BETA DECAY OF THE MOST NEUTRON-RICH ISOTOPES CLOSE TO 78Ni*

C. Mazzocchia, A. Korgula, K.P. Rykaczewskib, R. Grzywaczc,b, P. Bączyka, C.R. Binghamc,b, N.T. Brewerd, C.J. Grossb, C. Jostc, M. Karnya,e, M. Madurgac, A.J. Mendez IIb, K. Miernikb,a, D. Millerc, S. Padgettc, S.V. Paulauskasc, D.W. Stracenerb, M. Wolińska-Cichockab,e,f

aFaculty of Physics, University of Warsaw, Warszawa, Poland
bPhysics Division, Oak Ridge National Laboratory, Oak Ridge, USA
cDepartment of Physics and Astronomy, University of Tennessee, Knoxville, USA
dDepartment of Physics and Astronomy, Vanderbilt University, Nashville, USA
eOak Ridge Associated Universities, Oak Ridge, USA
fHeavy Ion Laboratory, University of Warsaw, Warszawa, Poland

(Received January 29, 2015)

In an experiment at the HRIBF, Oak Ridge National Laboratory, USA, we have investigated excited states in 86Se populated in the beta-decay of 86As. Several new transitions were identified. Preliminary results are presented.

DOI:10.5506/APhysPolB.46.713
PACS numbers: 23.40.–s, 23.20.lv, 27.50.+e

1. Introduction

The study of the structure of excited states in the most neutron-rich selenium isotopes, in particular 86Se, has attracted considerable attention in recent years both from experiment and theory point of views [1, 2]. With the exclusion of very early work in which the first excited 2^+ state was identified through beta-decay of 86As [3], later studies focused on higher-spin excited states populated in prompt fission. Here, we report on the investigation of low-lying excited states in 86Se populated in the beta decay of 86As.

* Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear Landscape”, Zakopane, Poland, August 31–September 7, 2014.
2. Experiment

A neutron-rich radioactive beam of mass 86 was produced in the proton-induced fission of 238U. A proton beam accelerated to 54 MeV by the ORIC cyclotron at the HRIBF facility, Oak Ridge-TN, USA [4], impinged on a 238UC$_x$ target. The fission fragments diffused out of the target and were ionized to charge state $+1$ in the IRIS-2 ion source. Ion source chemistry was used to suppress isobaric contaminants and obtain almost pure germanium and arsenic beams [5]: H$_2$S gas was added to the ion source, and molecular beams of GeS$^+$ and AsS$^+$ were extracted from the ion source. Two-stage mass separation at mass $A + 32$ and A, respectively, allowed for suppression of the vast majority of isobaric contaminants. The purified isobaric radioactive beam was then directed to the measuring station LeRibss, where the detection set-up was installed. In figure 1, a schematic representation of the radioactive beam production and purification is shown, see also [6].

Fig. 1. Schematic view of the experimental method used at the HRIF to produce almost pure beams of neutron-rich germanium and arsenic isotopes [4].

The beam was implanted onto a movable tape in the center of the detection set-up. The tape was utilized to periodically remove the activity from the implantation point, thus suppressing longer-lived daughter activities. The detection set-up surrounded the implantation point and consisted
of two plastic scintillators to detect beta-particles and 4 clover detectors in close geometry for gamma-ray detection. The beta efficiency amounted to about 50%, while the gamma efficiency was 6% at 1.3 MeV. All the signals were read-out by a fully digital data acquisition system [7, 8].

3. Results

The investigation of beta-coincident gamma-rays from the decay of 86As allowed for a clear identification of several new transitions in 86Se at 694.5(3), 839.3(3), 1504.0(3), 1667.9(5) and 3531.9(5) keV. A few more transitions were tentatively assigned to deexcitations in 86Se on the basis of weak beta–gamma–gamma coincidences. These are the 973.2(5), 1399.3(5), 1943.8(5) and 3025.4(5) keV transitions. The 973 and 1399 keV lines were assigned also on the basis of level-energy differences and of the half-life value of 0.62(24)s for the 973 keV transition ($T_{1/2}^{86}$As) = 861(64) ms). Moreover, the 1399 keV line was observed in the beta-delayed neutron–gamma decay of 87As [9]. With the help of beta–gamma–gamma coincidences, a preliminary partial level scheme of 86Se could be reconstructed, see figure 2.

![Partial level scheme of 86Se as obtained in this work.](image-url)
Previous work of Kratz et al. [3], Jones et al. [2] and Czerwiński et al. [1] determined spin and parity for the 704, 1567 and 2072 keV excited states in 86Se, respectively. If we take into account the observation of the cross-over transition deexciting from the 1398.6 level directly to the $I^\pi = 0^+$ ground state, tentative $I^\pi = (2^+)$ can be inferred to this level.

4. Summary

In summary, we have measured the partial level scheme of 86Se as populated in the beta decay of 86As. Several new beta-delayed gamma-transitions were identified and the properties of new excited states in 86Se were deduced.

We wish to acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) staff for their assistance with the experiments and providing excellent quality neutron-rich radioactive beams. This research is sponsored by the Office of Nuclear Physics, U.S. Department of Energy and supported under US DOE grants DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40983 (UTK), DE-AC05-06OR23100 (ORAU), and DE-FG05-88ER40407 (Vanderbilt); National Nuclear Security Administration Grant No. DEFC03-03NA00143 and the National Science Centre of the Polish Ministry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476.

REFERENCES