STRUCTURE OF NEUTRON-RICH NUCLEI BEYOND $N = 50^*$

A. KORGULa, R. GRZYWACZb,c, K.P. RYKACZEWSKIc

aFaculty of Physics, University of Warsaw, 00-681 Warszawa, Poland
bDepartment of Physics and Astronomy, University of Tennessee
Knoxville, Tennessee 37996, USA
cPhysics Division, Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831, USA

(Received December 20, 2013)

The measurement of the β-decay scheme of ^{85}Ga triggered questions on the properties of the low-lying states in ^{85}Ge. In order to inspect the sensitivity of the results to the neutron $d_{5/2}$ and $s_{1/2}$ single-particle states, we performed an analysis of the level structure in the $N = 51$ ^{83}Ge and $N = 53$ ^{85}Ge isotopes.

DOI:10.5506/APhysPolB.45.223
PACS numbers: 23.20.Lv, 23.35.+g, 27.50.+e, 29.38.–c

1. Introduction

Decay studies of radioactive nuclei far away from the valley of beta-stability offer important test data and guidance for the further development of nuclear models of exotic nuclei. Particularly interesting is the evolution of single-particle levels with increasing neutron number in the ^{78}Ni region, which was analyzed, e.g., by Otsuka et al. [1–3]. Recently, experiments confirmed the postulated evolution of single-particle levels, for example the increasing energy of proton $p_{3/2} - p_{1/2}$ and $f_{7/2} - f_{5/2}$ spin–orbit partners splitting, when the $g_{9/2}$ neutron shell is filling up [4–6]. The crossing of the low lying $1f_{5/2}$ and $2p_{3/2}$ orbitals [5–7] in neutron-rich Cu nuclei is one of the consequences of this process. For neutron-rich nuclei beyond $N = 50$ in the ^{78}Ni region, shell-model calculations are using different values for the single-particle energy of the $3s_{1/2}$ neutron orbital with respect to the $2d_{5/2}$ near the Fermi surface [8, 9]. Furthermore, it is predicted that by adding a few protons and neutrons to the doubly magic ^{78}Ni core, deformation can

* Presented at the XXXIII Mazurian Lakes Conference on Physics, Piaski, Poland, September 1–7, 2013.
set up quickly [10]. In this work, we performed shell-model calculations for \(^{83,85}\text{Ge}\) in order to analyze the energies, spin and structure of \(N = 51\) \(^{83}\text{Ge}\) and \(N = 53\) \(^{85}\text{Ge}\). We mainly investigate the change of relative energies of neutron \(s_{1/2}\) and \(d_{5/2}\) orbitals.

2. Comparison of experimental results with shell-model calculations

In our recent work [11], we proposed a partial level scheme for the nuclei populated in the \(\beta\) and \(\beta-n\) decay of \(^{85}\text{Ga}\). The spins and parities were deduced from systematics and experimental information.

To inspect further the properties of low-lying excited states and ground state in \(^{85}\text{Ge}\), we performed shell-model calculations with a closed \(^{78}\text{Ni}\) core and the N3LO nucleon–nucleon interaction [12, 13]. The valence space used in the calculations contains all orbitals active outside \(^{78}\text{Ni}\) core, the \(1f_{5/2}, 2p_{3/2}, 2p_{1/2}, 1g_{9/2}\) for protons and \(2d_{5/2}, 3s_{1/2}, 1g_{7/2}, 2d_{3/2}, 1h_{11/2}\) for neutrons. The values of single-particles energies used in these analysis are reported in Table I.

<table>
<thead>
<tr>
<th>(\pi) orbital</th>
<th>(\epsilon) [MeV]</th>
<th>(\nu) orbital</th>
<th>(\epsilon) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1f_{5/2})</td>
<td>0.0</td>
<td>(2d_{5/2})</td>
<td>0.0</td>
</tr>
<tr>
<td>(2p_{3/2})</td>
<td>1.1</td>
<td>(3s_{1/2})</td>
<td>1.3</td>
</tr>
<tr>
<td>(2p_{1/2})</td>
<td>2.5</td>
<td>(1g_{7/2})</td>
<td>1.8</td>
</tr>
<tr>
<td>(1g_{9/2})</td>
<td>4.5</td>
<td>(2d_{3/2})</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1h_{11/2})</td>
<td>3.0</td>
</tr>
</tbody>
</table>

We also performed calculations for \(^{83}\text{Ge}\) \((N = 51)\) in order to understand better the evolution of level structure in odd-mass Ge isotopes. From the beta decay of \(I^\pi = 5/2^-\) \(^{83}\text{Ga}\) ground state [16], we expect to populate mainly \(3/2\), \(5/2\) and \(7/2\) states in \(^{83}\text{Ge}\). The results of the calculations are presented in Figs. 1 and 2 in comparison with the respective experimental level schemes [11, 14].

From the results of the shell-model calculations, we expect \(5/2^+, 1/2^+\) and \(3/2^+\) as the g.s. and first excited states in \(^{83}\text{Ge}\), respectively. The \(p_{3/2}\) and \(f_{5/2}\) protons are the most abundant in all wave functions. Additionally, the \(5/2^+\) ground state is dominated by one neutron on \(\nu d_{5/2}\) (90%), while the other two states have admixture with the \(\nu s_{1/2}\) or the \(\nu d_{3/2}\) orbitals, respectively. The wave function of the \(1/2^+\) level corresponds to one neutron...
Fig. 1. Experimental [14] and shell model excited states in 83Ge. All energies are given in keV. See the text for details.

Fig. 2. Experimental [11] and shell model excited states in 85Ge. All energies are given in keV. See the text for details.
Wave function of the excited states in ^{85}Ge nucleus predicted in the shell-model calculations; the values correspond in % the occupation of 4π and 3ν. See the text for details.

<table>
<thead>
<tr>
<th>I^π state</th>
<th>Orbital</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^+$</td>
<td>π</td>
<td>$1g_9/2$ 1f$_5/2$ 2p$_3/2$ 2p$_1/2$</td>
</tr>
<tr>
<td></td>
<td>ν</td>
<td>$1h_{11/2}$ 1g$_7/2$ 2d$_5/2$ 2d$_3/2$ 3s$_1/2$</td>
</tr>
<tr>
<td>$5/2^+$</td>
<td>π</td>
<td>$1g_9/2$ 1f$_5/2$ 2p$_3/2$ 2p$_1/2$</td>
</tr>
<tr>
<td></td>
<td>ν</td>
<td>$1h_{11/2}$ 1g$_7/2$ 2d$_5/2$ 2d$_3/2$ 3s$_1/2$</td>
</tr>
<tr>
<td>$3/2^+$</td>
<td>π</td>
<td>$1g_9/2$ 1f$_5/2$ 2p$_3/2$ 2p$_1/2$</td>
</tr>
<tr>
<td></td>
<td>ν</td>
<td>$1h_{11/2}$ 1g$_7/2$ 2d$_5/2$ 2d$_3/2$ 3s$_1/2$</td>
</tr>
<tr>
<td>$1/2^+$</td>
<td>π</td>
<td>$1g_9/2$ 1f$_5/2$ 2p$_3/2$ 2p$_1/2$</td>
</tr>
<tr>
<td></td>
<td>ν</td>
<td>$1h_{11/2}$ 1g$_7/2$ 2d$_5/2$ 2d$_3/2$ 3s$_1/2$</td>
</tr>
</tbody>
</table>

on the $\nu d_{5/2}$ (52%) and $\nu s_{1/2}$ (43%), while the $3/2^+$ state to $\nu d_{5/2}$ (56%) and $\nu d_{3/2}$ (26%). The calculated energy for all states is higher than the experimental results (see Fig. 1). In order to reproduce the experimental value of the $I^\pi = 1/2^+$, $E^* = 248$ keV level in ^{83}Ge, we modified the neutron $s_{1/2}$ single-particle energy to the value $E_{\nu s_{1/2}} = 0.7$ MeV. Note that decreasing the energy difference between $\nu d_{5/2} - \nu s_{1/2}$ to 0 creates a $1/2^+$ state as the ground state and $5/2^+$ at ~ 100 keV in ^{83}Ge, which does not agree with the experiment results.

The addition of two neutrons to ^{83}Ge reduces the predicted energy between the first $3/2^+$ and $5/2^+$ states in ^{85}Ge to 231 keV, and changes the order of the states. Furthermore, the first $1/2^+$ state in ^{85}Ge is expected as the fourth excited state at $E^* = 778$ keV (Fig. 2). This can indicate that the $\nu s_{1/2}$ single-particle energy used in the calculation (see Table I) is too high. Using the reduced value of $E_{\nu s_{1/2}} = 0.7$ MeV did not influence signifi-
cantly the values of the predicted energy of excited states in 85Ge; only the sequence of the states is slightly different: now the second $3/2^+$ is expected 100 keV above the first $1/2^+$.

The inspection of the $3/2^+$, $5/2^+$ and $1/2^+$ wave function for 85Ge (Table II) shows that these states belong to the $\nu d_{5/2}^3$ multiplet with about 15% admixture of the $\nu s_{1/2}$ state. Changing the neutron single-particle $d_{5/2} - s_{1/2}$ energy gap from 1.3 MeV to zero pushes down the predicted energy for the first $1/2^+$ level from 800 keV to 690 keV. Experimental results point towards the lower value of 250 keV for the same state [11, 17].

3. Summary

We have investigated the low-lying structure of the very neutron-rich 83,85Ge by means of shell-model calculations. We propose $(3/2^+)$ as the ground state for 85Ge on the basis of the experimental tentative assignment $(3/2^+, 5/2^+)$, of the two sets of shell-model calculations from this work and from [11], and of systematics of $N = 53$ isotones [18]. The shell-model calculations shown in Fig. 2 reproduce the experimental trend in low lying excited states in 85Ge. The addition of two neutrons to the $N = 51$ 83Ge in the $\nu d_{5/2}$ orbital, changes the ordering of the low-lying levels: the first excited state in 85Ge is no longer $1/2^+$ as in 83Ge, but $(5/2^+)$. The predicted position of the first $1/2^+$ level in 85Ge is not very sensitive to the energy difference of the $\nu d_{5/2} - \nu s_{1/2}$ orbitals because of the admixed configuration of the states involved. We also need to keep in mind that in this region of the chart of nuclei, low-excited states start to show a degree of collectivity [18].

We wish to acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) staff for their assistance with the experiments and for providing excellent quality neutron-rich radioactive beams. This research is sponsored by the Office of Nuclear Physics, U.S. Department of Energy and supported under U.S. DOE grants DE-AC05-00OR22725 and DE-FG02-96ER40983 National Nuclear Security Administration Grant No. DE-FG52-08NA28552, DE-FC03-03NA00143, and the National Science Centre of the Polish Ministry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476.

REFERENCES