 0):

∞
∫

0

dt/t J0(at) sin(xt) = −π/2 , −∞ < x < −a ,

= sin−1(x/a) , −a < x < a ,

= π/2 , a < x <∞ . (65)
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We now examine the P (s) integrals. When λB/λA ≤ 1, the Fourier trans-
form provides three regions of integration. There is the region of the inverse
sine with the limits of the inverse sine, and −π/2 and π/2 regions with the
limits from the inverse sine to the Bessel limits. When λB/λA > 1, the
integration limits are 0 to π from the Bessel limits and the inverse sine is
incomplete. We examine this case later.

When object A is the same size or larger than object B (i.e. λB/λA ≤ 1),
all the P (s) integrals have a first-order singularity in the region of the inverse
sine so we can neglect the other two regions:

P (s) = −J0(s) 1/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

1/y3
[

sin−1(yλA/λB + vA/c) + sin−1(yλA/λB − vA/c)
]

+1/z3
[

sin−1(zλA/λB + vA/c) + sin−1(zλA/λB − vA/c)
]}

. (66)

If we change the integration variable to argument of the inverse sine, all the
P (s) integrals have the following form:

1
∫

−1

dt(a + t)1/2(b− t)1/2 sin−1(t)/(t− d)3 . (67)

We then set the square root terms to their value at the singularity, evaluate
the resulting integrals (Wolfram 1996), and keep only the term with the
singularity which we express as (1/ε|ε=0). As with B(s) in Type I gravity,
P (s) exhibits a rest mass increase for object A relativistic and a rest mass
decrease for object B relativistic:

P (s) = J0(s)λ
2
A/λ2

B

(

1−v2
A/c2

)

−1/2(

1−v2
B/c2

)1/2
4/π (1/ε|ε=0),(68)

VG23(rB) = −GmAmBλA/λB J0(rB/λB)/rB

(

1− v2
A/c2

)

−1/2

×
(

1− v2
B/c2

)1/2
1/π (1/ε|ε=0) , (69)

where λB/λA ≤ 1.
Since the Type II gravity potential has a first-order singularity, the

Type II gravity force experienced by object B is zero for distances less than
its gravity wavelength. For distances greater than its gravity wavelength,
a very large gravity force occurs whenever J0(rB/λB) changes sign:

FG23(rB) = GmAmBλA/λ2
B J1(rB/λB)/rB

(

1− v2
A/c2

)

−1/2

×
(

1− v2
B/c2

)1/2
1/π (1/ε|ε=0) , (70)
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where J1 is the 1st order Bessel function of the first kind and rB/λB is
a zero of the J0 Bessel function. For example, the first zero of the J0 Bessel
function occurs at rB/λB ≈ 2.4.

Since a force results in a change in momentum, we hypothesize that
the Type II gravity force imparts a momentum addition to object B in the
direction of the Type II gravity force as object B moves through the zeros of
the J0 Bessel function. For example, an alpha particle emitted from a fusion
reaction transfers kinetic energy into vibrating electrons in the surrounding
environment at the electron gravity wavelength.

As shown earlier, the electron gravity wavelength ≈ 0.55×10−6 m. Thus
at atomic distances which are about 10−10 m, gravity experienced by an elec-
tron is the small classical force and does not appear to affect atomic quantum
mechanical phenomena.

We now examine Type II gravity when object A is smaller than object B
(i.e. λB/λA > 1). In this region, the integration limits are 0 to π from the
Bessel limits and the inverse sine is incomplete. We change the integration
variable to t = cos θ and obtain:

P (s) = −J0(s) 1/π

1
∫

−1

dt
(

1− t2
)1/2

×
{[

sin−1(λA/λB(t + vB/c) + vA/c)

+ sin−1(λA/λB(t + vB/c)− vA/c)
]

/(t + vB/c)3

+
[

sin−1(λA/λB(t− vB/c) + vA/c)

+ sin−1(λA/λB(t− vB/c)− vA/c)
]

/(t− vB/c)3
}

. (71)

Each integral has the following form (Wolfram 1996):

1
∫

−1

dt
(

1− t2
)1/2

sin−1{a(t + d) + b}/(t + d)3

= 1/2 sin−1
{

− aπ +
(

b− 2ad
(

1− d2
))

× log
[

− 4
(

1− d2
)1/2

/
(

b− 2ad
(

1− d2
))

]/

(

1− d2
)3/2

}

−1/2 sin−1
{

aπ +
(

b− 2ad
(

1− d2
))

× log
[

4
(

1− d2
)1/2

/
(

b− 2ad
(

1− d2
))

]/

(

1− d2
)3/2

}

. (72)
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If vA/c ≪ 1 and vB/c ≪ 1, then P (s) is nearly independent of vA/c and
vB/c and we have:

P (s) ≈ 4/π J0(s) sin−1(πλA/λB) , (73)

VG23(rB) ≈ −GmAmBλB/λA 1/π sin−1(πλA/λB)J0(rB/λB)/rB , (74)

where
λB/λA > 1 , vA/c≪ 1 , vB/c≪ 1 .

In the classical limit for object A much smaller than object B (i.e.
λB/λA ≫ 1, rB/λB ≪ 1), the Type II gravity potential reduces to the
classical gravity potential:

VG23(rB) ≈ −GmAmB/rB , (75)

where

λB/λA ≫ 1 , rB/λB ≪ 1 , vA/c≪ 1 , vB/c≪ 1 .

For object A much smaller than object B (i.e. λB/λA ≫ 1), object A
highly relativistic (i.e. vA/c ≈ 1), and vB/c ≪ 1, each integral contributes
the same real part while the imaginary parts cancel, and the factor λB/λA

no longer cancels in the Type II gravity potential. As a result, the Type II
gravity potential and the gravity force in the classical limit are very large
since the mass of object A is effectively replaced by the mass of object B:

P (s) ≈ 2/π J0(s) Re
{

sin−1(log 4)− sin−1(log 4 + iπ)
}

, (76)

VG23(rB) ≈ −GmAmB/rB λB/λA 1/2π

×Re
{

sin−1(log 4)− sin−1(log 4 + iπ)
}

, (77)

where

λB/λA ≫ 1 , rB/λB ≪ 1 , vA/c ≈ 1 , vB/c≪ 1 .

Thus a relativistic small object or FS unit is able to exert a very large
classical type force on a large object.

We conclude Type II gravity by showing that the kinetic energy correc-
tion term F (s) integrates to zero when object A is smaller than object B
(i.e. λB/λA > 1). As with E(s), we define F (s) = PKE(s)− sQKE(s), show
that the gravity potential VG32(rB) is proportional to −PKE(s)/s, evaluate
the integral over rA, and replace the Bessel generating functions in PKE(s)
by J0(s) to obtain:

VG32(rB) = −GmAmBλB/4λA PKE(s)/rB , (78)
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PKE(s) = −v2
B/c2 J0(s) 1/π

π
∫

0

dθ

1
∫

0

dt

×
{

[

sin−1(ytλA/λB + vA/c) + sin−1(ytλA/λB − vA/c)
]

/y3
t

+
[

sin−1(ztλA/λB + vA/c) + sin−1(ztλA/λB − vA/c)
]

/z3
t

}

. (79)

In evaluating the integrals over t, the values at the lower limits cancel,
and each integral has the following form which we substitute in the PKE(s)
integrals (Wolfram 1996):

1
∫

0

dt sin−1(at + b)/(et + d)3

= −1/2e
{

sin−1(b + a)/(d + e)2 + λA/λB

(

1− v2
A/c2

)

−1

×
(

1− (b + a)2
)1/2

/(d + e) + (λA/λB)2(b− ad/e)
(

1− v2
A/c2

)

−3/2

× log
[(

1−(b−ad/e)(b+a)+
(

1−v2
A/c2

)1/2(

1−(b+a)2
)1/2

)/

(d+e)
]}

,(80)

PKE(s) = 1/2 vB/c J0(s) 1/π

π
Z

0

dθ

×



ˆ

sin−1(yλA/λB + vA/c) + sin−1(yλA/λB − vA/c)
˜

/y2

−

ˆ

sin−1(zλA/λB + vA/c) + sin−1(zλA/λB − vA/c)
˜

/z2

ff

+λA/λB

`

1 − v2

A/c2
´

−1

»
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In the first two sets of integrals, the first and fourth terms and the
second and third terms cancel as they are mirror images with respect to
the integration interval and occur with opposite sign. In the third set of
integrals, the log(y) and log(z) factors cancel. Then the first and fourth
terms and the second and third terms are negative mirror images and cancel
as well.

6. Gravity acts instantaneously

In this section we show that if the FS is quantized into discrete units,
the mass density fields in the FS are created or changed instantaneously by
both the logarithmic and first-order singularities in the gravity force since
the singularities are infinite forces. We suggest that each FS unit has a rest
mass equal to 2 proton masses, a characteristic length equal to its gravity
wavelength (2 mm), and a speed parameter that corresponds to its kinetic
energy. The mass density field of an arbitrary object is then defined by its
density value at each FS unit.

We first consider the gravity force exerted by a FS unit denoted as unit
A on a FS unit denoted as unit B. The rest mass of each FS unit is twice the
proton mass and the kinetic energy of each FS unit is the same. As a result,
the Type I gravity force has 4 logarithmic singularities according to Eq. (37)
since the gravity wavelengths λFS of the two FS units are identical and the
speed parameters are also identical. Thus the Type I gravity force exerted
by unit A on unit B is:

FGI(rB) = AGIFSG(2mp)
2J0(rB/λFS)/r2

B , (82)

where the FS amplification factor AGIFS contains the four logarithmic sin-
gularities of the Type I gravity force exerted on unit B.

The net Type I gravity force exerted by all units A in a radial line on
unit B is:

∞
∫

0

drBr2
BFGI(rB) = AGIFSG(2mp)

2

∞
∫

0

drBJ0(rB/λFS)

= AGIFSG(2mp)
2λFS . (83)

What is important is that the value of the integral is positive and thus
the net force from all units A along the radial line is proportional to the
amplification factor AGIFS and hence is infinite. This net force, however, is
exactly balanced by the net Type I gravity force exerted by the units A in
the opposite radial direction. The same is true for every radial direction for
every unit B of the arbitrary object mass density field.
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The same calculation can be done for Type II gravity. Because the
gravity wavelengths for both unit A and unit B are identical, the Type II
gravity force has a first-order singularity according to Eq. (70) at the zeros
of the J0 Bessel function:

FGII(rB) = AGIIFSG(2mp)
2/λFS J1(rB/λFS)/rB , (84)

where the FS amplification factor AGIIFS contains the first-order singularity
of Type II gravity, J1 is the 1st order Bessel function of the first kind, and
rB/λFS is a zero of the J0 Bessel function.

The net Type II gravity force exerted by all units A in a radial line on
unit B is the sum of the Type II gravity force at the zeros of the J0 Bessel
function:

∑

Zeros of J0

FGII(rB) = AGIIFSG(2mp)
2/λFS

∑

Zeros of J0

J1(rB/λFS)/rB . (85)

The value of the sum is positive and thus the net force from all units A
along the radial line is proportional to the amplification factor AGIIFS and
hence is infinite. This net force, however, is exactly balanced by the net
Type II gravity force exerted by the units A in the opposite radial direction.
The same is true for every radial direction for every unit B of the arbitrary
object mass density field. We note that Type II singularities occur at the
points in the FS where the Type I singularities are zero, i.e. at the zeros of
the J0 Bessel function. We also note that the Type I and Type II forces on
the FS are symmetric in that the gravity force exerted by unit A on unit B
is the same as the gravity force exerted by unit B on unit A.

Thus when an arbitrary object mass density field is created or changed,
every part of the mass field is acted on by the singularities in all directions
and at all distances to bring the mass density field to its new state. Since
the singularities are infinite forces that act at all distances, any changes or
interactions in the mass density fields occur instantaneously and gravity acts
instantaneously.

7. Contraction and expansion of the fabric of space

We show that if kinetic energy is transferred into or released from the FS,
then the FS contracts or expands. Again we assume that the FS is quantized
into discrete units with each FS unit having a rest mass of 2 proton masses,
a characteristic length equal to its gravity wavelength (2 mm), and a speed
parameter v that corresponds to its kinetic energy KE according to mass–
energy equivalence:

KE = 2mpc
2
(

(

1− v2/c2
)

−1/2
− 1

)

. (86)
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Since the gravity wavelengths for any two units are identical, the Type II
gravity force has a first-order singularity according to Eq. (70) at the zeros
of the J0 Bessel function. Consider the following units in which the central
unit and all units to the left have a speed parameter v1 and all units to the
right have a speed parameter v2:

. . . � � � � � � � . . .

v1 v1 v1 v1 v2 v2 v2

← r1 | r1, r2 →
(87)

The Type II gravity forces exerted on the central unit by the units on the
left and right of the central unit are as follows where the FS amplification
factor AGIIFS includes the first-order singularity, J1 is the 1st order Bessel
function of the first kind, r1 is the unit of radial distance, λFS is the FS
gravity wavelength, and r1/λFS is a zero of the J0 Bessel function:

FGII LEFT(r1) = AGIIFSG(2mp)
2/λFS J1(r1/λFS)/r1 , (88)

FGII RIGHT(r1) = AGIIFSG(2mp)
2/λFS

(

1− v2
1/c

2
)1/2

×(1− v2
2/c

2)−1/2 J1(r1/λFS)/r1 , (89)

and the forces are zero if r1/λFS is not a zero of the J0 Bessel function. The
only way that these forces balance exactly for all radial distances is if the FS
on the right is contracted or expanded and the new unit of distance r2 in
the FS on the right is related to the old unit of distance r1 as follows:

r2 = r1

(

1− v2
2/c

2
)1/2 (

1− v2
1/c

2
)

−1/2
. (90)

Thus as kinetic energy is transferred into the FS, its speed parameter
increases and the FS contracts. The opposite is also true, namely as kinetic
energy is released from the FS, its speed parameter decreases and the FS
expands. This contraction and expansion of the FS are unrelated to the
mass or distribution of mass in the FS.

We may then hypothesize that the universe was created with such a
large amount of kinetic energy stored in the FS that space was immensely
contracted with all mass concentrated in a small volume. When time began,
the cosmic kinetic energy began to be released from the FS and the FS and
mass began to expand and are still expanding today. The cosmic kinetic
energy released from the FS units is in fact the 3 degree K cosmic background
radiation. This gravity theory suggests that the universe expands once.
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8. Gravity for photons and other zero mass particles

The gravity theory can also describe the gravitational interactions of
photons, other zero mass particles, or any type of gravitating energy. We
hypothesize that an object without mass is a mass density field DG(r) in
the FS without the kinetic energy cosine term:

DG(r) = E/c2 1/4πλG J0(r/λG)/r2 , (91)

where E is its energy, E/c2 is its effective mass, λG is its gravity wavelength,
J0 is the 0th order Bessel function of the first kind, and r is the distance
from the object. We also hypothesize that the gravity wavelength λG of
a gravitating energy or other zero mass particle is given by Eq. (7) as for
objects with mass, but proportional to its effective mass.

For a photon, however, we hypothesize that its gravity wavelength is
equivalent to that of a bound particle–antiparticle pair with the same energy.
For example, particle A has mass mA, gravity wavelength λA, and speed vA,
and its antiparticle B has mass mB , gravity wavelength λB, and speed vB.
The non-singular gravity force exerted by particle A on its antiparticle B is
given by Eq. (19) and the function B(rB/λB) by Eq. (42).

We further hypothesize that the gravity wavelength λG of a photon is
its energy E divided by the gravity force experienced by the particle or
antiparticle at a distance equal to its gravity wavelength. Since this force
does not include Type II gravity, photons experience only Type I gravity
and not Type II gravity. Using that mA = mB, λA = λB, λB = NA/κ mB,
vA = vB, and B(rB/λB) = 4J0(rB/λB) when λA = λB and vA = vB, we
obtain:

λG = E/FG(λB) = E/
[

Gm2
B/λ2

BJ0(1)
]

= E(NA/κ)2/[GJ0(1)] , (92)

where NA is Avogadro’s number, κ is the FS atomic mass linear density, and
J0(1) is the value of the J0 Bessel function at unit argument.

If a photon is isolated, its gravity wavelength is proportional to its own
energy. However, if the photon is a constituent of an electromagnetic wave,
then its gravity wavelength is proportional to the energy of the electromag-
netic wave. This behavior of the gravity wavelength for photons is compa-
rable to an isolated particle with mass and the same particle bound within
a larger object or wave.

9. Comparison with experimental tests

The gravity theory requires the mass density fields to be integrated to
infinity to obtain mass–energy equivalence and the gravity forces, and as
a result requires the FS to extend to infinity. Since the FS and the mass
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in the universe are not related, the size and age of the visible universe as
measured by the Hubble radius are unaffected, except that the FS units
expand according to Eq. (90) as the FS units release cosmic kinetic energy.
As we show elsewhere, by comparing the Hubble radius to an object’s gravity
wavelength, we can determine if and when gravity changes from classical to
wave gravity.

As a classical gravity test, we consider two experimental situations —
the measurement of gravity on a beam of neutrons and on a single neutron.
If a neutron is isolated, its gravity wavelength λG ≈ 1 mm and the neutron
experiences wave gravity exerted by objects at distances greater than 1 mm.
However, if a neutron is part of a beam of neutrons, it experiences the
first-order singularities of Type II gravity exerted by the other neutrons in
the beam. Since the neutron is now a constituent of a wave, its gravity
wavelength is proportional to the mass of all the neutrons in the beam. As
a result, each neutron in the beam experiences classical gravity, as exerted
by the Earth for example.

In an experimental situation that measures gravity on a single neutron,
gravity is measured quantum mechanically. Hence the single neutron is not
isolated, but is part of the quantum mechanical system that includes the
measurement apparatus. Thus the neutron’s gravity wavelength includes
the mass of the measurement apparatus and the neutron again experiences
classical gravity.

Also, if gravity exerted by small on large objects is 3× classical gravity,
the Earth’s tides (which result primarily from gravity exerted by the Moon)
should be much larger than what is actually observed. Why then does
classical gravity accurately predict the Earth’s tides? The answer lies in
the fact that tidal water particles, unlike particles that comprise the solid
Earth, have very different speeds. Thus, whereas the mass density fields
of solid particles that comprise the Earth are collectively combined by the
fabric of space units that exert gravity, the mass density fields of tidal water
particles combine separately. As a result, the gravity wavelength of tidal
water particles is proportional only to the mass of tidal water particles with
similar speeds, and the gravity force exerted by the Moon on tidal waters is
the large on small gravity force, which is equal to classical gravity.

We now compare the predictions of the gravity theory based on mass–
energy equivalence with the experimental tests of General Relativity (GR).
With the mass density field given by Eq. (91), a photon experiences gravity
according to Eq. (11) in which object B is now a photon, mB is its effective
mass, and λB is its gravity wavelength. Using that a photon energy E = hf
where h is Planck’s constant and f is its frequency, we can rewrite the photon
gravity wavelength λG in Eq. (92) as:

λG = f(NA/κ)2/[G/h J0(1)] = 4.7× 1024f [meters] . (93)



2850 S.A. Lipinski, H.M. Lipinski

For example, an isolated photon with frequency f = 5.5 × 1014 cps
(yellow-green light) has a gravity wavelength λG = 2.6×1039 m or 2.7×1023

light-years. Since the size of the observable universe is about 4.2 × 1010

light-years, we have rB/λB ≪ 1 and the Bessel function J0(rB/λB) ≈ 1 in
Eq. (11). As a result, for this example as well as for most photon frequencies,
the photon experiences classical type gravity.

The first comparison test with GR is gravitational redshifting. For
example, we consider a star such as our Sun whose gravity wavelength
λSun = 1.3×1038 light-years and a yellow-green photon. Since λG/λSun ≪ 1,
we have large object on small object gravity and AG = 1 in Eq. (11). Thus
the gravity exerted by a star on an emitted photon is classical gravity and
the photon experiences gravitational redshifting in agreement with GR.

The second comparison test with GR is the bending of light by a mas-
sive object. The degree of bending of light predicted by the gravity theory
depends on the ratio of the gravity wavelengths of the massive object and
the photon gravity wavelength. If the photon or parent wave gravity wave-
length is much less than the gravity wavelength of the massive object (i.e.
λB/λA ≪ 1), then we have large on small gravity from B(s) in Eq. (46).
As a result, AG = 1 in Eq. (11) and the bending of light is the classical
Newtonian value.

However, if the photon is a constituent of an electromagnetic wave whose
gravity wavelength is very much larger than that of the massive object (i.e.
λB/λA ≫ 1), the small on large gravity receives equal Type I gravity con-
tributions from A(s) in Eq. (36) and B(s) in Eq. (49). As a result, AG = 2
in Eq. (11) and the bending of light is twice the classical Newtonian value.

For example, assuming an average sunlight frequency of 5.5 × 1014 cps
and intensity of 1400 W/m2 at the Earth’s surface, the number of photons
impacting a square meter per second is 3.8 × 1021. Thus the gravity wave-
length of a one light-second long, one square meter cylinder of photons is
λG = 1.1 × 1045 light-years. Even this gravity wavelength for such a small
volume of the parent light wave is much larger than the gravity wavelength
of the Sun which is λSun = 1.3 × 1038 light-years. Since λG/λSun ≫ 1, the
bending of light is twice the classical Newtonian value in agreement with GR.

The third comparison test with GR is the related Shapiro time delay
which results from the additional distance traveled due to bending of a parent
wave by a massive object such as the Sun. For example (MIT 2008), with
a radar pulse energy E = 15 J (150 KW pulse power, 100 µs pulse width),
the gravity wavelength of photons in the pulse according to Eq. (92) is
λG = 1.07 × 1059 m or 1.13 × 1043 light-years. Since the photon gravity
wavelength is very much larger than that of the Sun (i.e. λG/λSun ≫ 1),
the small on large gravity exerted by the Sun on the photons in the radar
pulse receives equal Type I gravity contributions from A(s) in Eq. (36) and
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B(s) in Eq. (49). As a result, AG = 2 in Eq. (11) and the time delay of
the radar signal is twice the classical Newtonian value, again in agreement
with GR.

The fourth comparison test with GR is the precession of the perihelion
of Mercury. We consider the Sun and Mercury as a two-body gravitational
system, denoting the larger object (Sun) as object 1 with inertial mass m1

and the smaller object (Mercury) as object 2 with inertial mass m2. When
two non-relativistic objects have inertial masses that are very unequal, the
small on large gravity force is 3 times the large on small gravity force. If we
assume that the gravitational mass (g-mass) of the smaller object is equal
to 3 times its inertial mass, then Newton’s third law is preserved as we show
in Eqs. (94)–(99).

Accordingly, we define the distances r1 and r2 of each object from the
center of g-mass. We then include the relativistic increases of the inertial
masses in the acceleration terms and the relativistic corrections to the gravity
force from Eqs. (36), (46), (49), and (75) in the equations of motion about
the center of g-mass:

r1 =3m2r/M , r2 =m1r/M , r=r1+r2 , M =m1+3m2 , (94)

m1

(

1− v2
1/c

2
)

−1/2
d2

r1/dt2 = −Gm1m2/r
2

r1

[

(

1− v2
2/c

2
)

−1/2

+
(

1−v2
1/c

2
)1/2(

1−v2
2/c

2
)

−1/2
+1

]

,(95)

m2

(

1− v2
2/c

2
)

−1/2
d2

r2/dt2 = −Gm1m2/r
2

r2

(

1− v2
2/c

2
)1/2

×
(

1− v2
1/c

2
)

−1/2
, (96)

where v1 and v2 are the speeds of objects 1 and 2 relative to the FS (or
CMBR) at rest and c is the speed of light. We expand the relativistic
factors and obtain to order 1/c2:

m1d
2
r1/dt2 = −Gm1m2/r

2
r1

(

3− 2v2
1/c2 + v2/c

2
)

, (97)

m2d
2
r2/dt2 = −Gm1m2/r

2
r2

(

1 + 1/2 v2
1/c

2 − v2
2/c

2
)

. (98)

The motion of the center of g-mass relative to the FS at rest is then
specified by only relativistic terms:

m1d
2
r1/dt2+3m2d

2
r2/dt2 = F CM =−Gm1m2/r

2
r2

(

7/2 v2
1/c

2− 4v2
2/c

2
)

.
(99)
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These equations result in the conservation of energy, linear momentum,
and angular momentum that follow from Newton’s third law. While the
ratio between g-mass and inertial mass of the smaller object is 3 when the
inertial masses are very unequal and non-relativistic, the ratio decreases to 1
as the inertial masses become equal as we show in Eq. (114). The observance
of Newton’s third law by the gravity theory does imply, however, that the
gravity theory violates the equivalence principle in a novel way.

Since r2 is defined relative to the center of g-mass, the force on the center
of g-mass is the negative of the same force on object 2. Thus corrected for
the motion of the center of g-mass, the equation of motion for r2 in the
reference frame that is the FS at rest is:

m2d
2
r2/dt2 = −Gm1m2/r

2
r2

(

1− 3v2
1/c

2 + 3v2
2/c

2
)

. (100)

The speeds v1 and v2 are each vector combinations of the velocity of
the center of g-mass relative to the FS at rest and the velocity relative to
the center of g-mass. The terms proportional to v2

CM/c2 in v2
1/c

2 and v2
2/c

2

cancel, where vCM is the speed of the center of g-mass relative to the FS
at rest. In addition, we neglect the remaining speed terms in v2

1/c
2 since

they are much smaller for the Sun than the corresponding terms in v2
2/c

2

for Mercury. We then write the equations of motion for Mercury in polar
coordinates about the center of g-mass in the reference frame that is the FS
at rest:

d2r2/dt2−r2(dϕ/dt)2=−Gm1(m1/M)2/r2
2

{

1+3/c2
[

(dr2/dt)2+r2
2(dϕ/dt)2

]

+6vCM/c2 (cos θ dr2/dt − sin θ r2dϕ/dt)
}

, (101)

r2
2 dϕ/dt = h2 , (102)

where θ is the angle between position vector of Mercury relative to the center
of g-mass and the velocity vector of the center of g-mass relative to the FS
at rest and h2 is the angular momentum of Mercury per unit mass around
the center of g-mass. We make the usual u2 ≡ 1/r2 substitution where
α = Gm1(m1/M)2/h2

2 and λ = 3h2
2/c

2, and obtain:

d2u2/dϕ2 + u2 = α
{

1 + λ
[

(du2/dϕ)2 + u2
2

]

−6vCMh2/c
2 (cos θ du2/dϕ + sin θ u2)

}

. (103)

We then expand the periodic solutions of Eq. (103) in a Fourier cosine se-
ries (see for example (Bergmann 1942)) and add a term proportional to sin θ:

u2 = α + λβ0 + αε cos ρϕ + αk sin θ + λ
∞
∑

n=2

βn cos nρϕ , (104)
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where ε is Mercury’s eccentricity and θ = ρCMϕ+∆. We substitute Eq. (104)
into Eq. (103), use that ρ ≈ 1 and ρCM ≈ 1, and obtain to first order:

αε
(

1− ρ2
)

cos ρϕ + αk
(

1− ρ2
CM

)

sin θ + α + λβ0

= α
{

1 + λα2
(

1 + ε2 + 2ε cos ρϕ + k2 + 2εk sin ∆ + 2k sin θ
)

−6αvCMh2/c
2 (k + ε sin ∆ + sin θ)

}

. (105)

In Eq. (105), we compare the terms proportional to cos ρϕ, sin θ, and a con-
stant, and obtain the following equations:

(

1− ρ2
)

= 2λα2 , ρ ≈ 1− λα2 , (106)
(

1− ρ2
CM

)

k = −6αvCMh2/c
2 + 2λα2k , (107)

β0 = α3
(

1+ε2+k2+2εk sin ∆
)

−2α2vCM/h2(k+ε sin ∆) .(108)

Eq. (106) is the identical equation to that derived in GR. Thus the gravity
theory based on mass–energy equivalence contributes the same 43 seconds of
arc per century for the precession of the perihelion of Mercury as does GR.

In Eq. (107), the constant k is dimensionless and thus the parameters of
the sin θ term are:

k = vCM/c ,

ρCM ≈ 1 + 3αh2/c− λα2 . (109)

As a result, the gravity theory based on mass–energy equivalence, like GR,
is consistent with lunar laser ranging measurements of the Moon’s orbit. In
these measurements there is no preferred reference frame effect, since they
are undertaken in the reference frame that is the center of g-mass at rest,
where the sin θ term in Eq. (104) is zero.

The fifth comparison test with GR is the geodetic precession of a gyro-
scope orbiting the Earth as measured by Gravity Probe B. As derived for
gravity exerted by a large on small object, the increased gravity force in
Eq. (100) results in a smaller circumference for the gyroscope orbit than
would occur in Newtonian gravity. The velocities of object 1 (Earth) and
object 2 (gyroscope) are v1 = vE and v2 = vE + v, where vE is the ve-
locity of the Earth relative to the FS at rest and v is the velocity of the
gyroscope relative to the Earth. Then in the reference frame that is the
Earth at rest, the contracted radial distance R specified by Eq. (100) is
R = r(1 − 3/2 v2/c2). Thus in this gravity theory, geodetic precession is
entirely due to a novel gravito-electric field which is larger than in GR (i.e.
3/2 rather than 1/2), and results in the same geodetic precession as GR.
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The sixth comparison test with GR is the change in period of a binary
pulsar. We show that this change in period can be explained by energy
loss due to the motion of the center of g-mass. In a binary pulsar such as
PSR 1913 + 16, the two stars are approximately the same size. Thus in the
equations of motion, we use the gravity force from Eqs. (32), (42), and (74)
for approximately equal masses:

m1

(

1− v2/c2
)

−1/2
d2

r1/dt2 = −Gm1m2/r
2

r1

×
[

(

1−v2/c2
)

−1/2
K

(

z
(

1−v2/c2
)

−1
)

/2π+K(z)/2π+3/2
]

, (110)

m2

(

1− v2/c2
)

−1/2
d2

r2/dt2 = −Gm1m2/r
2

r2

×
[

(

1−v2/c2
)

−1/2
K

(

z
(

1−v2/c2
)

−1
)

/2π+K(z)/2π+1
]

, (111)

where m1 ≈ m2, m1 > m2, v1 ≈ v2 = v, K(z) is the complete elliptic
integral K of the first kind, and its argument z = (4m2/m1)/(1+m2/m1)

2 =
(4m1/m2)/(1 + m1/m2)

2. We expand the relativistic factors and obtain to
order 1/c2:

m1d
2
r1/dt2 = −Gm1m2/r

2
r1

[

(K(z)/π + 3/2)

×
(

1− 1/2 v2/c2
)

+ 1/2 v2/c2 (1− z)−1
]

, (112)

m2d
2
r2/dt2 = −Gm1m2/r

2
r2

[

(K(z)/π + 1)

×
(

1− 1/2 v2/c2
)

+ 1/2 v2/c2 (1− z)−1
]

. (113)

As a result, the motion of the center of g-mass is given by:

m1d
2
r1/dt2 + Xm2d

2
r2/dt2 = F CM = −Gm1m2/r

2
r2 v2/c2

×
[

1/2 (1− z)−1(X − 1)
]

,(114)

where X = (K(z)/π + 3/2)/(K(z)/π + 1).
We define the total mass M = m1 + m2, reduced mass µ = m1m2/M ,

angular momentum per unit mass h = r2dϕ/dt, and effective gravitational
constant GE = (K(z)/π + 1)G. We next make the substitutions r =
a(1 − ε2)/(1 + ε cos ϕ), h2 = GEMa(1 − ε2), and v2 = 1/4 GEM/(a(1 −
ε2))[(1 + ε cos ϕ)2 + ε2 sin2 ϕ], where a is the semi-major axis and ε is the
orbital eccentricity. We then write the relativistic force F CM on the center of
g-mass as:

F CM = −r2G
2µM2/

(

a3
(

1− ε2
)3

c2
)

(16(1 − z))−1

×(1 + ε cos ϕ)2
[

(1 + ε cos ϕ)2 + ε2 sin2 ϕ
]

. (115)
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We change to polar coordinates in the equation of motion and find that the
motion of the center of g-mass is almost circular. The equation of motion,
the radius rCM, and the period PCM of the center of g-mass are:

Mh2/r2
[

d/dϕ(1/r2 drCM/dϕ)− rCM/r2
]

= FCM , (116)

rCM ≈ Gµ/c2(K(z)/π + 1)−1(16(1 − z))−1 , (117)

PCM ≈ 2πGµ/c3(K(z)/π + 1)−2(16(1 − z))−3/2 . (118)

If we consider the center of g-mass as revolving around the objects, then the
distance DCM traversed by the center of g-mass relative to the objects per
unit time of the center of g-mass is:

DCM = r dϕ/dt PCM/2π = h/r PCM/2π . (119)

The distance traversed by the center of g-mass is always parallel to the force
on the center of g-mass. As a result, the energy E transferred per unit time
by the force FCM in moving the center of g-mass a distance DCM is given by:

dE/dt = −(K(z)/π + 1)−3/2(16(1 − z))−5/2G7/2µ2M5/2c−5a−7/2

×
(

1−ε2
)

−7/2
(1 + ε cos ϕ)3

[

(1 + ε cos ϕ)2 + ε2 sin2 ϕ
]

.(120)

We average the change in energy E = −1/2GEMµ/a and period Pb =
2πa3/2[GEM ]−1/2 over an orbit with the result:

〈dE/dt〉 = −(K(z)/π + 1)−1(16(1 − z))−5/2G4µ2M3c−5a−5

×
(

1− ε2
)

−7/2 (

1 + 11/2 ε2 + 9/4 ε4
)

, (121)

P−1

b dPb/dt = −3(K(z)/π + 1)−2(16(1 − z))−5/2G3µM2c−5a−4

×
(

1− ε2
)

−7/2 (

1 + 11/2 ε2 + 9/4 ε4
)

. (122)

This change in period should be compared to the GR prediction (see for
example (Will 1993)):

P−1

b dPb/dt = −96/5 G3µM2c−5a−4
(

1− ε2
)

−7/2 (

1+ 73/24 ε2+ 37/96 ε4
)

.
(123)

Assuming an identical pulsar mass m1 and eccentricity ε, and a mass
ratio m2/m1 ≈ 0.963 in Eq. (123), the changes in period are equal if the
mass ratio m2/m1 ≈ 0.768 in Eq. (122). With this value, the gravity theory
predicts the same change in period for the binary pulsar PSR 1913 + 16 as
does GR. However, the change in period results from the circular motion of
the center of g-mass rather than unobserved gravitational radiation.
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We can then use Eqs. (117) and (118) to obtain the radius rCM ≈ 1.6×
103 m and period PCM ≈ 3.1 × 10−5 s of the circular motion of the center
of g-mass. Since orbital energy is transferred to the motion of the system
as a whole as a result of gravity applied by the FS units, the energy loss is
transferred to the FS units.

10. Derivation of the Coulomb force

The gravity theory makes possible a derivation of the Coulomb force.
We hypothesize that the Coulomb force exerted by a charged object A with
electric charge qA, mass mA, and gravity wavelength λA on a charged ob-
ject B with electric charge qB and mass mB results from the interaction of
the mass density fields of object A without a kinetic energy term and an
equivalent mass Coulomb photon B in place of object B, integrated over the
entire fabric of space (FS). In the same way as the gravity force is applied
by the units of the FS, the Coulomb force is also applied by the units of
the FS.

The mass density field DG(rB) of Coulomb photon B is obtained from
Eq. (91):

DG(rB) = mB/4πλB J0(rB/λB)/r2
B , (124)

where mB is its effective mass, λB is its gravity wavelength, J0 is the 0th
order Bessel function of the first kind, and rB is the distance from object B.
The gravity wavelength λB of Coulomb photon B is obtained from Eq. (92):

λB = mBc2(NA/κ)2/[GJ0(1)] , (125)

where NA is Avogadro’s number, κ is the FS atomic mass linear density, G
is the gravitational constant, and J0(1) is the value of the J0 Bessel function
at unit argument.

We hypothesize that the coupling constant between the mass density
fields of object A and Coulomb photon B is C4πλB, where C is given by:

C = −(k/2)(qA/mA)(qB/mB) , (126)

and where k is the Coulomb constant. The Coulomb force FC(rB) exerted
by object A on object B is then:

FC(rB) = (C4πλB)(mA/4πλA)(mB/4πλB)

×

∞
∫

0

drAr2
A

π
∫

0

dθ sin θ

2π
∫

0

dϕJ0(rA/λA)/r2
A

×J0

(

(

r2
B + r2

A − 2rBrA cos θ
)1/2

/λB

)

×(rB − rA cos θ)/
(

r2
B + r2

A − 2rBrA cos θ
)3/2

. (127)
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As indicated previously, a photon experiencing gravity and hence
a charged object experiencing the Coulomb force experiences only the Type I
force and not the Type II force. Since the Coulomb photon gravity wave-
length λB is very much larger than the gravity wavelength λA of object A
(i.e. λB/λA ≫ 1), the Coulomb force receives equal contributions from the
A(s) and B(s) terms in Eqs. (35) and (49):

FC(rB) ≈ 2CmAmBJ0(rB/λB)/r2
B = −kqAqBJ0(rB/λB)/r2

B , (128)

where λB/λA ≫ 1.
In the region where rB/λB ≪ 1, J0(rB/λB) ≈ 1 and we obtain the

classical Coulomb force:

FC Classical(rB) = −kqAqB/r2
B , (129)

where λB/λA ≫ 1, rB/λB ≪ 1.
For example, the gravity wavelength of a Coulomb photon corresponding

to an electron is λB = 5.8 × 1044 m or 6.1 × 1028 light-years. As a result,
electrons and protons experience the classical Coulomb force. Since the
singularities in the gravity force act on the FS to effect any changes and
interactions in the mass density fields instantaneously, the Coulomb force
also acts instantaneously. This derivation of the Coulomb force suggests
that elementary particles do not have an electric charge density since the
electric charge appears only in the coupling constant between the two mass
density fields.

The authors gratefully acknowledge Dr. H. Pierre Noyes, Professor Emer-
itus at Stanford Linear Accelerator Center (SLAC) for his advice, patience,
and willingness to serve as a sounding board for the theories in this paper.

Appendix A

Gravity from density of space

We evaluate the first integral that is the contribution to gravity arising
from the density of space:

FG1(rB) = GmAmB/2λAr2
B

∞
∫

0

drAJ0(rA/λA) cos(vArA/cλA)

×[J0((rB + rA)/λB) cos(vB(rB + rA)/cλB)

+J0((rB − rA)/λB) cos(vB(rB − rA)/cλB)] . (A.1)
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We use the integral representation of the Bessel function, expand the co-
sine functions in terms of exponential functions, and collect terms to obtain:

Jn(x) = i−n/π

π
∫

0

dθ exp(ix cos θ) cos(nθ) , (A.2)

FG1(rB) = GmAmB/4λAr2
B

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ

×{exp(iyrB/λB)[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))]

+ exp(izrB/λB)[cos(rA(z/λB + vA/cλA))

+ cos(rA(z/λB − vA/cλA))]} , (A.3)

where

y = cos θ + vB/c ,

z = cos θ − vB/c .

These terms with “cos(rA . . .)” contribute to Type I gravity.

Appendix B

Gravity from change due to rest mass

We evaluate the second integral that is the contribution to gravity arising
from the change in the density of space due to the rest mass:

FG2(rB) = −GmAmB/4λAλBr2
B

∞
∫

0

drA J0(rA/λA) cos(vArA/cλA)

×

rB+rA
∫

rB−rA

dx/x
(

r2
A− r2

B+x2
)

/rAJ ′

0(x/λB) cos(vBx/cλB) . (B.1)

We use the Bessel function identities J ′

0(x/λB) = −J1(x/λB) and
J1(x/λB)/(x/λB) = 1/2 (J0(x/λB) + J2(x/λB)), and the integral repre-
sentation of the Bessel functions to obtain:

FG2(rB) = GmAmB/8λAλ2
Br2

B

∞
∫

0

drAJ0(rA/λA) cos(vArA/cλA)
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×1/π

π
∫

0

dθ (1− cos 2θ)

rB+rA
∫

rB−rA

dx exp(i cos θ x/λB)

×
(

r2
A − r2

B + x2
)

/rA cos(vBx/cλB) . (B.2)

We now expand the cosine terms, perform the integration over x, and
collect terms in rA:

FG2(rB) = GmAmB/4λAλ2
Br2

B

∞
∫

0

drAJ0(rA/λA)1/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iyrB/λB)
[

i sin(rA(y/λB + vA/cλA))rAλB/iy

+i sin(rA(y/λB − vA/cλA))rAλB/iy

+ cos(rA(y/λB + vA/cλA))
(

rBλB/iy − λ2
B/(iy)2

)

+ cos(rA(y/λB − vA/cλA))
(

rBλB/iy − λ2
B/(iy)2

)

+i sin(rA(y/λB + vA/cλA))
(

λ3
B/(iy)3 − rBλ2

B/(iy)2
)

/rA

+i sin(rA(y/λB − vA/cλA))
(

λ3
B/(iy)3 − rBλ2

B/(iy)2
)

/rA

]

+ exp(izrB/λB)
[

i sin(rA(z/λB + vA/cλA))rAλB/iz

+i sin(rA(z/λB − vA/cλA))rAλB/iz

+ cos(rA(z/λB + vA/cλA))
(

rBλB/iz − λ2
B/(iz)2

)

+ cos(rA(z/λB − vA/cλA))
(

rBλB/iz − λ2
B/(iz)2

)

+i sin(rA(z/λB + vA/cλA))
(

λ3
B/(iz)3 − rBλ2

B/(iz)2
)

/rA

+i sin(rA(z/λB−vA/cλA))
(

λ3
B/(iz)3−rBλ2

B/(iz)2
)

/rA

]}

,(B.3)

where

y = cos θ + vB/c ,

z = cos θ − vB/c .

The terms with “cos(rA . . .)” and “sin(rA . . .)rA” contribute to Type I
gravity while the terms with “sin(rA . . .)/rA” contribute to Type II gravity.
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Appendix C

Gravity from change due to kinetic energy

We evaluate the third integral that is the contribution to gravity arising
from the change in the density of space due to kinetic energy:

FG3(rB) = vB/c GmAmB/4λAλBr2
B

∞
∫

0

drA J0(rA/λA) cos(vArA/cλA)

×

rB+rA
∫

rB−rA

dx/x
(

r2
A− r2

B + x2
)

/rA J0(x/λB) sin(vBx/cλB) . (C.1)

We use the integral representation of the sine function and reverse the
order of integration to obtain:

FG3(rB) = v2
B/c2 GmAmB/4λAλ2

Br2
B

∞
∫

0

drA J0(rA/λA) cos(vArA/cλA)

×

1
∫

0

dt

rB+rA
∫

rB−rA

dx
(

r2
A−r2

B+x2
)

/rA J0(x/λB) cos(vBxt/cλB) .(C.2)

This is similar to the integral in Appendix B. We make the substitution
s = rB/λB so that:

FG3(rB) = v2

B/c2 GmAmB/4λAr2

B

∞
∫

0

drAJ0(rA/λA)1/π

π
∫

0

dθ

1
∫

0

dt

×
{

exp(iyts)
[

i sin(rA(yt/λB + vA/cλA))rA/iytλB

+i sin(rA(yt/λB − vA/cλA))rA/iytλB

+ cos(rA(yt/λB + vA/cλA))
(

s/iyt − 1/(iyt)
2
)

+ cos(rA(yt/λB − vA/cλA))
(

s/iyt − 1/(iyt)
2
)

+i sin(rA(yt/λB + vA/cλA))
(

λB/(iyt)
3 − sλB/(iyt)

2
)

/rA

+i sin(rA(yt/λB − vA/cλA))
(

λB/(iyt)
3 − sλB/(iyt)

2
)

/rA

]

+ exp(izts)
[

i sin(rA(zt/λB + vA/cλA))rA/iztλB

+i sin(rA(zt/λB − vA/cλA))rA/iztλB

+ cos(rA(zt/λB + vA/cλA))
(

s/izt − 1/(izt)
2
)

+ cos(rA(zt/λB − vA/cλA))
(

s/izt − 1/(izt)
2
)
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+i sin(rA(zt/λB + vA/cλA))
(

λB/(izt)
3 − sλB/(izt)

2
)

/rA

+i sin(rA(zt/λB−vA/cλA))
(

λB/(izt)
3−sλB/(izt)

2
)

/rA

]}

, (C.3)

where

yt = cos θ + vBt/c ,

zt = cos θ − vBt/c .

For the terms that contribute to Type I gravity, we evaluate the integrals
over t by taking the derivative with respect to s and then integrating by
parts. For example:

d/ds

{

v2
B/c2

1
∫

0

dt exp(iyts)
[

i sin(rA(yt/λB + vA/cλA))rA/iytλB

+ cos(rA(yt/λB + vA/cλA))
(

s/iyt − 1/(iyt)
2
)

]

}

= −ivB/c
{

exp(iys) cos(rA(y/λB + vA/cλA))

− exp(is cos θ) cos(rA(cos θ/λB + vA/cλA))
}

. (C.4)

The lower limit of the integral is cancelled by the lower limit of the
corresponding term in zt and we then integrate with respect to s to obtain:

FG3(rB) = GmAmB/4λAr2

B

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ

×
{

− ivB/c
{

exp(iys)
[

cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))
]

/iy − exp(izs)

×
[

cos(rA(z/λB + vA/cλA)) + cos(rA(z/λB − vA/cλA))
]

/iz
}

+iv2

B/c2

1
∫

0

dt
{

exp(iyts)
(

λB/(iyt)
3 − sλB/(iyt)

2
)

×
[

sin(rA(yt/λB + vA/cλA)) + sin(rA(yt/λB − vA/cλA))
]

/rA

+ exp(izts)
(

λB/(izt)
3 − sλB/(izt)

2
)

[

sin(rA(zt/λB+vA/cλA))

+ sin(rA(zt/λB−vA/cλA))
]

/rA

}}

. (C.5)

The terms with “cos(rA . . .)” contribute to Type I gravity while the terms
with “sin(rA . . .)/rA” contribute to Type II gravity.
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Appendix D

Type I gravity cancellation

We evaluate the “sin(rA . . .)rA” integrals and show that they cancel the
Type I gravity that would arise from the “cos(rA . . .)” integrals when the
Weber arguments are imaginary. If we define s = rB/λB and the function
D(s), we have:

FG21(rB) = GmAmBλB/4λAr2
B D(s) , (D.1)

D(s) = 1/λ2
B

∞
∫

0

drAJ0(rA/λA) 1/π

π
∫

0

dθ
(

1− cos2 θ
)

×
{

exp(iys)/y
[

sin(rA(y/λB + vA/cλA))

+ sin(rA(y/λB − vA/cλA))
]

rA

+ exp(izs)/z
[

sin(rA(z/λB + vA/cλA))

+ sin(rA(z/λB − vA/cλA))
]

rA

}

. (D.2)

At this point, if we reverse the order of integration and evaluate the
integrals over rA, we find that the integrals are Weber discontinuous integrals
but with a sine instead of a cosine argument. As a result, the four integrals
are respectively non-zero when:

(y/λB + vA/cλA) > 1/λA or (y/λB + vA/cλA) < −1/λA ,

(y/λB − vA/cλA) > 1/λA or (y/λB − vA/cλA) < −1/λA ,

(z/λB + vA/cλA) > 1/λA or (z/λB + vA/cλA) < −1/λA ,

(z/λB − vA/cλA) > 1/λA or (z/λB − vA/cλA) < −1/λA . (D.3)

Rather than put the limits on each integral, we leave the limits 0 and π
in place, but with the understanding that the integrals are really over an an-
nular region bounded by 0 and π whose width is determined by the above
conditions. To evaluate the integrals, we first take the derivative of D(s) to
remove the 1/y and 1/z factors and then integrate by parts:

d/dsD(s) = i/π 1/λB

∞
∫

0

drA J0(rA/λA)

×{sin θ[exp(iys)[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))]
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+ exp(izs)[cos(rA(z/λB + vA/cλA))

+ cos(rA(z/λB − vA/cλA))]]|πθ=0

+is

π
∫

0

dθ(1− cos2 θ)

×[exp(iys)[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))]

+ exp(izs)[cos(rA(z/λB + vA/cλA))

+ cos(rA(z/λB − vA/cλA))]]

−

π
∫

0

dθ cos θ

×[exp(iys)[cos(rA(y/λB + vA/cλA))

+ cos(rA(y/λB − vA/cλA))]

+ exp(izs)[cos(rA(z/λB + vA/cλA))

+ cos(rA(z/λB − vA/cλA))]]} . (D.4)

The first term is zero. We then use that y = cos θ + vB/c and z =
cos θ − vB/c to rewrite the last integral and note that the integrals are the
same integrals as arose in the “cos(rA . . .)” terms in Type I gravity, except
for the integration limits:

d/dsD(s) = −{d/dsB(s) + d/dsA(s) + d/dsC(s)} , (D.5)

D(s) = −{B(s) + A(s) + C(s)} . (D.6)

Thus the D(s) term cancels the integration region in Type I gravity for
which the Weber argument is imaginary.

Appendix E

Remaining kinetic energy term cancellation

The remaining kinetic energy term in the second derivative of A(s) is:

RemKE = −vB/c

{

1/π

π
∫

0

dθ exp(iys) cos θ

×
[

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2
]
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−1/π

π
∫

0

dθ exp(izs) cos θ

×
[

(

λ2
B/λ2

A − (z + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (z − vAλB/cλA)2
)

−1/2
]

}

. (E.1)

If the solution is a Bessel function of order zero, we can replace the terms
in s in the remainder integrals by J0(s) to obtain:

RemKE = −vB/c J0(s) 1/π

π
∫

0

dθ cos θ

×
{

(

λ2
B/λ2

A − (y + vAλB/cλA)2
)

−1/2

+
(

λ2
B/λ2

A − (y − vAλB/cλA)2
)

−1/2

−
(

λ2
B/λ2

A − (z + vAλB/cλA)2
)

−1/2

−
(

λ2
B/λ2

A − (z − vAλB/cλA)2
)

−1/2
}

. (E.2)

The first and fourth integrals and the second and third integrals cancel
as they are mirror images with respect to the integration interval and occur
with opposite sign. Thus the remaining kinetic energy term integrates to
zero and the solution is indeed a Bessel function of order zero.

REFERENCES

Bergmann, P.G., Introduction to the Theory of Relativity, Prentice-Hall, New
York 1942.

Einstein, A., On the Electrodynamics of Moving Bodies, Ann. Phys. 17, 891
(1905).

Erdelyi, W., Magnus, F., Tricomi, F.G., Tables of Integral Transforms, Vol. II,
in Bateman Manuscript Project, McGraw-Hill, New York 1954.

Massachusetts Institute of Technology (MIT), 2008 MIT Haystack Observatory
Incoherent Scatter Radar (ISR),
http://www.haystack.mit.edu/atm/mho/instruments/isr

Penzias, A.A., Wilson, R.W., Astrophys. J. Lett. 142, 1149 (1965).

Rohringer, G., The Yellow–Green-Infrared Glow Following Nuclear Detona-
tions, Report, General Electric Company, Santa Barbara, CA 1–7, 1968.



Gravity Theory Based on Mass–Energy Equivalence 2865

Will, C.M., Theory and Experiment in Gravitational Physics, Cambridge Uni-
versity Press, New York 1993.

Wolfram 1996–2006 The Wolfram Integrator, Wolfram Research Inc.,
http://integrals.wolfram.com

Wolfram 1998–2006 The Wolfram Functions Site, Wolfram Research Inc.,
http://functions.wolfram.com


