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The density fluctuation of the final state charged mesons are investi-
gated in terms of two-dimensional scaled factorial moments in 28Si–Ag/Br
interaction at an incident energy of 14.5GeV per nucleon. The experi-
mental results are compared with a microscopic transport model based on
the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). To accom-
modate the Bose–Einstein type correlation, that dominates the origin of
intermittency, an algorithm based on reassigning charges of produced par-
ticles has been employed to the UrQMD data. However, our investigation
shows that a strong self-affine intermittent behavior in the experiment still
cannot be replicated by the simulation. The Hurst exponent is used to ac-
count for the experimentally observed anisotropy in the pseudorapidity —
azimuthal angle plane. The usual power law type of scaling behavior of the
factorial moments, typical of intermittency in one dimension, is retrieved
only when independent phase-space directions are partitioned unequally.
Several issues related to the underlying (multi)fractal structure of the den-
sity function are also examined.
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1. Introduction

In order to study the non-statistical (dynamical) fluctuation of the single
particle density distribution in the final state of any high-energy interaction,
a technique based on the scaled factorial moment (SFM) measurement was
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first introduced by Bialas and Peschanski [1,2]. The SFM Fq of the order of
q (a positive integer) defined for the phase space partition number M , and
appropriately normalized by the mth bin (phase space interval) multiplicity
nm is given by

Fq =
1
M

M∑
m=1

〈nm(nm − 1) . . . (nm − q + 1)〉
〈nm〉q

. (1)

The entire phase-space interval ∆X over which the analysis is made, is di-
vided into equal size subintervals δX (= ∆X/M), and the brackets 〈〉 on the
right-hand side of the above expression denote averaging over many events
which is done for statistical reasons. If the fluctuations under consideration
are self-similar at all scales, Fq is expected to increase with decreasing δX
following a power law

Fq ∼ (δX)−φq , δX → 0 . (2)

In multiparticle production physics the phenomenon is known as ‘intermit-
tency’, where φq is a scale invariant positive definite quantity called the inter-
mittency exponent (index). Several speculative measures, some conventional
and a few other exotic, are adopted to interpret the intermittency results
in high-energy interactions. As for example, the intermittency phenomenon
can be explained in terms of the ordinary BE type of correlation [3,4], aris-
ing out of an enhanced yield in the like charge sign mesons within narrow
phase-space intervals. While incorporating the BE correlation (BEC) into
numerical modeling certainly reduces the mismatch between the observation
and the Monte Carlo (MC) simulation [5], the experimental results cannot
always be fully accounted for. Large particle densities within narrow phase-
space region may also occur due to collective effects [6,7] like the Cherenkov
gluon emission [8]. The intermittency may as well be due to a QCD par-
ton shower cascading process of particle emission [9], or it may even be due
to a non-thermal phase transition [10] similar to that observed in the spin
glass system. Last but not least, large fluctuations in the final state particle
density particularly in nucleus–nucleus (AB) collisions, may be an outcome
of a transition from the exotic quark-gluon plasma (QGP) to the ordinary
hadronic phase [11, 12]. The picture till date is neither complete nor very
clear. There still exist plenty of unresolved issues related to this phenomenon
that need to be further scrutinized.

The existence of dynamical components in particle density fluctuations
has been confirmed in many high energy interactions. There are some excel-
lent compilations on the recent progress of the subject (see reviews [13,14]).
Many of the intermittency analyses mentioned in [13, 14] were performed
in one dimension (1d), mostly in the rapidity (y) or in the pseudorapidity
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(η) space. The actual process of particle production however, takes place in
three dimension. When the dynamics is projected onto a lower dimension,
the effects of fluctuation are reduced or they can even be completely washed
out [9]. In high-energy collisions it is observed that the heavier is the collid-
ing system or the more is the collision energy, the weaker is the intermittency
in (1d). On the other hand, in higher dimensions not only the intermittency
grows in its strength, but one also finds an upward bending in the log–log
variation of the SFM with increasing phase-space resolution [15,16], both of
which in contrast to the (1d) case, are stronger in heavier colliding systems.

Very recently, we have performed a (1d) analysis of a set of 28Si–Ag/Br
data at an incident energy of 14.5AGeV [17], where the experimental mea-
surements are compared with a set of simulated data based on the UrQMD
code [18]. We observed that the experimental intermittency strength in the
azimuthal (ϕ) space is approximately twice as large as that in the η-space,
while the UrQMD model produces negligible intermittency in both spaces.
There are indications of non-thermal phase transition as well as random
cascading during the particle production process. In this paper we are go-
ing to extend our analysis to the two-dimensional (2d) intermittency of the
same set of data on 28Si–Ag/Br interaction. The main motivations are (i)
to investigate the anisotropy in the (2d) particle density in the (η, ϕ) plane
in terms of self-affine (multi)fractal structure, and (ii) to check whether or
not the BEC, implemented in the UrQMD code at the level of the so-called
after-burner, can account for the experiment. The BE type of correlation
is accommodated into the UrQMD data by employing an algorithm [19,20],
that reassigns the charges of produced pions but does not alter their original
four-momenta or the space time coordinates as given by the event generator.
The paper is organized in the following way. In Section 2 the experimen-
tal data collection method, and in Section 3 the simulated data generation
method are briefly discussed. In Section 4 we describe the statistical tech-
nique(s) employed to analyze the data and the results obtained from the
analysis. In Section 5 we conclude with a summary of our observations and
incorporate a few critical remarks on the same. Whenever necessary, we
shall refer back to our previous intermittency related works on AB interac-
tions [21,22,23].

2. Experiment

Ilford G5 nuclear emulsion pellicles of size 16 cm×10 cm×600µm, irradi-
ated by the 28Si beam obtained from the Alternating Gradient Synchrotron
at the Brookhaven National Laboratory (USA) were used to collect the data.
The incident beam energy was 14.5GeV per nucleon. To find out the pri-
mary 28Si–Ag/Br events the emulsion plates were scanned along individual
projectile tracks with Leitz microscopes under a total magnification 300×.
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Angle measurement and track counting/classification were performed under
a total magnification 1500× by using a pair of Koristka microscopes. Minute
details of nuclear emulsion technique are thoroughly discussed in [24,25]. In
emulsion terminology tracks emerging from an interaction vertex are classi-
fied in the following way.

(i) Shower tracks: The shower tracks are caused by the singly charged
particles produced in an interaction (also called a star), and moving
with a very high speed (v > 0.7 c). The ionization of this class of parti-
cles I ≤ 1.4 I0, I0 being the minimum ionization due to any particle in
the emulsion pellicle, which in the present case is ≈ 20 grains/100µm.
Mostly charged pions (contaminated by a small percentage of other
mesons and e+/e−) belong to the shower particle category. Total num-
ber of such tracks in a single event is denoted by ns.

(ii) Grey tracks: The grey tracks are caused mainly by the target recoil
fast protons with ionization 1.4 I0 ≤ I < 10 I0. Their velocity values
range from 0.3 c to 0.7 c and their kinetic energies can move up to
400MeV. Total number of grey tracks in an event is denoted by ng.

(iii) Black tracks: The black tracks are due to the heavy and slow moving
fragments evaporating out of the remnants of target nuclei, having ion-
ization I > 10 I0, velocity less than 0.3 c and energy less than 30MeV.
Total number of tracks of this kind in an event is denoted by nb.

(iv) Projectile fragments: The projectile fragments are nothing but the
spectator parts of the incident nucleus that do not directly partici-
pate in an interaction. They are emitted within a very narrow and
extremely forward cone of semi-vertex angle θf = 0.21/pinc, where pinc

is the incident projectile momentum per nucleons in GeV/c. The pro-
jectile fragments exhibit uniform ionization over a long range and have
almost the same energy per nucleon as the beam. Their number in an
event is denoted by npf .

To ensure that an event is due to an Ag/Br target nucleus only those stars
were considered for which the number of heavy fragments nh(= ng+nb) > 8,
while the present analysis is confined only to the produced charged particles
(i.e., the shower tracks). The number of 28Si–Ag/Br events present in the
data sample is Nev = 311 with an average shower track multiplicity 〈ns〉 =
52.67± 1.33. In emulsion experiments, η together with the azimuthal angle
(ϕ) of a track constitutes a very convenient pair of basic variables. In the
present analysis the (2d) phase space is spanned by (η, ϕ). For light mesons
moving at relativistic speed η is an approximation of the dimensionless boost
parameter y, and it is defined as

η = − ln tan(θ/2) ,
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where θ is the emission angle of the particle/track concerned. The nuclear
emulsion plates have 4π acceptance, and an accuracy of δη = 0.1 unit in
η and δϕ = 1mrad in ϕ could be achieved through the reference primary
method of angle measurement. Taking all 331 events together, the overall
η-distribution can be approximated by a Gaussian function for which the fit
parameters are, the centroid η0 = 1.90±0.01, the width ση = 2.17±0.03 and
the peak density ρ0 = 17.88 ± 0.76. On the other hand, the ϕ-distribution
is almost uniform between 0 and 2π.

3. Simulation

Using the UrQMD code we have simulated a sample of 28Si–Ag/Br in-
teractions at 14.5AGeV that is five times as large as the experimental one.
Events with Ag and Br nuclei are first generated separately, and they are
thereafter mixed with each other according to the proportional abundance of
Ag and Br nuclei in nuclear emulsion. All newly produced charged mesons
in the simulated events are retained for subsequent analyses. The simulated
event sample possesses identical multiplicity distribution, and similar η,
ϕ-distributions as the experiment. Obviously, the average charged meson
multiplicity 〈nch〉 of the UrQMD generated sample is the same as the ex-
perimental 〈ns〉 quoted above. The centroid of the best Gaussian fitted
η-distribution (η0 = 1.75), and the width of the η-distribution (ση = 2.15)
are also close to the respective experimental values. For error calculation
etc. we have generated another set of event samples based on the random
numbers. A pair of random numbers representing the η and ϕ values has
been associated with each track. A linear congruential iterative method, and
an inverse of integral method have been used to generate these random num-
bers [26]. The number of such generated event samples, each of the same size
as the experimental one, in the present case is ten. Each simulated sample
possesses identical multiplicity distribution, similar η-distribution (actually
the best Gaussian fitted distribution), and similar ϕ-distribution (uniform)
as the experimental sample. While generating the random numbers, no
correlation has been assumed, and hence these data sets correspond to inde-
pendent emission of particles. The UrQMD generated results on basic (2d)
intermittency analysis are compared to the experiment.

It is known that the BE type of identical particle effect dominates the ori-
gin of intermittency. Due to correlated emission of like sign and/or opposite
sign charged produced particles (mesons), the particle yield with small rela-
tive momenta is enhanced, which is one of the reasons for density fluctuation
in the final state of any high-energy hadronic or nucleus induced interaction.
The effect is quantum statistical in nature and it cannot be simulated by a
transport model like the UrQMD. Recently, a new algorithm has been de-
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veloped [19, 20], where the BEC is introduced by reassigning the charges of
produced mesons in such a way that the overall four-momentum distribution
remains unaltered, the event wise charge multiplicities are maintained, and
the particles (mesons) look like that they are satisfying the Bose statistics.

Without claiming any originality, the method of numerically modeling
the BEC by using the output of the UrQMD code is very briefly described be-
low. The UrQMD code provides the four-coordinates and the four-momenta
of all particles. The particle information is contained in an ASCII file writ-
ten in the OSCAR format. Each particle entry in an event contains a serial
number, the particle ID, the particle four momentum (px, py, pz, E), the
particle mass m, and the final freeze-out four coordinates (x, y, z, t). In the
first step we randomly choose a pion from an event, and assign a charge
‘sign’ i.e., +ve, −ve or 0, irrespective of its original charge with weight fac-
tors, respectively given by p+ = n+/n, p− = n−/n and p0 = n0/n. Here
n+, n−, n0 are respectively, the number of +ve, −ve and neutral pions in
the event, and n (= n+ + n− + n0) is obviously the total number of pions
in that event. This pion, say the ith one, defines a new phase space cell.
In the next step, the distances in four-momenta δij(p) = |pi − pj | and four
coordinates δij(x) = |xi − xj | between the already chosen pion (i.e., ith)
and all other pions (say the jth) that are not yet assigned any ‘sign’, are
calculated. To each jth particle we now assign a weight factor [19]

Pij = exp
[
−1

2 δ
2
ij(x) δ2

ij(p)
]
, (3)

that characterizes the bunching probability of the particles in a given cell.
Then, we start generating uniformly distributed random numbers r ∈ (0, 1).
If r < Pij we reassign to the jth pion the same charge ‘sign’ as the ith one.
We continue the process until r exceeds Pij , or all pions in the event having
the same charge ‘sign’ as the ith pion are exhausted. Now we go back to
our first step and again randomly choose a pion from the pool for which the
charge reassignment has not yet been done. Obviously, the weight factors
will now be modified. The algorithm is then repeated until pions belonging to
all charge varieties in the event are used up. Only pion pairs with space-like
separations are accepted, and appropriate checks are made so that Pij does
not exceed unity [27]. Without changing the overall set of four-momenta,
the four-coordinates, or the total pion charge of the system, we can in this
way generate clusters of closely spaced identical charge states of pions.

4. Methodology and results

In our (2d) intermittency analysis the phase-space is the (η, ϕ) plane.
To ensure that the SFM measurement is in no way affected by the shape
of the underlying distribution(s), we first convert each of these phase-space
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variables to the respective cumulant variable (X) defined as [28],

Xx =

x∫
xmin

ρ(x)dx

/ xmax∫
xmin

ρ(x)dx . (4)

Here x (≡ η, ϕ) is the original variable, xmin(xmax) is the minimum (max-
imum) value of x and ρ(x) = N−1

ev (dn/dx) is the single particle density in
terms of x. Irrespective of the original variable from which it is derived, not
only the particles are uniformly distributed in Xx within a range [0, 1], but
the corresponding factorial moment distribution too exhibits similar transla-
tional invariance. Our (η, ϕ) plane is therefore, now converted to a (Xη, Xϕ)
square of unit area. We shall however, continue to call it the (η, ϕ) plane.
Setting the partition numbers along each direction equal i.e., Mη = Mϕ say,
this square is first symmetrically (or self-similarly) partitioned to result in
M (= M2

η ) smaller squares of equal size. The qth order (2d) SFM F
(2)
q is

now defined in more or less a similar way as in Eq. (1). Note that nm is now
the multiplicity in the mth sub-cell (a smaller square) of size (δXη × δXϕ),
while M is the total number of such sub-cells in the (η, ϕ) plane. To begin
with, we evaluate the (2d) SFMs of the order of q = 2, 3 and 4 for such
equal partitioning. Fig. 1 shows the plot of lnF (2)

q against lnM (which we
shall later refer to as the SFM plot), (a) for the experiment, (b) for the
UrQMD simulation, and (c) for the UrQMD data modified by the BEC.
As mentioned before, the experimental points show a non-linear dependence
of lnF (2)

q on lnM . In contrast, the UrQMD simulated SFMs are almost
independent of M ; for q > 2 only at large M they exhibit a irregularly
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fluctuating pattern. On the other hand, the UrQMD data modified by the
charge reassigning BEC algorithm (UrQMD+BEC), exhibit a self-similar
power law of the SFM. Corresponding exponents βq are calculated by fitting
a power law type of relation like Eq. (2) to the data points. For a nonlinear
variation obviously the slope will depend on the region of fit. Hence we have
done it in a region, where the variations are visibly linear. The βq values
along with the χ2 values showing the goodness of linear fit in each case, and
the number of degrees of freedom (d.o.f.), are given in Table I. However, we
insist that the βq values only represent a qualitative estimate of the rise in
SFM with diminishing phase space partition size. When the rise is nonlin-
ear, these indices are in no way connected to the power law scaling, or for
that matter to intermittency. On the other hand, the UrQMD generated
graphs are always almost uniformly distributed showing very little or no in-
termittency. Correlation of any type, either due to the symmetry property
of the underlying field(s) and/or due to any dynamical reason, is virtually
nonexisting. When the BEC is numerically modeled into the UrQMD data,
lnF (2)

q shows linear rise with increasing lnM and, to some extent, we can
retrieve the power law type of scaling. Corresponding βq values also indi-
cate that by accommodating the BEC into the simulated data, one can, to
a certain degree, account for the intermittent behavior. However, as men-
tioned above, the experimental values are still several times larger than the
(UrQMD+BEC) values, and the experiment still cannot be fully accounted
for. We have also checked that in the (UrQMD+BEC) case there is hardly
any non-linearity in the variation of lnF (2)

q with lnM . As the simulated
data do not exhibit any anisotropy in the (η, ϕ) plane, subsequently we did
not extend our self-affine analysis to the (UrQMD+BEC) case. We should
mention that all experimental βq values are also several times larger than
the intermittency indices (φq) obtained in the (1d) analysis of the same set
of data [17].

TABLE I

The (2d) intermittency exponents βq of order q = 2, 3 and 4 for symmetric parti-
tioning i.e., Mη = Mϕ.

Order Experiment UrQMD UrQMD+BEC

βq χ2 (d.o.f.) βq χ2 (d.o.f.) βq χ2 (d.o.f.)

q = 2 0.086±0.005 18.92(32) 0.0043±0.0027 04.27(14) 0.028±0.002 04.38(16)
q = 3 0.322±0.036 28.98(32) 0.0002±0.0046 10.28(14) 0.067±0.003 16.35(16)
q = 4 1.124±0.074 44.88(32) 0.0103±0.0092 26.45(14) 0.122±0.006 34.04(16)
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It has been argued [29] that the phase-space density of multiparticle
production is anisotropic, and the upward bending in the SFM plot is a direct
consequence of this anisotropy. As, for example, depending on the kinematic
conditions the longitudinal momenta of produced particles can vary over
a wide range, whereas the average transverse momenta of these particles,
irrespective of the nature of the interaction and for a reason that is still
unknown to us, are limited within a relatively small range of 0.3–0.5GeV/c.
As a result, an equal bin partitioning of the (2d) distribution results in an
upward bending in the corresponding SFM plot. It is suggested that in the
(2d) SFM analysis the phase-space should be partitioned asymmetrically
(or self-affinely as said in the fractal theory), taking the anisotropy of the
phase-space into account [30]. This is done by introducing a ‘roughness’
parameter called the Hurst exponent (H). The anomalous scaling of the
SFM that characterizes intermittency can be recovered only with a proper
choice of the H value. Under such a situation the phase-space scale factors
in the longitudinal (η) and the transverse (ϕ) directions are related as

Mη = MH
φ , for H ≤ 1.0 , Mφ = 1, 2, . . . , 50 ,

Mφ = M1/H
η , for H > 1 , Mη = 1, 2, . . . , 50 . (5)

For H < 1.0 the ϕ-direction is partitioned into finer intervals than the
η-direction, whereas for H > 1.0 the reverse is true. It is obvious that, both
Mη and Mϕ simultaneously cannot always be integers. After dividing the
η (ϕ) direction by a non-integer partition number, only the integer part is
retained. As for example, if

δXi = ∆Xi/Mi and Mi = Ni + ai : i = η or ϕ , (6)

where Ni is integer and ai is a positive fraction (< 1) that one can do
away with. In effect, contribution from a smaller strip of width ai∆Xi/Mi

is discarded from the summation (or averaging) over bins of the factorial
moment, which is done either by placing it at the beginning or at the end
of all other equal sized strips of width δXi. In doing so, no error should
in principle be incurred, as the translational invariance of both the particle
density and the SFM distribution have already been ensured by choosing
the cumulant variables.

We have calculated F (2)
2 as a function of M over a wide range of H (=

0.4–3.0) values. Some of them are graphically represented in Fig. 2. Once
again the errors associated with the data points are statistical in origin. The
solid curves in each case represent a quadratic function like

f(ζ) = aζ2 + bζ + c , (7)
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where ζ ≡ lnM and f(ζ) ≡ lnF (2)
2 . The first two points are always ex-

cluded from the fitting process. By doing so one can get rid of the effects
arising out of kinematic constraints. As for example, to conserve momen-
tum the emitted particles tend to move in opposite directions in the ϕ-space,
which in effect reduces the fluctuation and consequently lowers the factorial
moments value. From Fig. 2 it can be seen that the strong upward bend-
ing of lnM versus ln〈F (2)

2 〉 plot, as it is observed for H = 1 in Fig. 2 (a),
gets systematically weakened as H deviates from unity. For H < 1 we find
the weakest bending at H = 0.5 and for H > 1 at 2.5. The SFM plots
corresponding to these values of H are almost linear as demanded by the
theory of intermittency. A quantitative description of the above observation
is provided by the quadratic fit of the experimental data points in terms of
Eq. (6) along with the χ2(d.o.f.) values listed in Table II. We see that for
the H ≤ 1.0 category ‘a’ is minimum and ‘b’ is maximum at H = 0.5, while
for the H > 1.0 category similar values are obtained at H = 2.5. The fit
quality as seen from the χ2(d.o.f.) values are always reasonably good. Our
observation shows that the power law scaling of the SFM can be recovered
through an asymmetric partition of the (η, ϕ) space.
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TABLE II

The quadratic fit parameters of Eq. (6) along with the χ2 (d.o.f.) for different
H values.

H a b c χ2(d.o.f.)

0.4 0.0051±0.0033 0.0098±0.0321 0.0298±0.0579 6.17(45)
0.5 0.0047±0.0026 0.0155±0.0300 0.2919±0.0584 4.79(45)
0.6 0.0066±0.0032 0.0062±0.0281 0.2988±0.0581 5.72(45)
0.7 0.0121±0.0030 -0.0393±0.0274 0.3904±0.0598 6.68(45)
0.8 0.0140±0.0027 -0.0530±0.0262 0.4154±0.0602 8.57(45)
0.9 0.0145±0.0025 -0.0562±0.0252 0.4202±0.0608 8.27(45)
1.0 0.0180±0.0023 -0.0918±0.0242 0.5036±0.0615 13.5(45)
1.2 0.0152±0.0026 -0.0675±0.0258 0.4523±0.0605 7.36(45)
1.5 0.0126±0.0030 -0.0492±0.0275 0.4123±0.0591 8.45(45)
2.0 0.0132±0.0036 -0.0533±0.0295 0.4205±0.0575 8.56(45)
2.4 0.0051±0.0039 -0.0019±0.0308 0.3427±0.0570 5.18(45)
2.5 0.0032±0.0021 0.0104±0.0310 0.3246±0.0568 3.60(45)
2.6 0.0041±0.0035 0.0053±0.0313 0.3303±0.0567 3.69(45)
3.0 0.0057±0.0044 -0.0064±0.0325 0.3485±0.0566 5.49(45)

The self-affine analyses of the NA22 [31] data on pp interaction and of the
NA27 [32] data on hp interactions show that the power law characterizing
intermittency is obtained for H < 1.0, which suggests that the transverse
direction has to be partitioned finer than the longitudinal one. In these ex-
periments the appropriate Hurst exponent is calculated by fitting the (1d)
SFM with the Ochs’ formula [33]. In contrast, the EMU01 experiment on
AB collisions [34] finds that the power law is valid for H > 1.0 i.e., the lon-
gitudinal direction has to be partitioned finer than the transverse direction.
An AB interaction is viewed as a superposition effect of many elementary
NN interactions, as a result of which the effective Hurst exponentHeff � H.
On the other hand, in all of our experiments, previous and the present one,
we consistently find that the power law of intermittency is obtained only if
H 6= 1. It does not matter which direction (i.e., longitudinal or transverse)
is partitioned finer.

We have also calculated F (2)
q for q = 2, 3 and 4 using the optimized val-

ues of H obtained from F
(2)
2 analysis. Fig. 3 represents such plots, where

lnF (2)
q is plotted against lnM , (a) for H = 0.5 and (b) for H = 2.5. The

solid curves in either plot represent the linear fit to the data points, leaving
first two points in each case for the same reason as mentioned earlier. The
intermittency index φ(2)

q is nothing but the slope of these linear fits, which
indirectly is related with the intermittency strength. Table III shows the
values of φ(2)

q along with the χ2(d.o.f.). One can see that the φ(2)
q indices
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obtained for a symmetric partitioning are much larger than the correspond-
ing values for H = 0.5 and 2.5. Moreover, the H = 0.5 scaling reproduces
larger φ(2)

q than what we obtain for H = 2.5. Comparing with our previ-
ous works we find that the present set of self-affine φ(2)

2 values are of the
same order of magnitude as those obtained in 32S–Ag/Br and 16O–Ag/Br
interactions at 200AGeV [23].
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Fig. 3. Plot of ln〈F (2)
q 〉 versus lnM for q = 2, 3 and 4 for (a) H = 0.5 and (b) for

H = 2.5. The lines represent linear regression leaving the first two points.

TABLE III

The (2d) intermittency exponents φ(2)
q of the order of q = 2, 3 and 4 for unequal

partitioning of η and ϕ directions.

Order H = 0.5 H = 2.5

φ
(2)
q χ2(d.o.f.) φ

(2)
q χ2(d.o.f.)

q = 2 0.053±0.004 06.39(46) 0.035±0.004 04.27(46)
q = 3 0.222±0.012 27.06(46) 0.141±0.008 16.82(46)
q = 4 0.778±0.033 46.23(46) 0.436±0.022 59.63(46)

A direct measure of the intermittency strength, in terms of the intermit-
tency exponents, can be made in the framework of a random cascading model
like the α-model [35]. According to this model, the strength parameter αq
is defined as

αq =

√
6 ln 2
q

(D −Dq) . (8)
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where Dq is the qth order generalized Rényi dimension and D is the topo-
logical dimension (here 2) of the phase-space. In Fig. 4 (a) the αq values are
plotted against the order number q for both the H values. It can be seen
that the strength parameter almost linearly increases with increasing order,
though the values obtained for H = 0.5 are consistently greater than those
forH = 2.5. In view of our observation mentioned above regarding the inter-
mittency index, it is not surprising that the (2d) intermittency strength in
28Si–Ag/Br interaction is of the same order of magnitude as those obtained
in the 32S–Ag/Br and 16O–Ag/Br interactions at 200AGeV [23].
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Fig. 4. Plots of (a) the intermittency strength αq, (b) the anomalous fractal di-
mension dq and (c) Dq versus ln q/(q− 1). All points are for H = 0.5 and 2.5. The
best linear fits are shown in (c).

The generalized dimension of (multi)fractalityDq is related to the anoma-
lous fractal dimension dq by [36]

Dq = D − dq , (9)

where dq can be expressed in terms of the intermittency exponents as

dq =
φq
q − 1

. (10)

The direct relationship between intermittency and (multi)fractality is not
yet fully understood. But it has been argued that, if a second-order phase
transition from QGP to hadron phase takes place, then particle density dis-
tribution would show intermittency with an anomalous dimension dq that
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is independent of q [37]. On the other hand, hadronization through a cas-
cading process will lead to dq linearly increasing with q. The dependence
of dq on q is shown in Fig. 4 (b) for H = 0.5 and 2.5. The plot shows that
the anomalous fractal dimension increases approximately linearly with in-
creasing order q in both cases and the rate of increase for H = 0.5 is greater
than that is for H = 2.5. Hence the observation is in agreement with the
prediction of the cascade model.

A thermodynamic interpretation of multifractality has been given in
terms of a constant specific heat C, provided the transition from monofrac-
tal to multifractal is governed by a Bernoulli type of fluctuation. Bershadski
proposed a phenomenological relation among the generalized Rényi dimen-
sion Dq and C as [38]

Dq = D∞ +
C ln q
q − 1

. (11)

C = 0 in monofractal phase which becomes nonzero finite in the multifractal
phase. In Fig. 4 (c) we have given a plot of Dq with ln q/(q− 1). The multi-
fractal specific heat is extracted by fitting straight line to the data points, as
shown in the figure. For H = 0.5, C = 0.657± 0.083; whereas, for H = 2.5,
C = 0.453 ± 0.064. This is for the first time that the multifractal specific
heat is obtained in (2d). The present set of values are larger than the uni-
versal value C(= 1/4) quoted in [38], are larger than the (1d) values of C in
32S–Ag/Br and 16O–Ag/Br interactions at 200AGeV [22], and they are very
close to the (1d) values obtained in a similar 28Si induced experiment [39].

5. Conclusion

We have performed a two-dimensional intermittency analysis of the shower
track angular emission data of 24Si–Ag/Br interaction at the incident energy
14.5AGeV. The following observations can be made from our analysis.

• The two-dimensional intermittency is much (several times) stronger
than the one-dimensional intermittency of the same data set. Like
in the one-dimensional case, due to the absence of any correlation
between particles in the input, the UrQMD model alone cannot pro-
duce significant intermittency. When we numerically model the Bose–
Einstein correlation and implement the same into the UrQMD output
data, we find that there is a definite improvement as seen from the
power law increase of the (2d) SFM. The experimental slope values are
still several times larger than the simulation (UrQMD+BEC), and the
upward bending that is so typical of the anisotropy in two-dimensional
density distribution, is absent in the simulated (UrQMD+BEC) plot.
Hence, we conclude that even by accommodating the Bose–Einstein
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correlation at the after-burner level, one cannot fully reproduce the
experimental observation. However, we would like to mention that the
Bose–Einstein correlation has been accommodated into the UrQMD
data as an after burner without any check on the two-particle correla-
tions, and not directly at the correlation level. Hence, this method [19,
20] cannot be considered as a fully convincing way of taking into ac-
count the Bose–Einstein correlation effect as a probable cause of the
intermittency in the 28Si–Ag/Br interaction under consideration.

• As reflected from the upward bending in the variation of the scaled
factorial moments, there is a strong anisotropy in the (η, ϕ) phase-
space. This anisotropy is taken care of by introducing the Hurst ex-
ponent, which in the present case comes out to be 0.5 and 2.5. With
the above choice of H values we retrieve the anomalous scaling of the
SFM, and obtain the actual intermittency strength. As the anomalous
scaling is obtained both for H < 1 and H > 1, in our case it is not
mandatory that one particular direction (e.g., longitudinal η or trans-
verse ϕ) has to be partitioned finer with respect to the other. This
in a sense contradicts the observations of similar nucleus–nucleus ex-
periments [34, 40], and an interpretation of nucleus–nucleus results in
terms of the superposition of many elementary nucleon–nucleon colli-
sions seems inadequate [41].

• Using the appropriate H values we have determined the intermittency
strength, the generalized multifractal dimension, and the multifractal
specific heat. The (2d) intermittency strength is of the same order of
magnitude as obtained from similar nucleus–nucleus experiments at a
much higher incident energy (200GeV per nucleon). This, in a sense,
indicates that the intermittency phenomenon in nucleus–nucleus ex-
periments is less sensitive to the variation in collision energy. The
general nature of the fractal parameters obtained above tells us that a
multifractal structure is present in the underlying dynamical fluctua-
tion of the particle density function, which probably is an outcome of
a random cascading process of particle production.

As suggested in [41] it would perhaps be more prudent if we could perform
the single event intermittency analysis in two dimension, and could obtain
the bending parameter ‘a’ for each event. A distribution of the bending
parameter could have allowed us to identify whether or not particles from
individual events are coming out from identical thermodynamic state. How-
ever, due to the limited multiplicities in our event sample such an exercise
could not be undertaken.
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