THE BLOCKING EFFECT ON THE β-DECAY PROPERTIES OF THE NEUTRON-RICH Ni ISOTOPES

E.O. SUSHENOK, A.P. SEVERYUKHIN

Bogoliubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research, Dubna, Russia
and
Dubna State University, Dubna, Russia

(Received December 14, 2016)

The Q_β-window has been studied within the Skyrme HF–BCS calculations including the blocking effect of unpaired neutron and proton in cases of the even–odd and odd–odd nuclei. Using the energy-density functional T45 containing the tensor terms, we analyze this effect on the β-transition rates of the neutron-rich nuclei $^{72–80}$Ni.

DOI:10.5506/APhysPolB.48.533

The correct description of the Q_β-values is the important ingredient for the reliable prediction of the half-life of the β-decay. To calculate the binding energy of the odd–odd and even–odd nuclei, we take into account the effect of the unpaired neutron and proton on the superfluid properties of nuclei, the well-known blocking effect [1, 2]. As an example, the β-decay properties of neutron-rich nuclei 72,74,76,80Ni and the most neutron-rich ($\langle N - Z \rangle/A = 0.28$) doubly-magic nucleus 78Ni are studied. The β-decay properties of r-process “waiting-point nucleus” 78Ni have attracted a lot of experimental efforts, see e.g. [3].

We use the EDF T45 which takes into account the tensor force [4]. The T45 set is one of 36 parametrizations, covering a wide range of the parameter space of the isoscalar and isovector tensor term added with refitting the parameters of the central interaction, where a fit protocol is very similar to that of the successful SLy parametrizations. This choice of the Skyrme EDF has been selected to reproduce the experimental Q_β value of 78Ni (see Fig. 1) and enough positive value of the spin–isospin Landau parameter ($G'_0 = 0.10$ for T45). The pairing correlations are generated by a zero-range volume force with a strength of $-270 \text{ MeV} \times \text{fm}^3$ and a smooth cut-off at 10 MeV above the Fermi energies [5, 6].

* Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear Landscape”, Zakopane, Poland, August 28–September 4, 2016.
Assuming the spherical symmetry for the nuclei considered here, the starting point of the method is the self-consistent HF–BCS calculation \[7\] for the ground state properties of the even–even parent nucleus \((N, Z)\). In the particle-hole channel, we use the Skyrme interaction with the tensor components and their inclusion leads to the modification of the spin-orbit potential \[4\].

The ground state of the odd–odd daughter nucleus \((N−1, Z+1)\) can be obtained as the neutron-quasiparticle proton-quasiparticle state. The neutron and proton quasiparticles can be simultaneously blocked \[8\]. Using the blocking effect for unpaired nucleons \[1, 2, 7\], we get the following secular equations:

\[
\Delta_j = \frac{1}{2} \sum_{j' \neq j} V_{jj'} \frac{(2j' + 1) \Delta_{j'}}{\sqrt{\Delta_{j'}^2 + (E_{j'} - \lambda)^2}} + \frac{1}{2} V_{jj_2} \frac{(2j_2 - 1) \Delta_{j_2}}{\sqrt{\Delta_{j_2}^2 + (E_{j_2} - \lambda)^2}},
\]

where the indexes \(j\) denote the quantum numbers \(nlj\), the values \(\lambda\) are the neutron and proton chemical potentials. The indexes \(j_2\) emphasize the blocked neutron subshell and the blocked proton subshell near the Fermi energies. For \(^{72,74,76,78}\)Cu, the neutron quasiparticle blocking is based on filling the \(1g_{9/2}\) subshell and the \(2d_{5/2}\) subshell should be blocked for \(^{80}\)Cu. The proton \(2p_{3/2}\) and \(1f_{5/2}\) subshells are chosen to be blocked in the cases of \(^{72,74,76}\)Cu and \(^{78,80}\)Cu, respectively. It is worth pointing out that there is the closeness of the proton single-particle energies \(2p_{3/2}, 1f_{5/2}\) for \(^{76}\)Cu.

Fig. 1. (Color online) (a) The quasiparticle blocking effect on \(Q_\beta\)-values of \(^{72−80}\)Ni isotopes. (b) The half-lives of the \(\beta\)-decay of \(^{72,74,76,78,80}\)Ni. \(Q_\beta\)-values are calculated with the blocking effect (triangles) and without the blocking effect (circles). Experimental data (squares) are from Ref. \[10\].
The Q_β value can be obtained by the binding-energy difference between the daughter and parent nuclei

$$Q_\beta = \Delta M_{n-H} + B(Z + 1, N - 1) - B(Z, N).$$

(2)

$\Delta M_{n-H} = 0.782$ MeV is the mass difference between the neutron and the hydrogen atom. As proposed in Ref. [9], the Q_β value of the even–even nucleus can be calculated without the blocking effect

$$Q_\beta \approx \Delta M_{n-H} + \lambda_n - \lambda_p - E_{2qp,\text{lowest}},$$

(3)

where $E_{2qp,\text{lowest}}$ corresponds the lowest two-quasiparticle energy. The calculated Q_β values in the neutron-rich Ni isotopes are compared with the experimental data [10] in Fig. 1(a). There is a remarkable odd–even staggering. For even–even nuclei, the Q_β analysis within approximation (3) can help to clarify the blocking effect. We find that the blocking effect induces a reduction of the Q_β values and it results in a improvement of the Q_β description, see Fig. 1(a).

To build the QRPA equations on the basis of HF–BCS quasiparticle states of the parent nucleus is the standard procedure [11]. Using the FRSA model, the QRPA eigenvalues (E_k) are obtained as the roots of the relatively simple secular equation [12–14], and we carry out QRPA calculations in very large two-quasiparticle spaces.

In the allowed GT approximation, the β^--decay half-life is expressed by summing the probabilities (in units of $G_A^2/4\pi$) of the energetically allowed transitions ($E_k^{GT} \leq Q_\beta$) weighted with the integrated Fermi function

$$T_{1/2}^{-1} = D^{-1} \left(\frac{G_A}{G_V} \right)^2 \sum_k f_0 (Z + 1, A, E_k^{GT}) B(GT)_k,$$

(4)

$$E_k^{GT} = Q_\beta - E_{1_k^+},$$

(5)

where $G_A/G_V = 1.25$ and $D = 6147$ s [15]. $E_{1_k^+}$ denotes the excitation energy of the 1_k^+ state of the daughter nucleus. As proposed in Ref. [9], this energy can be estimated by the following expression:

$$E_{1_k^+} \approx E_k - E_{2qp,\text{lowest}}.$$

(6)

It is worth mentioning that the spin-parity of the lowest two-quasiparticle state is, in general, different from 1^+. The properties of the low-lying 1^+ states in the daughter nuclei 72,74,76,78,80Cu are studied. There is the gradual reduction of β-decay half-lives with increasing neutron number [10], see Fig. 1(b). One can see that
our results calculated with the blocking effect reproduce this behavior. As expected, the largest contribution (> 60%) in the calculated half-life comes from the 1^+_1 state. QRPA results indicate that the dominant configuration of the 1^+_1 wave function is $\{\pi 2p_2^3\nu 2p_1^1\}$ whose contribution is about 99% in all five nuclei. The inclusion of the blocking effect for the Q_β calculation reduces the transition energies (5) and this energy shift produces a sizable impact on the β-decay half-life. The calculated half-lives are in reasonable agreement with the experimental data [10] but they are much larger than the half-lives calculated with SGII+tensor interaction [6]. A possible reason might be the underestimated symmetry energy of 26.8 MeV for the SGII set and too strong tensor correlations in the case of the SGII+tensor interaction.

We thank N.N. Arsenyev and I.N. Borzov for useful discussions. This work is partly supported by the Russian Science Foundation (grant No. RSF-16-12-10161).

REFERENCES