HALF-LIFE MEASUREMENTS OF EXCITED STATES IN 132Te, 134Xe

O.J. Robertsa, A.M. Brucea, F. Brownea, N. Mărgineanb
T. Alexanderc, T. Alharbic,h, D. Bucurescub, D. Deleanub
D. Delionb, D. Filipescub, L. Frailee, I. Gheorgheb, D. Ghiţăb
T. Glodariub, D. Ivanovad, S. Kisyovd, R. Mărgineanb
P.J.R. Masonc, C. Mihaïb, K. Mulhollandf, A. Negretb
C. Nîţăb, B. Olaizolae, S. Pascub, P-A. Söderströmg
P.H. Reganc, T. Savab, L. Stroeb, S. Tomab, C. Townsleyc

aUniversity of Brighton, Brighton BN2 4GJ, UK
bNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
cUniversity of Surrey, Guildford GU2 7XH, UK
dUniversity of Sofia, Sofia, Bulgaria
eUniversidad Complutense de Madrid, Madrid, Spain
fUniversity of the West of Scotland, Paisley PA1 2BE, UK
gRIKEN Nishina Center for Accelerator-based Science, Wako, Saitma, Japan
hDept. of Physics, Almajmaah University, P.O. Box 66, 11952, Saudi Arabia

(Received December 10, 2012)

The 7Li+130Te reaction was used to populate excited states in 132Te and 134Xe. The experiment at the Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania, used an array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr$_3$(Ce)) detectors to measure sub-nanosecond half-lives using fast-timing techniques. The half-lives of the yrast 4$^+$ and 6$^+$ levels were measured in the $N = 80$ nuclei 132Te and 134Xe, respectively. An upper limit of $T_{1/2} \leq 40$ ps was assigned to the 4$^+$ level in 132Te and $T_{1/2} = 1075(155)$ ps was assigned to the 6$^+$ level in 134Xe. The systematics of the $B(E2)$ strengths around the $N = 82$ shell closure are discussed.

DOI:10.5506/APhysPolB.44.403
PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Lv, 27.60.+j

* Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear Landscape”, Zakopane, Poland, August 27–September 2, 2012.
1. Introduction

The nuclei near the doubly-magic closed shell nucleus 132Sn are of particular interest due to the interplay of single particle and collective degrees of freedom. The energy level systematics of the low-spin states in the $N = 80$ nuclei exhibit an increase as the $Z = 50$ shell closure is approached and all have a long-lived $I^\pi = 10^+$ isomer based on the $(\nu h_{11/2})^{-2}$ configuration. Prior to this work, the only Te isotopes in which the half-life of the 4^+ state had been measured were 126Te (2.8(1) ps [1]) and 134Te (1.4(1) ns [2, 3]). Therefore, 132Te has been measured to complete our understanding of the systematics in this region. Similarly, the half-life of the 6^+ level in 134Xe was also studied in order to understand the trend in the $B(E2; 6^+ \rightarrow 4^+)$ systematics across the $N = 80$ isotones.

2. Experimental set-up

A 31.5 MeV 7Li beam delivered by the 9 MV Tandem van der Graaff accelerator at NIPNE, Bucharest impinged on a 1 mg/cm2 130Te target, which was backed with 20 mg/cm2 of 208Pb. The energy of the beam (which had an intensity of ~ 3 pA), was chosen to be close to the Coulomb barrier (~ 27 MeV) in order to suppress fusion–evaporation reaction channels. Excited levels were populated in 132Te via the 130Te(7Li,αp) incomplete-fusion transfer reaction, and in 134Xe via the 130Te(7Li,$p2n$) reaction. The γ rays from the de-exciting states were detected by 8 HPGe and 11 LaBr$_3$(Ce) detectors focused on the target position. Gates on transitions feeding and de-exciting the states of interest in the HPGe detectors, were used to produce an E_γ–E_γ–Δt cube. This was symmetrised so that the two γ-ray energies detected in the LaBr$_3$(Ce) detectors; E_{γ_1} and E_{γ_2}, increment the (E_{γ_1}, E_{γ_2}) and (E_{γ_2}, E_{γ_1}) elements and the time difference between the peaks in the forward and backward time spectra is 2τ [4].

3. Results

3.1. Half-life of the 4^+ level in 132Te

Excited states up to the $I^\pi = 8^+$ state in 132Te were populated, and are shown in Fig. 1. The other two low-lying isomeric states at 2723 ($I^\pi = 10^+$) and 1925 keV ($I^\pi = 7^-$), were not populated. The $2^+ \rightarrow 0^+$ (974 keV) transition was used as a gate in the HPGe detectors and gates were applied on the $5^- \rightarrow 4^+$ (383 keV) and $4^+ \rightarrow 2^+$ (697 keV) transitions in the LaBr$_3$(Ce) detectors, to produce the time spectrum in Fig. 1. The 383 keV transition was used as it was more clearly detected than the highly converted [5], yrast 103 keV transition from the 6^+ isomer. Due to the low statistics in the resulting time spectrum, an upper limit of $T_{1/2} \leq 40$ ps could only be assigned.
Half-life Measurements of Excited States in 132Te, 134Xe

Fig. 1. Left: A partial level scheme for 132Te up to $I^\pi = 8^+$. Right: The forward and backward time spectra for the 383 and 697 keV transitions which show a Gaussian distribution, indicating $T_{1/2} \leq 40$ ps for the 4^+ level in 132Te.

The results from this study were interpreted using shell model calculations, which used a 132Sn core and a ($\pi g_{7/2})^2$ and ($\nu h_{11/2})^{-2}$ configuration in the model space. Theoretical and experimental $B(E2)$ values are shown in Fig. 2 for some of the even-A Te isotopes. For the 4^+ level in 132Te, these calculations estimate a $B(E2; 4^+ \rightarrow 2^+)$ of 8.16 W.u., which would infer a $T_{1/2}$ of ~ 10 ps. This is in agreement with the measured value of $T_{1/2} \leq 40$ ps.

Fig. 2. Left: A comparison of the experimental and theoretical $B(E2)$ values from the 2^+_1, 4^+_1, and 6^+_1 yrast states in some of the even–even $Z = 52$ (Te) isotopes. Right: $B(E2; 6^+ \rightarrow 4^+)$ systematics across the $N = 80$ isotones, including the value for the 6^+ in 134Xe measured in this study. The $B(E2; 6^+ \rightarrow 4^+)$ value in 138Ce was taken from recent work by Alharbi et al. [6].

3.2. Half-life of the 6^+ level in 134Xe

Excited levels up to the tentatively assigned 8^+ were populated in 134Xe as shown in Fig. 3. Gates were made on the $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$
transitions (884 and 847 keV, respectively) in the HPGe, and on the $8^+ \rightarrow 6^+$ (861 keV) and $6^+ \rightarrow 4^+$ (405 keV) transitions in the LaBr$_3$(Ce) detectors. The relative times between these transitions were then projected to give the time spectrum in Fig. 3. Despite the low statistics due to the weak reaction channel, a half-life of 1075(155) ps was obtained by fitting a slope to the exponential tail of the distribution as shown in Fig. 3. This corresponds to a $B(E2; 6^+ \rightarrow 4^+)$ of 1.2 ± 0.2 W.u., in good agreement with the downward trend of the $B(E2; 6^+ \rightarrow 4^+)$ systematics across the $N = 80$ isotones as shown in Fig. 2.

![Fig. 3. Left: A partial level scheme for 134Xe. Right: The forward time spectrum of the 6^+ in 134Xe, showing the fit to the exponential tail. It was created using the 861 and 405 keV transitions in the LaBr$_3$(Ce) detectors.](image)

4. Summary and conclusion

A combination of LaBr$_3$(Ce) and HPGe detectors was used to measure the half-life of the 4^+ level in 132Te ($T_{1/2} \leq 40$ ps) and the 6^+ level in 134Xe ($T_{1/2} = 1075(155)$ ps). The latter value corresponds to a value of 1.2 ± 0.2 W.u. for the $B(E2; 6^+ \rightarrow 4^+)$, which is in good agreement with the trend of these systematics across the $N = 80$ isotonic region.

REFERENCES