
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 8

STRESS-ENERGY TENSOR
OF THE QUANTIZED MASSIVE FIELDS
IN SPATIALLY-FLAT D-DIMENSIONAL

FRIEDMANN–ROBERTSON–WALKER SPACETIMES

Jerzy Matyjasek

Institute of Physics, Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

jurek@kft.umcs.lublin.pl

Dariusz Tryniecki

Połaniecka 2, 22-100 Chełm, Poland
dariusz.tryniecki@gmail.com

(Received March 2, 2016)

We construct and investigate the general stress-energy tensor, T b
a , of

the quantized massive field in the D-dimensional spatially-flat Friedmann–
Robertson–Walker spacetime within the framework of the adiabatic ap-
proximation. The behavior of T b

a for 4 ≤ D ≤ 12 is examined for the
exponential (in the conformal time) and power-law cosmological models
with the special emphasis put on the conformal and minimal curvature
coupling. It is shown that time component of the stress-energy tensor is
proportional to the spatial component and that the proportionality con-
stant can be calculated without the detailed knowledge of the tensor. In
the exponential expansion in even dimensions, the energy density of the
quantized field identically vanishes for the conformally coupled fields and
is positive for the minimal coupling. The analogous formulas for the odd-
dimensional spacetimes do not exhibit this simple behavior and the energy
density is positive for physical values of the coupling. The relations of the
adiabatic method to the Schwinger–DeWitt approach is briefly discussed.
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1. Introduction

Despite our everyday experience, gravitation is still the most elusive
of all fundamental interactions. It, of course, does not mean that at the
classical level we have no deep and satisfactory understanding of gravita-
tion. Quite the contrary, numerous tests that have been carried out to date,
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clearly show that General Relativity satisfactorily describes gravitational
phenomena, and that the description of the spacetime as the differentiable
manifold endowed with the metric tensor and additional structures is valid
unless the Planck regime is approached [1]. However, our understanding
of the gravitational interaction is severely limited as there is no quantum
theory of gravity. Instead, we have various approaches and each of them
has its own merits and drawbacks. Consequently, an approach has been
proposed in which the spacetime is treated classically whereas the matter
fields are quantized. Especially interesting in this regard is the influence of
the quantized fields upon the spacetime geometry in a process, which has
been figuratively called “the back reaction on the metric”. This simple idea
evolved into the mature theory, with its own techniques, methods, funda-
mental results and folklore [2–4]. Perhaps the most important result of the
quantum field theory in curved background is the prediction that black holes
evaporate [5, 6].

The physical content of the quantum field theory in curved background is
encoded in its most important observable: the (renormalized) stress-energy
tensor calculated in suitably chosen state. Such a tensor serves as the source
term (the right-hand side) of the semiclassical Einstein field equations, allow-
ing, in principle, to study the evolution of the system unless the quantum
gravity effects become dominant. Within the semiclassical approach, one
can address quite a number of important and physically interesting prob-
lems, such as, for example, the physics of the quantum-corrected black holes
and their interiors, influence of the quantized fields on the extreme or close to
extreme black holes or the problem of isotropization of cosmological mod-
els, to name a few. On the other hand, needless to say that most of the
researches are restricted to D = 4. For higher-dimensional results, see e.g.,
Refs. [7–12] and references cited therein.

It is evident that the semiclassical Einstein field equations cannot be
trusted at the singularity and its closest vicinity as the full analysis of this
problem requires quantum gravity or even more fundamental theory. On the
other hand, the semiclassical analysis can teach us a lot about the influence
of the quantized fields on the black hole interior and about the tendency of
the changes of the background geometry as the singularity is approached. Of
course, from the point of view of the present work, the most important are
the results obtained in cosmology (see e.g., Refs [13–27] and the references
cited therein) and in the black hole interiors [28–33].

Recent findings in the Kaluza–Klein-type theories, string theory and
its low-energy limit, various large-dimensional scenarios, such as, for exam-
ple, the braneworld scenario suggest that our physical world has more than
4 dimensions. This opens new interesting possibilities in the cosmological
context.
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There are two main approaches that may be singled out: (i) the numer-
ical calculations of the mean value of the stress-energy tensor in some phys-
ically motivated state/states in a fixed background, and (ii) construction
of the analytical approximations to the stress-energy tensor of the quan-
tized field that depends functionally on the metric tensor or at least on a
wide class of metrics. This distinction is not sharp and there are some hy-
brid approaches which we collectively put into (i). The second approach is
particularly appealing and we intend to construct the general form of the ap-
proximate stress-energy tensor of the quantized fields. Having such a tensor
at one’s disposal, it is possible to solve the semiclassical Einstein field equa-
tions in a self-consistent way. Unfortunately, regardless of the particular
method adapted, the calculations of the stress-energy tensor of the quan-
tized fields in a curved background are very complicated, long, error-prone
and time consuming. It is simply because the bilinear objects needed in its
construction are the operator-valued distributions and the whole problem
is infected with unavoidable infinities. The structure of the infinite terms
depends on the dimension of the differentiable manifold and the type of the
quantum fields. (See e.g., Ref. [4, 34] and references therein.) Moreover,
the computational complexity rapidly grows with dimension, making the
problem practically intractable in larger dimensions.

One of the most versatile approaches in the quantum field theory in
curved background is the adiabatic regularization [15–20, 24–27] (see also
[35–37]). The adiabatic calculations are based on the higher-order WKB
approximation to the mode functions and their derivatives and subsequent
integration (summation) of the functions thus constructed. It is particularly
well-suited to calculations of the energy density and pressures in the higher-
dimensional spatially-flat or open FRW model as well as in the anisotropic
cosmologies. (In the k = 1 case, one has summation of the mode functions
instead of integration, which is an obstacle in constructing the final compact
expression.)

Of course, the adiabatic approach is not the only one available for con-
structing the stress-energy tensor. Equally powerful is the Schwinger–DeWitt
method, which is based on the coefficients of the heat-kernel expansion
[12, 25–27, 32, 33, 38–43]. It can be used in any spacetime provided the
Compton length associated with the mass of the field, λC, is much smaller
that the characteristic radius of the curvature, L, i.e., λC/L� 1.

It has been recently demonstrated that the Schwinger–DeWitt and adia-
batic approaches give precisely the same results in the Friedmann–Robertson–
Walker spacetime [25]. The Schwinger–DeWitt approach is even more gen-
eral, but because of the geometric terms that have to be constructed, its
applicability in quantum field theory in curved background is practically
limited to D = 4. It should be noted that the equality of results obtained
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within the Schwinger–DeWitt and adiabatic frameworks must not be taken
for granted. Indeed, it is expected that the discussed methods give the Green
functions with the same structure of singularities in the coincidence limit,
but this does not mean that the functions are the same.

Our aim is to construct and study the regularized stress-energy ten-
sor of the quantized massive scalar field in the spatially-flat Friedmann–
Robertson–Walker spacetime. Here, we shall restrict ourselves to 4≤D≤12,
with the special emphasis put on the power-law and de Sitter cosmologies.
Of course, the multidimensional cosmological models will be influenced by
the quantized fields via the semiclassical Einstein field equation and the
knowledge of the general form of the source term gives a unique opportunity
to analyze and compare the evolution of the models for various dimensions.
This will be the subject of the subsequent papers.

The paper is organized as follows. The detailed calculations of the com-
ponents of the stress-energy tensor expressed in terms o the WKB-mode
functions are presented in Sec. 2. In Sec. 3, the general formulas are used in
construction of the T ba of the quantized massive field in the power-law cosmo-
logical models and for the exponentially expanding (in conformal time) scale
factor. The last section contains a brief discussion of the Schwinger–DeWitt
method. Throughout the paper, the natural units are chosen (except for the
short discussion of the range of validity of the approximation) and we follow
the Misner, Thorne and Wheeler conventions [44].

2. General equations

Let us consider the neutral massive scalar field, satisfying the covariant
Klein–Gordon equation inD-dimensional spatially flat Friedmann–Robertson–
Walker spacetime

2φ−
(
m2 + ξR

)
φ = 0 , (1)

where m is the mass of the field, R is the curvature scalar and ξ is the
(arbitrary) curvature coupling constant. Although there are no a priori
restrictions on the curvature coupling parameter, the two particular values
of ξ are of principal interest: the conformal and minimal coupling, for which
ξ = (D−2)/(4D−4) and ξ = 0, respectively. Other, more exotic values of ξ,
are considered to be of lesser importance. The spatially-flat line element can
be written in the form

ds2 = a2(η)
(
−dη2 + δijdx

idxj
)
, (2)

where i, j = 1, . . . , D − 1 and η is the conformal time.
Our first task is to construct the solutions of the scalar field equation.

We start the calculations by putting

φ(x) = a−(D−2)/2µ(x) (3)
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into Eq. (1) and subsequently decomposing the function µ(x) as

µ(x) = (2π)−(D−1)/2

∫
dD−1k

(
µk(η)e

ikaxaak + µ∗k(η)e
−ikaxaa†k

)
, (4)

where ak and a†k are the annihilation and creation operators. The functions
µk and µ∗k are normalized in such a way that the Wronskian condition

µkµ̇
∗
k − µ̇kµ∗k = i (5)

is satisfied, where a dot denotes differentiation with respect to the conformal
time. This ensures that the canonical commutation relations of the field
operators and the conjugate momenta give the standard relations for the
operators ak and a†k

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0 ,[

ak, a
†
k′

]
= δ

(
k − k′

)
. (6)

The ground state of the field is defined as

ak|0〉 = 0 , (7)

i.e., we choose the functions µk(η) in Eq. (4) to be positive-frequency solu-
tions of the equation

µ̈k +
(
k2 +m2a2

)
µk + (ξ − ξc)

(
2(D − 1)

ä

a
+ (D − 4)(D − 1)

ȧ2

a2

)
µk = 0 ,

(8)
where k =

√
k2

1 + · · · k2
D−1 and ξc = (D − 2)/(4D − 4).

Thus far our analysis has been exact. Unfortunately, (8) is rather com-
plicated and, in general, it cannot be solved in terms of the known func-
tions. It is natural that one should either treat the problem numerically
(that is beyond the scope of the present paper) or look for reasonable ap-
proximations. Our method of choice is the WKB approximation, which
allows us to construct the adiabatic solutions iteratively. This approach
defines the adiabatic vacuum |0〉A. The adiabatic approach can be used
in the Friedmann–Robertson–Walker spacetime if the chain of conditions
ȧ/a, ä/a, · · · �

√
k2 +m2a2 for 0 ≤ k <∞ is satisfied [3].

The WKB mode functions Ωk(η) are defined as

µk =
1√
2Ωk

e−i
∫
Ωkdη (9)
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and their form guarantees that the Wronskian condition (5) is automatically
satisfied. The resulting equation that is satisfied by Ωk is given by

Ω2
k = k2 +m2a2 − Ω̈k

2Ωk
+

3Ω̇2
k

4Ω2
k

+

(
ξ − D − 2

4(D − 1)

)(
2(D − 1)

ä

a
+ (D − 4)(D − 1)

ȧ2

a2

)
. (10)

The WKB solution can be constructed iteratively assuming that the function
Ωk can be expanded

Ωk = ω0 + ω2 + ω4 + · · · (11)

with the zeroth-order solution taken to be ω0 =
√
k2 +m2a2. The role of the

small parameter is played by number of differentiations with respect to the
conformal time. To simplify the calculations and to keep track of the order
of terms in complicated expansions, one can introduce the (dimensionless)
parameter ε by means of the formulas

d

dη
→ ε

d

dη
and Ωk =

∑
i=0

ε2iω2i , (12)

and collect the resulting terms with the like powers of ε. The parameter ε
should be set to 1 at the final stage of calculations. For example, ω2 is
given by

ω2 =
α
[
(D − 4)ȧ2 + 2aä

]
8a2 (k2 +m2a2)1/2

−
m2
(
ȧ2 + aȧ

)
4 (k2 +m2a2)3/2

+
5m4a2ȧ2

8 (k2 +m2a2)5/2
, (13)

where
α = 4ξ(D − 1)− (D − 2) . (14)

The higher-order functions ω2i (i ≥ 2) can be constructed term-by-term by
solving algebraic equations of ascending complexity. The results presented
in this paper require the 14th-order WKB approximation to the function Ωk,
i.e.,

Ωk =

7∑
i=0

ω2i . (15)

Note that the knowledge of Ωk is sufficient to construct the vacuum polar-
ization [27]. Indeed, since

|µk|2 =
1

2Ωk
, (16)
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it is clear that the problem reduces to expanding the function Ω−1
k in terms

of the number of derivatives (parameter ε) to some definite order and inte-
gration of the thus constructed result over k with the appropriate measure.

Although interesting in its own right, the function Ωk is only a building
block of a more important quantity — the stress-energy tensor of the quan-
tized field. The general form of Tik of the (classical) massive scalar field is
given by

Tik = ∇iφ∇kφ− 1
2gik

(
∇aφ∇aφ+m2φ2

)
+ ξGabφ

2 + ξgik2φ
2 − ξ∇i∇kφ2 ,

(17)
where Gab is a D-dimensional Einstein tensor. Now, let us analyze the T00

component, which for the line element (2) is given by

T00 =
1

2
φ̇2+

1

2
k2φ2+

1

2
m2a2φ2+

1

2
ξ(D−2)(D−2) ȧ

2

a2
+2ξ(D−1) ȧ

a
φφ̇ . (18)

It should be noted that it suffices to find only the T00 component as the
spatial components can easily be calculated from the conservation equation.
Indeed, from the conservation equation ∇aT ab = 0, one has

T 1
1 = ... = TD−1

D−1 = T 0
0 −

1

D − 1

a

ȧ
Ṫ 0

0 . (19)

Here, we shall proceed in a different manner and construct the trace of the
tensor

T ii =
1
2αφ.aφ

.a − 1
2βm

2φ2 + 1
2αξRφ

2 , (20)

where
β = D − 4ξ(D − 1) (21)

and

R = 2(D − 1)

(
ä

a3
− ȧ2

a4

)
+ (D − 1)(D − 2)

(
ȧ2

a4

)
. (22)

Other methods will be used as an useful check of the calculations.
Substituting (3) into (18) and (20), and subsequently making use of the

relations

µkµ
∗
k =

1

2Ωk
, (23)

µkµ̇
∗
k + µ̇kµ

∗
k = − Ω̇k

2Ω2
k

(24)

and

µ̇kµ̇
∗
k =

1

2
Ωk +

Ω̇2
k

Ω3
k

, (25)
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one obtains for the energy density (ρ = −T 0
0 ) the following compact formula:

ρ =
1

N(D)

∫
dk kD−2

{
Ωk
2

+
1

2Ωk

[
k2 +m2a2 − ξ

(
2− 3D +D2

)
h2
]

−(D − 1)ξh
Ω̇k
Ω2
k

+
1

2Ωk

[
Ω̇k
2Ωk

+
1

2
(D − 2)h

]2}
, (26)

where

N(D) = (4π)(D−1)/2Γ

(
D − 1

2

)
aD , (27)

h = ȧ/a and Γ (x) is the Euler Gamma function. Similarly, for the trace of
the tensor, one has

T ii =
1

N(D)

∫
dk kD−2

{
1

2Ωk

[
k2α− 1

4
(D−2)2αh2 +

(
Rαξ− 1

2
βm2

)
a2

]

−1

2
αΩk−

1

2Ωk

[
1

2
(D−2)hαΩ̇k

Ωk
+
1

4
α
Ω̇2
k

Ω2
k

]}
. (28)

Now, making use of the standard formulas describing the division of the
power series

∞∑
q=0

Aqε
q

∞∑
q=0

Bqεq
=

1

B0

∞∑
q=0

Cqε
q , (29)

where

Cq = −
1

B0

q∑
p=1

Cq−pBp −Aq (30)

and raising to powers  ∞∑
q=0

Aqε
q

n

=
∞∑
q=0

Bqε
q , (31)

where

B0 = An0 , Bq =
1

qA0

q∑
p=1

(pn− q − p)ApBq−p for m ≥ 1 , (32)
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one obtains the adiabatic expansion for the energy density ρ and the trace
of the stress-energy tensor. Each term in this rather complicated expansions
contains an integral over k of kp/

(
k2 +m2a2

)q/2 which is finite for q > p+1.
Consequently, it can be shown that for a given dimension D, the terms up
to the adiabatic order 2bD/2c diverge, where bxc denotes the floor function,
i.e., it gives the largest integer less than or equal to x. This statement needs
clarification: Of course, not all the terms of a given adiabatic order lead to
the divergent integrals. The regularization prescription, however, requires
to subtract all the terms of a given adiabatic order if at least one of them is
divergent. Finally, making use of the formula

∞∫
0

dk
kp

(k2 +m2a2)q/2
=

1

2
(ma)1+p−qB

(
1 + p

2
,
q − p− 1

2

)

=
1

2
(ma)1+p−q

Γ
(

1+p
2

)
Γ
(
q−p−1

2

)
Γ
( q

2

) , (33)

where B is the beta function, one can calculate the stress-energy tensor to
the required adiabatic order. Moreover, using precisely the same algorithm,
the next-to-leading and higher-order terms of the stress-energy tensor can
be constructed. Here, however, we shall concentrate on the leading order
contribution to the stress-energy tensor defined by the WKB series, which
is, of course, the most important.

3. The stress-energy tensor

Using the adiabatic method, we have calculated the stress-energy ten-
sor of the quantized massive scalar field in the spatially-flat Friedmann–
Robertson–Walker spacetime for 4 ≤ D ≤ 12. Because of the complexity
of the calculations, we used various methods and computational strategies,
and each component of T ba has been calculated at least 3 times. The results
are stored in Mathematica syntax and can easily be converted into any other
format. Since the general results valid for any scale factor are not especially
illuminating, to avoid unnecessary proliferation of complex formulas, we do
not present them here, instead, we shall discuss some special cases of phys-
ical interest. The general results can be obtained on request from the first
author.

Before we start to discuss the stress-energy tensor, let us briefly investi-
gate the classical Einstein field equations. For the spatially-flat line element,
one has

1

2
(D − 2)(D − 1)

ȧ2

a4
=

ρc

MD−2
Pl

(34)
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and

−1

2
(D − 2)

[
(D − 5)

ȧ2

a4
+ 2

ä

a3

]
=

pc

MD−2
Pl

, (35)

whereMPl is the D-dimensional (reduced) Planck mass and the pressure, pc,
is related to the energy density, ρc, through the equation of state pc = κρc.
From (34), one has for a classical background

H2 ∼ ρc

MD−2
Pl

, (36)

where we have introduced the (proper time) Hubble parameter H = ȧ/a2.

3.1. The power-law cosmologies

Now, let us limit ourselves to the class of the power-law cosmologies with
the scale factor

a(η) =

(
η0

η

)n
. (37)

For the power-law cosmologies, the scale factor expressed in terms of the
proper time assumes simple form1

a(t) =

(
t

t0

)β
, β =

n

n− 1
. (38)

Since the conformal time is related to the proper time through dt = a(η)dη,
it is relatively easy to construct the stress-energy tensor in the coordinates
(t, x1, . . . , xD−1) once the energy density (26) is known. Although our dis-
cussion will be carried out in the former representation, reinterpretation of
the results within the context of the proper time scale factor is unproblem-
atic.

From the Einstein field equations (for D ≥ 4 and n 6= 0), one has

n = − 2

D − 3 + (D − 1)κ
. (39)

For the scale factor (37), the stress-energy tensor of the quantized massive
fields considerably simplifies. However, before we go further, let us ana-
lyze how far one can go without the exact form of the stress-energy tensor.

1 The notation has been slightly abused: in this section, α and β have a different
meaning than α and β defined in the previous section.
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First, observe that on the general ground, the energy density of the massive
quantum field has the following form [27]

ρ =


HD+2

m2
fD(n, ξ) for even D ,

HD+1

m
fD(n, ξ) for odd D ,

(40)

where, for a given dimension, fD(n, ξ) is function of the exponent n and
the curvature coupling, ξ. There is a simple explanation of this fact: the
adiabatic expansion is, in fact, an expansion in the number of derivatives
and this together with (37) gives (40). Now, making use of the conservation
equation, one has

α = −T
x
x

T 0
0

= − η

n(D − 1)

d

dη
lnT 0

0 − 1 , (41)

where T xx ≡ p is the spatial component of the stress-energy tensor and
T 0

0 ≡ −ρ. Finally, substitution of (40) into (41) gives the desired result

α =


3n− (D + 2)

(D − 1)n
for even D ,

2n− (D + 1)

(D − 1)n
for odd D .

(42)

Since α is constant for a given n and D, the pressure and the energy density
of the quantized field are related by a simple equation state. The energy
density and pressure have opposite signs for 0 < n < (D + 2)/3 and 0 <
n(D + 1)/2 for D even and odd, respectively.

The parameter α can be easily related to the parameter κ of the equation
of state describing the classical source. Making use of Eqs. (39) and (42),
one has

α =

{
1
2 [D + κ(D + 2)] for even D ,

1
2 [κ− 1 +D(κ+ 1)] for odd D .

(43)

From (43), one sees that the parameter α for even D is the same as the
parameter for D+1. A few important special cases are collectively listed in
Table I. It should be noted that for κ = −1, one has still α = −1. Similarly,
for a phantom universe governed by the equation of state with −(1+ δ) and
(δ > 0), the parameter α is even more exotic.
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TABLE I

The dimensional dependence of the parameter α for a few exemplary forms of
the classical matter. The equation of state governed by α is calculated for the
radiation-dominated, dust, de Sitter and phantom (δ > 0) universe.

κ 1/(D − 1) 0 −1 −(1 + δ)

α (even D) D2+2
2(D−1)

1
2D −1 −1− 1

2 (D + 2)δ

α (odd D) D2−D+2
2(D−1)

1
2 (D − 1) −1 −1− 1

2 (D + 1)δ

It is instructive to compare the energy density of the quantized field and
the background energy density. From (36) and (40), one has

ρ

ρc
∼


HD

m2MD−2
Pl

for even D ,

HD−1

mMD−2
Pl

for odd D .

(44)

Since the adiabaticity condition can be written as m � H, one concludes
that ρc � ρ unless H �MPl.

Similar estimates follow from the condition λC/L � 1. Indeed, taking
L ∼ K−1/4, where K is the Kretschmann scalar

K = RabcdR
abcd = 2(D − 1)

[
D
ȧ4

a8
− 8

ȧ2ä

a7
+ 2

ä2

a6

]
, (45)

in the power-law cosmological model, one has K ∼ H4 and hence H � m.
Now, let us return to the stress-energy tensor calculated within the

framework of the adiabatic method. The expressions describing the en-
ergy density of the minimally and conformally coupled quantized field for a
power-law cosmology are relegated to Appendix. Here, we shall concentrate
on a few interesting physical cases. First, observe that for the radiation-
dominated cosmology with the equation of state of the form of p = ρ/(D−1),
the equation of state of the quantized field is “very stiff” (with the “stiffness”
increasing with D) and for a given dimension, the energy density for ξ = 0
and ξ = ξc is of the same sign. More detailed results are presented for
4 ≤ D ≤ 8 in Table II.

For the matter-dominated universe (κ = 0), the equation of state of the
quantized fields is still of the “stiff-type” and the sign of the energy density
depends on dimension (see Table III). For example, for D = 4 and D = 5,
the energy density is always negative.
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TABLE II

The dimensional dependence of the characteristics of the minimally (ξ = 0)
and conformally coupled (ξ = ξc) quantized field in the spatially flat radiation-
dominated (κ = 1/(D−1)) universe. The pressure has the same sign as the energy
density (α > 0).

D κ n α β ξ = 0 ξ = ξc

4 1/3 −1 3 1/2 ρ > 0 ρ > 0
5 1/4 −2/3 11/4 2/5 ρ > 0 ρ > 0
6 1/5 −1/2 19/5 1/3 ρ < 0 ρ < 0
7 1/6 −2/5 11/3 2/7 ρ < 0 ρ < 0
8 1/7 −1/3 33/7 1/4 ρ > 0 ρ > 0

TABLE III

The dimensional dependence of the characteristics of the minimally (ξ = 0) and
conformally coupled (ξ = ξc) quantized field in the spatially flat matter-dominated
(κ = 0) universe. The pressure has the same sign as the energy density (α > 0).

D n α β ξ = 0 ξ = ξc

4 −2 2 2/3 ρ < 0 ρ < 0
5 −1 2 1/2 ρ < 0 ρ < 0
6 −2/3 3 2/5 ρ > 0 ρ < 0
7 −1/2 3 1/3 ρ > 0 ρ < 0
8 −2/5 4 2/7 ρ < 0 ρ > 0

For κ = −1, one has n = 1, α = −1 and β = ∞. The energy density is
always negative for the minimal coupling and positive for the conformal one.
The background configuration in this case corresponds to the cosmological
constant, which, in turn, is modified by the quantized field obeying the
simple relation p = −ρ.

3.2. The exponential expansion

In this section, we shall briefly analyze the cosmological models with the
scale factor

a(η) = exp(η/η0) . (46)

This model represents the linear expansion in the proper time. Now, the
classical background is a solution of the Einstein field equations with the
source term satisfying the equation of state with

κ = −D − 3

D − 1
. (47)
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On the other hand, the equation of state of the quantum matter is charac-
terized by

α =


3

D − 1
for even D ,

2

D − 1
for odd D .

(48)

For the even dimensions, the stress-energy tensor simplifies considerably
and can be written

ρ =
HD+2

m2
FD(ξ) , (49)

where

F4 = −(66ξ − 13)(1− 6ξ)2

192π2
, (50)

F6 = −5(33ξ − 7)(1− 5ξ)3

36π3
, (51)

F8 = −63(222ξ − 49)(3− 14ξ)4

20480π4
, (52)

F10 = −4(84ξ − 19)(2− 9ξ)5

15π5
, (53)

F12 = −34375(474ξ − 109)(5− 22ξ)6

24772608π6
. (54)

Inspection of the above equations shows that each F -function contains a
factor (ξ−ξc)

D/2, where ξc = (D−2)/(4D−4), and consequently ρ vanishes
for a conformally coupled fields. It is also zero for a more exotic values of the
parameters ξ. On the other hand, the energy density is positive for minimally
coupled fields.

The analogous formulas for the odd-dimensional spacetimes do not ex-
hibit this simple behavior and will be not presented here. However, the
components of the stress-energy tensor for ξ = 0 and ξ = ξc can easily
be obtained from the functions listed in Appendix. Indeed, taking a limit
n→∞, one obtains

ρ =
HD+1

m
FD(ξ) , (55)

where FD = limn→∞ f(n, ξ). Equally well one can take n→ −∞ limit. The
functions FD at ξ = 0 and ξ = ξc are positive. Finally, observe that due to
α > 0, the pressure-component of the stress-energy tensor of the quantized
massive field has to be always positive.
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4. Final remarks

In this paper (which can be thought of as a sequel to [27] and a nat-
ural generalization of the results presented in Refs. [24–26]), we have cal-
culated the stress-energy tensor of the quantized massive scalar field in the
spatially-flatD-dimensional Friedmann–Robertson–Walker spacetime. Thus
far, however, the main emphasis has been on the adiabatic approximation,
which has proven to be an excellent tool in this context. There is, how-
ever, equally powerful method, which relies heavily on the purely geomet-
ric objects constructed form the (differential) curvature invariants. In the
Schwinger–DeWitt method, the stress-energy tensor is constructed form the
one-loop effective action in a standard way

T ab =
2√
−g

δ

δgab
W

(1)
eff , (56)

where
W

(1)
eff =

1

2(4π)D/2

∫
dDx
√
g

[ak]

(m2)k−D/2
Γ

(
k − D

2

)
(57)

and k = bD2 c + 1. Here, [ak] is the coincidence limit of the kth Hadamard–
DeWitt coefficient constructed from the Riemann tensor, its covariant deriv-
atives up to (2k− 2)-order and contractions. Unfortunately, the complexity
of the stress-energy tensor rapidly grows with k and the dimension of the
spacetime. Nevertheless, we have calculated the components of the stress-
energy tensor for 4 ≤ D ≤ 8 that, in turn, required knowledge of [a3] (for
D = 4, 5), [a4] (for D = 6, 7) and [a5] (for D = 8), and their functional
derivatives with respect to the metric. In all cases, we obtained the same re-
sults as those obtained within the framework of the adiabatic approximation,
as expected.

5. Appendix

Here, we shall concentrate on the physical values of the parameter ξ,
namely the minimal coupling (ξ = 0) and the conformal coupling (ξ =
(D − 2)/(4D − 4) ). In the first case, the energy density is described by

ρ =
HD+2

m2
fD(n, ξ = 0) , (58)

where

f4 =
1365n4 + 4716n3 − 4029n2 − 4742n+ 3060

20160π2n4
, (59)

f5 =
2398n4 + 1827n3 − 4362n2 − 1045n+ 1350

10080π2n4
, (60)
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f6 =
1

120960π3n6

(
117600n6 + 223536n5 − 297004n4 − 325976n3

+257210n2 + 76140n− 45675
)
, (61)

f7 =
1

645120π3n6

(
1470552n6 + 889680n5 − 2986768n4 − 898156n3

+1580375n2 + 145944n− 175140
)
, (62)

f8 =
1

π4n8

(
12.2093n8 + 17.7149n7 − 32.5261n6 − 32.3395n5

+31.6037n4+14.8324n3−10.7232n2−1.421n+0.81733
)
, (63)

f9 =
1

π4n8

(
24.3812n8 + 12.9255n7 − 56.1621n6 − 18.0962n5

+40.3373n4+6.30852n3−9.62435n2−0.463751n+0.5335
)
, (64)

f10 =
1

π5n10

(
162.133n10 + 200.998n9 − 471.558n8 − 436.697n7

+520.298n6 + 289.714n5 − 245.264n4 − 63.1615n3

+42.8619n2 + 3.21193n− 1.79838
)
, (65)

f11 =
1

π5n10

(
296.804n10 + 144.584n9 − 771.987n8 − 255.695n7

+692.1n6 + 136.602n5 − 251.312n4 − 24.0048n3

+33.6381n2 + 0.991118n− 1.1099
)
, (66)

and

f12 =
1

π6n12

(
2363.29n12 + 2641.16n11 − 7539.76n10 − 6637.74n9

+9420.92n8 + 5677.44n7 − 5564.29n6 − 1948.25n5 + 1508.29n4

+245.392n3 − 159.039n2 − 7.65612n+ 4.20787
)
. (67)

On the other hand, for the conformally coupled quantized field, one has

ρ =
HD+1

m
fD(n, ξ = ξc) , (68)

where

f4 =
24n3 − 15n2 − 41n+ 30

5040π2n4
, (69)

f5 =
457n4 + 1512n3 − 3588n2 − 1408n+ 2880

2580480π2n4
, (70)
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f6 =
96n5 − 4n4 − 596n3 + 470n2 + 360n− 315

120960π3n6
, (71)

f7 =
(n−2)

(
3287n5+24094n4−5900n3−77656n2+13248n+40320

)
165150720π3n6

,

(72)

f8 =
(n−2)

(
288n6+788n5−2196n4−2108n3+4338n2+585n−1620

)
1900800π4n8

,

(73)

f9 =
1

π4n8

(
2.79769× 10−6n8 + 0.0000205636n7 − 0.0000768524n6

−0.000175441n5 + 0.00053688n4 + 0.000204701n3

−0.00089077n2 + 0.0000507305n+ 0.000319602
)
, (74)

f10 =
1

π5n10

(
0.0000326261n9 + 0.0000515903n8 − 0.000716464n7

+0.000202078n6 + 0.0035634n5 − 0.0032242n4 − 0.0043084n3

+0.00506189n2 + 0.000865606n− 0.0015024
)
, (75)

f11 =
1

π5n10

(
4.67381× 10−7n10 + 4.36237× 10−6n9 − 0.00001906n8

−0.0000659n7 + 0.000234n6 + 0.0001871n5 − 0.0008377n4

−0.00001398n3 + 0.0009307n2 − 0.000132667n− 0.000281
)

(76)

and

f12 =
1

π6n12

(
7.825067× 10−6n11 + 0.0000191n10 − 0.000255n9

−0.0000297n8 + 0.002199n7 − 0.001744n6 − 0.0057854n5

+0.0068403n4+0.004394n3−0.00683n2−0.00051n+0.00167411
)
.

(77)
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