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The problem of averaging the kinetics of two-stage decaying system
subject to dichotomous fluctuations in the forward rate is solved exactly.
It is shown that the temporal behavior of system’s populations is four-
exponential, given finite frequency and amplitude of fluctuations. For fre-
quent fluctuations, this behavior is bimodal typical of deterministic decay,
but oppositely, it reduces to three-exponential and bimodal forms, specific
of low and resonance amplitude fluctuations. There is an immobilization of
initial state at a stochastic resonance point, where forward rate coincides
with fluctuation amplitude, whereas backward, decay and fluctuation rates
are all negligible.
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1. Introduction

The two-step decay kinetic models are ubiquitous in theory and applica-
tions for trivial analytical solvability and transparent interpretability in most
simple cases [1]. These models provide the temporal behavior of a system of
interest with the double exponential kinetics whose exponents represent two
time-independent rate constants as the relevant mode parameters. However,
in the more complex general cases, the acquired information on these param-
eters is ambiguous since using only the bimodal exponential representation
for kinetics of temporal data patterns becomes insufficient and requires tri-,
tetra- or more modal exponential representations [2–4]. In these cases, due
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to a far richer set of kinetic characteristics, it is hard to expect that in-
volving a double modality in the complex multimodal kinetics provides a
complete knowledge of the system. To overcome this hardness, one needs
to introduce novel degrees of freedom in the two-step system, either in the
form of new states hidden for direct observation but interconverting between
each other with the additional rate coefficients, or by allowing new capabil-
ities for the rate constants existed in the two-step system to be randomly
fluctuated around their means with some average amplitudes and frequen-
cies. Following the former way is frequent and common, particularly when
considering spontaneous and induced kinetic processes in condensed phase
systems at the different levels of complexity, see e.g. [5–10] and references
therein. Rather, following the latter way is more rare and uncommon, even
in abstract modeling, because obtaining strict analytical results for it is al-
most lacking hitherto. However, we should note here the paper of Weiss and
Masoliver [11] devoted to describing the kinetic behavior of the two-state–
single-stage reacting system with a one fluctuating rate constant according to
a random telegraph signal and noticing, for the first time, that this system
may be similar to some four-state–four-stage system with non-fluctuating
rate constants, though only in the case, where those systems are not fully
equivalent or equal between each other but isomorphic in their average char-
acteristic distributions [12, 13]. Unfortunately, the more general problem of
the behavior of a two-stage kinetic system subject to random fluctuations
in, at least, its one rate constant remains unconsidered. Moreover, even
for a single-stage reacting system with one fluctuating rate, the question on
extent of its similarity to the other multi-stage kinetic systems lacking fluc-
tuating rates is unanswered. The present paper aims at filling both these
caveats by using the physically consistent and mathematically strict means
of describing fluctuation processes, very appropriate for the case of adding
dichotomous fluctuations to the forward rate of two-state decaying reacting
system. We begin with giving a microscopic formulation of the multi-state
problem, reduce it to the case of two-state decaying system with fluctuating
forward rate and derive an exact analytical solution to the latter problem
with establishing that the four-exponentiality in the time domain is its gen-
eral property. Then, we analyze the limiting cases of solution and compare
them with the other cases. Finally, the obtained results are discussed and
concluded.

2. General description of two-step decay kinetics
with fluctuating forward rate

Any use of a few-level representation as a compromise for simpler con-
sideration of the complex multi-level systems, particularly in describing
physicochemical or biological irreversible kinetic processes in terms of two-
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step decay models, should be based on rigorous theoretical treatments. One
of the strictest methods for doing this correctly is to approach the problem
with the density matrix theory for the non-equilibrium multi-state system
coupled with its fluctuating equilibrium environment [14]. In the frame-
work of this theory, it is possible to provide, in a weak coupling limit, an
accurate derivation of the master equation for evolution of the system in
the case where it is subjected to the time-dependent (random or regular)
environmental influences and external fields (see e.g. [15–18] and references
therein).

The density matrix theory is based on the Liouville–Von Neumann quan-
tum evolution equation

ρ̇(t) = −iL(t)ρ(t) (1)

for the density matrix ρ(t) of the whole system, which at a weak system-
environment coupling is factorized ρ(t) = ρ0(t)ρbath by the non-equilibrium
density matrix of the system ρ0(t) and the equilibrium density matrix of
the environment ρbath = exp(−Hbath/kBT )/trB exp(−Hbath/kBT ) (kB and
T are the Boltzmann constant and temperature, respectively; trace is over
the all states of the environment playing the role of a heat bath), with
L(t) = (1/~)[H(t), . . .] being the Liouville superoperator (~ is the Planck
constant) related to the whole system’s Hamiltonian

H(t) = H0(t) +Hbath + V . (2)

Therefore, to arrive at the desired level of rigor in representing irreversible
kinetic processes by the two-step decay models, it is necessary to make the
following steps, namely: (i) to define in (2) the time-dependent Hamilto-
nian H0(t) of the non-equilibrium system, the Hamiltonian Hbath of the
equilibrium environment and the Hamiltonian V of their weak interaction
accounted for to the second-order smallness; (ii) to solve Eq. (1) by averag-
ing it over the thermal excitations of the environment (phonons) and the fast
random fluctuations of a system’s energy levels leading to their broadening;
(iii) to find the probabilities of relaxation transitions between the broadened
energy levels; and, finally, (iv) to determine the sufficient conditions for re-
duction of a complex multi-stage transition problem to a simpler two-stage
decaying problem.

2.1. Microscopic Hamiltonian and master equation

Consider a quantum dynamical system, consisted of the N + 1 micro-
scopic states |i = 0, 1, . . . , N〉, with the energies Ei and interactions between
states Vij (i 6= j) found in the adiabatic approximation. Let there be a weak
coupling of the system with its condense phase environment, represented as
the harmonic oscillator bath of normal modes ωλ distributed according to
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the Bose function nλ = [exp(ωλ/kBT )−1]−1 (we set ~ ≡ 1). Such a coupling
non-adiabatically couples the process of creation and annihilation of environ-
mental phonons, described by operators β+

λ and βλ, to relaxation transitions
between the states |i〉 and |j 6= i〉 of the system, respectively, so that to in-
duce the singular perturbations of the generator of its unitary (adiabatic)
dynamics, with the time-dependent force parameters κiλ(t) = κ

(0)
iλ + κλ(t)

being decomposed into the regular κ(0)
iλ and random κλ(t) parts. This makes

possible for the system to absorb or emit environmental phonons instanta-
neously, but at random times t, so that emitted phonons are carried away
by their time-invariant environment dynamics and never come back again.
This also allows for the system to transit from one state to another by bal-
ancing its transition energies ∆Eij = Ei−Ej with the process of creation or
annihilation in the environment of the corresponding phonons ωλ = |∆Eij |.
Then the microscopic Hamiltonian of the whole system

H(t) = HS +Hbath +Hint(t) (3)

can be written as a sum of three Hamiltonians, that is, the Hamiltonian of
the non-equilibrium system

HS =
∑
i

Ei|i〉〈i|+
∑
i,j

Vij(1− δij)|i〉〈j| , (4)

the Hamiltonian of the equilibrium environment

Hbath =
∑
λ

ωλ
(
β+
λ βλ + 1/2

)
, (5)

and the Hamiltonian of the system-environment interaction

Hint(t) =
∑
i

∑
λ

κiλ(t)
(
β+
λ + βλ

)
|i〉〈i| . (6)

First two Hamiltonians relate to the regular dynamics, while the third one
is indeterministic by involving in the time-dependent force κiλ(t), a random
term κλ(t) being independent of |i〉.

For a weak interaction between the system’s states defined by matrix
elements Vij in (4), we can diagonalize the time-dependent Hamiltonian
H(t) (3) by using the unitary matrix [19]

Ut = exp

(∑
i

ui(t)|i〉〈i|

)
, (7)
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where ui(t) =
∑

λ giλ(t) (β+
λ −βλ) is the ith state displacement operator and

giλ(t) = κiλ(t)/ωλ is the dimensionless coupling. This allows us to perform
the non-perturbation transformation of (3), implying a second quantization
of the field of non-interacting environmental phonons (5) being under the
influence of the system’s deterministic dynamics (4). Multiplying (3) from
the left by Ut and from the right by U+

t (7), we arrive exactly at the Hamil-
tonian (2). Now we see that, in contrast to (3) but as in (2), the transformed
interaction Hamiltonian is time-independent

V =
∑
i,j

(1− δij)Vij exp
(
u

(0)
ij

)
|i〉〈j| (8)

with u(0)
ij =

∑
λ g

(0)
ijλ(β+

λ − βλ) being the operator of phonon displacements

depending on regular couplings g(0)
ijλ = [κ

(0)
iλ − κ

(0)
jλ ]/ωλ. Rather, the trans-

formed Hamiltonian of the system

H0(t) =
∑
i

Ẽi(t)|i〉〈i| (9)

is time-dependent due to refining of its transformed energy levels Ẽi(t) with
a combination of randomly fluctuating terms |κiλ(t)|2/ωλ as follows:

Ẽi(t) = Ei −
∑
λ

[
|κiλ(t)|2

ωλ

]
. (10)

Nevertheless, Hamiltonian (9) is diagonal with respect to the specific phonon-
dressed states with energies (10), such that the corresponding differences
between them

∆Ẽij(t) = ∆Ēij − 2
∑
λ

g
(0)
ijλκλ(t) (11)

become the linear functions of random additions κλ(t), with ∆Ēij = ∆Eij−
2
∑

λ g
(0)
ijλḡ

(0)
ijλωλ and ḡ

(0)
ijλ = [κ

(0)
iλ + κ

(0)
jλ ]/2ωλ being the relative mean-field

energy-level differences and the average dimensionless coupling shifts, both
regular, respectively. Importantly, the term proportional to |κiλ(t)|2 cancels
out of Eq. (11) since it is approximately set independent of the state num-
ber |i〉. However, taking into account such dependence introduces serious
complications and thus requires separate consideration.

The afore-formulated microscopic model for the description of the ran-
dom fluctuations in energy levels of the system is advantageous in that it
provides the reduced energy-level differences (11) with strictly linear ran-
dom additions in the adiabatic approximation. When fluctuation processes
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underlying these additions occur faster than nonadiabatic transitions be-
tween the different energy levels that constitute a common Markovian ap-
proximation in condensed-phase systems [14–18, 20], then this allows us to
describe the transition dynamics of the system by using the usual rate con-
stant formalism in the framework of a coarse-grained master equation [21].
Furthermore, due to the presence of random fluctuations in positions of en-
ergy levels, a process of their relaxation becomes irreversible just because
the memoryless exchange of vibrational excitations (phonons) between the
system and the environment.

Following Ref. [20] (see also [22]), it is now possible to perform averaging
(denoted as 〈〈. . .〉〉) over the random realizations of differences (11), given
Hamiltonians (2), (9), (5) and (8) in (1). The result is the master equation

ṗj(t) = −pj(t)
∑
j′ 6=j

Wjj′ +
∑
j′ 6=j

pj′(t)Wj′j (12)

for the averaged population of the jth energy level

pj(t) =
〈〈{
〈j|ρ(d)

0 (t)|j〉
}〉〉

, (13)

where ρ(d)
0 (t) = T̂dρ0(t) are the diagonal elements of ρ0(t) with T̂d being the

diagonalization operator. In (12), and in the sequel, the following quantities
averaged over random fluctuations are introduced:

Wjj′ = 2π
∑
λ

∣∣χjj′λ∣∣2 [nλΛjj′λ + (1 + nλ)Λj′jλ
]
,

Λjj′λ = γjj′
{
π
[
γ2
jj′ +

(
ωλ + ∆Ējj′

)2]}−1
,

γjj′ = − lim
τ→∞

1

τ
ln

〈〈
exp

[
i

τ∫
0

dt
∑
λ

g
(0)
jj′λκλ(t)

]〉〉 . (14)

Here, Wjj′ , Λjj′λ and γjj′ = γj′j stand for the probabilities of relaxation
transitions in the system (transition rate constants from level j to level j′),
the transition Lorentzians, and the parameters of adiabatic broadening re-
sponsible for fast random fluctuation processes, respectively, where χjj′λ =

Vjj′g
(0)
jj′λ are the parameters of nonadiabatic coupling responsible for slow

relaxation processes (for more details, see e.g. [20, 22]).

2.2. Transition rate constants and reduction to two-step decay process

The form of averaged transition rate constants (14) entering the coarse-
grained master equation (12) for averaged populations (13) allows us to con-
sider only the simplified versions of (14). For this, we note that in the case
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of fast fluctuations, the level broadening γjj′ does not depend on the lev-
els’ numbers and scales with the temperature simply as γjj′ = kBT [22].
Therefore, we easily calculate the quantum |∆Ējj′ | � kBT and classi-
cal |∆Ējj′ | � kBT limits of (14), respectively, as

Wjj′ = Jjj′

{
exp

(−∆Ēj′j
kBT

)
; ∆Ēj′j > 0 ,

1 ; ∆Ēj′j ≤ 0
(15)

and
Wjj′ = Jjj′ , (16)

where Jjj′ = lim
ωλ→|∆Ējj′ |

2π
∑

λ(|χjj′λ|2/ωλ) = 2π
∑

λ |χjj′λ|2δ(|∆Ējj′ | − ωλ)

is the rate speed limit for a symmetric one-phonon spectral function Jjj′ =
Jj′j ≡ Jjj′(ωλ ≈ |∆Ējj′ |) [23]. Furthermore, since in the system with N + 1
states there can be N(N + 1)/2 transition rate constants with only 2N − 1
of them linearly independent in the leading-order approximation [24], this
system can be projected onto the equivalentN -stage absorbing Markov chain

|N〉
WNN−1

−→
←−

WN−1N

|N − 1〉 · · · |2〉
W21

−→
←−
W12

|1〉
W10

−→
←−
W01

|0〉 . (17)

Here, the leading order rate constants {Wjj′} ≡ {WNN−1,WN−1N , . . . ,
W21,W12,W10} are considered as a complete set of 2N − 1 independent
variables calculable in the wide limits (15), (16), while the rate constant
W01 of a system’s transition from absorbing state |0〉 to nearest neighboring
state |1〉 is regarded negligible

W01 �WNN−1,WN−1N , . . . ,W21,W12,W10 . (18)

To get a representation (17) worthy of two-step decay model, we should
additionally suppose

WNN−1 = WN−1N = . . . = W32 = W23 ≡W ,

W �W21,W12,W10 ; W01 = 0 . (19)

In these relations, all transient states of (17), but state |1〉, are assumed
nearly equipopulated and quasidegenerate in energy at every time instant.
This allows us to match the corresponding state’s characteristics to the same
levels p2(t) = pj=3,...,N (t) and E2 = Ej=3,...,N , respectively, so regarding the
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states ergodically mixed. Moreover, by considering such a joint sequence of
states, we can introduce their aggregated population

p{2}(t) = p2(t)[N(t)− 1] (20)

and then combine all of them in one effective state |{2}〉 as

|N(t)〉
W

−→
←−
W

|N(t)− 1〉 · · · |3〉
W

−→
←−
W

|2〉 ⇔ |{2}〉 . (21)

Here, the number N(t)− 1 of transient states in |{2}〉 is generally assumed
to be not fixed, but a stationary fluctuating quantity with its own dynam-
ics, due to some random structural transitions in the environment or con-
formational transformations of the environmental macromolecules. For ex-
ample, if number N(t) corresponds to the number of contacts of a ligand
species with solvent molecules in a micro- or nano-volume of the well-stirred
bulk solution, then this number will be a function of time that follows the
changes in a local configuration of solvent molecules with the solute. Since
the folding–unfolding kinetics of protein macromolecules can typically be
fitted as the all-or-none two-state stationary random process [25], there is
a possibility to allow for the number N(t) to perform statistically inde-
pendent stochastic displacements in time between the maximum Nmax and
minimum Nmin values such as a discrete (dichotomous) process. The latter
occurs because of sudden changes in the instantaneous local configurations
of solvent molecules happen by virtue of the conformational transformations
of some protein molecule present in the bulk [26]. This molecule does not
directly influence the two-step decay as such but, causing random changes in
the number of solvent molecules readily accessible for the forward reaction,
indirectly impacts on its transition rate [27, 28].

Approximately solving the master equation (12) for the transient states
(21) with using (19), we arrive at the reduced two-step decay problem

|{2}〉
a+α(t)

−→
←−
b

|1〉 k−→ (22)

edowed with an addition of a symmetric dichotomous stochastic process α(t)
to the forward rate constant. For brevity, we use the notations

a+ α(t) ≡W21[N(t)− 1]−1 ; b ≡W12 ; k ≡W12 (23)
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and let for the process α(t) be exponentially correlated α(0)α(t) =

σ2 exp(−2ν t) with a zero mean α(t) = 0 (an overbar designates the averag-
ing over all possible stochastic realizations), such that to perform random
jumps between its two discrete values ±σ at mean frequency ν, by obeying
the equalities [29, 30]

[α(t)]2 = σ2 ; α̇(t) = −2να(t) . (24)

Given these equalities as well as natural inequalities for the stochastic am-
plitude and fluctuating number of states such as σ ≤ a and Nmin ≤ N(t) ≤
Nmax, respectively, we get

σ =
W21

2

(
1

Nmin
− 1

Nmax

)
≤ a =

W21

2

(
1

Nmin
+

1

Nmax

)
. (25)

Note that stochastic process α(t) involved in (22) to represent discrete di-
chotomous fluctuations in the forward rate constant comprises a type of
macroscopic fluctuation processes. This type of fluctuations describes the
stochastic behavior of an aggregate of ergodic states (21), exhibiting immedi-
ate jumps between two values of their number in the two local equilibriums
at random times. The flight time of the jump is very fast close to the
macroscopic diffusion/encounter time, that is, the time of the establishment
of macroscopic equilibrium with the highest physical speed [23, 28]. At that,
each such equilibrium remains thermodynamically unchanged during the ev-
ery elapsed time between two successive jumps. Therefore, that aggregate
of states represents in fact a single ergodic compartment which avoids any
memory effects. In this regard, the macroscopic fluctuations can differ from
the microscopic ones since the latter are nonlocal in time and operate not
with the fluctuating numbers of locally equilibrium ergodic states in aggre-
gates but energy differences between the different non-equilibrium states.
However, in the limit of fast fluctuations of energy levels, the effect of non-
locality disappears and system (9) becomes memoryless or Markovian such
as (12), but with the phonon-dressed (11) and randomly broadened (14) en-
ergy levels (for a discussion of non-Markovian effects in fluctuating kinetic
systems, see e.g. [12, 13, 15–18, 20–24, 31]). On the other hand, this demands
that in the case of macroscopic fluctuations, we should solve the resulting
master equation involving a stochastic addition to the deterministic forward
rate constant a exactly, without using any approximations throughout the
derivation of a closed equation for the kinetics of stochastically averaged
populations, though letting the other rate constants in (22), that is, back-
ward b and decay k rate constants, be deterministically fixed.
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2.3. Exact averaging of stochastic differential equations
for two-step decay model

Finding a solution to problem (22) requires solving a set of two linear
stochastic differential equations, which read as follows:{

ṗ1(t) = −(b+ k)p1(t) + [a+ α(t)]p{2}(t) ;

ṗ{2}(t) = bp1(t)− [a+ α(t)]p{2}(t) .
(26)

To integrate these equations means to provide an averaging of them over
a stochastic process and then solve resulting equations with respect to the
unknown averages. Introducing the average populations of states |1, {2}〉 as
P1,2(t) = p1,{2}(t) and accounting for the commutativity between operations
of averaging and differentiating, we find{

Ṗ1(t) = −(b+ k)P1(t) + aP2(t) + α(t)p{2}(t) ;

Ṗ2(t) = bP1(t)− aP2(t)− α(t)p{2}(t) .
(27)

The averaged equations (27) contain the unknown stochastic correlation
functional α(t)p{2}(t). Therefore, they are not closed with respect to aver-
age populations P1,2(t) and cannot be solved without specifying the differ-
ential equation for α(t)p{2}(t). For the latter, however, there is the Shapiro–
Loginov formula [29] for differentiation of exponentially correlated stochastic
functions

•
αp1,{2} = α ṗ1,{2} + α̇ p1,{2} = α ṗ1,{2} − 2να p1,{2} , (28)

where the notation of time dependence (t) is dropped for brevity. However,

the use of (28) for
•

αp{2} after differentiating of (27) leads to the unknown
α ṗ{2}. Multiplying the second equation of (26) by α and averaging it with
the use of (24) and (27), we obtain{

Ṗ2 = −Ṗ1 − kP1 ;

α ṗ2 = bα p1 − aṖ1 − a(b+ k)P1 +
(
a2 − σ2

)
P2 .

(29)

Then, applying a second differentiation to the first equation of (27) with
using (28), (29) yields

P̈1+(2a+b+k+2ν)Ṗ1+[a(b+2k)+2ν(b+k)]P1 = bα p1+
[
a (a+2ν)− σ2

]
P2 .
(30)
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In Eq. (30), there are the unknown P2 and αp1. Differentiating (30) leads
to the equation

d

dt
P̈1 + (2a+ b+ k + 2ν)P̈1 +

[
(a+ b)(a+ 2ν) + 2k(a+ ν)− σ2

]
Ṗ1

+k
[
a(a+ 2ν)− σ2

]
P1 = b

•
αp1 (31)

that due to (28) contains the unknown α ṗ1. This, however, can be consid-
ered as a nuisance. By using the first equation of (26) multiplied by α and
then averaged, and the second equation of (29), we can get the auxiliary
differential equation

•
αp1 = −(b+ k)αp1 + aṖ1 + a(b+ k)P1 +

(
σ2 − a2

)
P2 . (32)

Differentiating (32) with accounting for the first equation of (29) yields

••
αp1 +(b+k+2ν)

•
αp1 = aP̈1+

[
a(a+ b+ k)− σ2

]
Ṗ1+k

(
a2 − σ2

)
P1 . (33)

Multiplying Eq. (33) by b and taking into account in its left-hand side the
left-hand part of (31), we derive the resulting differential equation with
respect to P1. Finally, the sought solution to problem (22) can be expressed
via the closed differential equation as follows:

k
{

2
d

dt
P̈1(t) + [2(a+ b+ 2ν) + k]P̈1(t)

+2
[
(a+ b)(a+ 2ν) + (k + 2ν)(a+ ν)− σ2

]
Ṗ1(t)

}
+k
{
k
[
a(a+ 2ν)− σ2

]
+ 2ν

[
a(a+ b+ 2ν)− σ2

]}
P1(t)

+
d

dt

[(
d

dt
+ 2ν

)
D(2)

]
P1(t) = 0 , (34)

where

D(2) =
d2

dt2
+ 2(a+ b+ ν)

d

dt
+
[
(a+ b)(a+ b+ 2ν)− σ2

]
(35)

is an ancillary second-order differential operator, acting on population P1(t)
independently of k.

Equation (34) is the linear homogeneous ordinary fourth order differen-
tial equation with constant positive coefficients. Its exact analytical solution
is found by standard methods and has the four-exponential form

P1(t) =
4∑
j=1

cj exp(λjt) , (36)
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where λj are the eigenvalues that correspond to the different modes and cj
are the coefficients determined by the initial conditions. Since the expo-
nents λj are non-positive due to the Hurwitz theorem [32] in the case of
(34), solution (36) is Lyapunov-stable. Moreover, if all modes λj are dif-
ferent, this solution is over-critically damped and is damped critically only
with coincident λj . However, a concrete expression of (36) is complicated
by the presence of a large number of kinetic parameters in (34) and (35),
which makes it inappropriate for a comprehensive analytical analysis (but
see a less complicated expression presented in Ref. [20] for the deterministic
three-stage decay kinetic model). Though, in the case of simple initial con-
ditions, such for instance as d

dt P̈1(0) = −1 (initial jerk), P̈1(0) = 1 (initial
acceleration), Ṗ1(0) = 0 (initial velocity), P1(0) = 0 (initial displacement),
and the trivial boundary equilibrium condition P1(t → ∞) = 0, it can be
analyzed numerically. As an example, Fig. 1 depicts linear (A) and log (B)
3D plots of a four-exponential pattern (36) in its dependence on the value
of dichotomous stochastic frequency ν, given fixed other values of rate con-
stants in (22) (inserted in Fig. 1 in inverse time units). Its anterior cross
section comprises the biexponential transient of bimodal rise-decay form (see
Figs. 1 (A) and 1 (B) at large ν), which is very typical of the usual kinetics of
deterministic two-step reactions [33, 34]. However, this form is sighted as a
result of progressive transformation of the initial four-exponential form (seen
in the posterior cross section of Fig. 1 (B) at ν = 0) via the intermediate
three-exponential form (seen in Fig. 1 (B) at moderate ν) to the resulting
bimodal form as ν further increases. That trend towards transformation

Fig. 1. Linear (A) and logarithmic (B) 3D plots of a four-exponential solution (36)
of Eq. (34) for the transient-state population P1(t) of a two-step decay model (22) in
the dependence on time t (in arbitrary units) and stochastic fluctuation frequency ν
(in inverse time units); the values of other parameters and initial conditions are as
follows: a=2, b=0.2, k=0.5, σ=0.6, P1(0)=0, Ṗ1(0)=0, P̈1(0)=1, d

dt P̈1(0)=−1.
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of the temporal pattern (36) with ν is summarized in Fig. 2, presenting
the differential cross-section plots taken from Fig. 1 (B) at different ν. The
form of these plots is informative since the number of bends on them seems
most likely to be equal to the number of modes of the temporal pattern
less one. According to this representation, the differential of log of a uni-
modal pattern has no bends (not shown), whereas the differential of log of
a bimodal pattern has one bend (shown in Fig. 2 as plot (1)), the differen-
tial of log of a three-exponential pattern has two bends (shown in Fig. 2 as
plot (2)), and the differential of log of a four-exponential pattern has three
bends (shown in Fig. 2 as plot (3)). Thus, we see that an increase of no
more than one order of value of ν (from 0.31 to 3.0 in Fig. 2) is necessary to
complete the transformation of a four-exponential pattern to its reduced bi-
modal form. Therefore, the variability of fluctuation frequency ν is thought
of as means to play a pivotal role in both the emergence and the reduction
of the four-exponentiality of differential equation (34) from and towards its
simpler bimodal form, respectively, as the common property of two-step de-
cay kinetics with dichotomously fluctuating forward rate (22). In order to
make this effect analytically transparent, let us consider some limiting cases.

Fig. 2. Differential cross section of 3D plots in Fig. 1 (B) at three stochastic fluc-
tuation frequencies ν (shown in inset in inverse time units).

3. Limiting cases for two-step decay kinetics
with fluctuating forward rate

There are several exact cases which allow us to perform a simplified
description of the two-step decay problem (22) in analytical terms. The first
case is very natural and corresponds to the limit of infinitely large frequency
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of stochastic fluctuations ν → ∞. In this limit, Eq. (34) reduces to the
well-known equation for the decay of dimensionless amplitude P1(t) of a
harmonic oscillator

P̈1(t) + (a+ b+ k)Ṗ1(t) + akP1(t) = 0 (37)

whose biexponential solution

P1(t) =
a

λ1 − λ 2
[exp(λ1 t)− exp(λ2 t)] (38)

has two eigenmodes λ1,2 = (1/2)[−(a+ b+ k)±
√

(a+ b+ k)2 − 4ak] that
depend on parameters of deterministic rate constants a, b and k only, but are
independent of stochastic frequency ν and amplitude σ parameters. How-
ever, in the limit of negligibly small stochastic amplitude σ → 0, Eq. (34)
does not reduce to any bimodal equation and retains its four-exponential
form with the explicit dependence on ν being finite. Therefore, from a
physics point of view, neglecting a stochastic process α(t) in the initial
stochastic equations (26) cannot be achieved by avoiding a stochastic ampli-
tude σ = 0 as a single means, given that a stochastic frequency ν is bounded,
but exclusively by making a stochastic frequency infinite ν → ∞, even if a
stochastic amplitude is arbitrary. There are also other limiting cases, which
are worth examining analytically.

3.1. Stochastic reversible one-stage reaction

The stochastic reversible reaction between two states |i = {2}, 1〉, popu-
lations pi(t) of which are normalized p1(t) + p{2}(t) = 1, corresponds to the
case k = 0 in (22). This implies the bi-directed one-stage kinetic model

|{2}〉
a+α(t)

−→
←−
b

|1〉 (39)

leading to the stochastic master equation (26) for p1(t) as follows:

ṗ1(t) = −[a+ b+ α(t)]p1(t) + a+ α(t) . (40)

Averaging Eq. (40) and substituting the result for α(t)p1(t) in (30) with
P2(t) = 1− P1(t) yield the second-order equation

D(2)P1(t) = F1 . (41)
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Here, F1 = a(a + b + 2ν) − σ2 is the initial force that acts on a stochasti-
cally averaged population P1(t) to establish for it its stationary mean value
attained at equilibrium

P∞1 =
a(a+ b+ 2ν)− σ2

(a+ b)(a+ b+ 2ν)− σ2
. (42)

An analogous force F2 = b(a+ b+ 2ν) acting on the population P2(t) gives
a stationary value P∞2 = b(a + b + 2ν)/[(a + b)(a + b + 2ν) − σ2]. The
same result follows from the fourth-order equations (34), (35) at k = 0 too,
given the normalization condition. This means that, in general, the four-
exponentiality of (34) is divided into two parts — the fully reversible part
(35), (39) governing the establishment of a local equilibrium between the
states provided values of their equilibrium populations are shifted, and the
irreversible part, given in the figure brackets of (34), responsible for the
decay of these populations to zero with the rate constant proportional to k.

For the initial conditions P1(0) = Ṗ1(0) = 0; P̈1(0) = F1 and the station-
ary condition (42), solving (41) is elementary

P1(t) =
a(a+ b+ 2ν)− σ2

(a+ b)(a+ b+ 2ν)− σ2

[
1− λ1 exp(λ2t)− λ2 exp(λ1t)

λ1 − λ2

]
, (43)

where λ1,2 = −(a + b + ν) ∓
√
ν2 + σ2. However, despite its elementarity,

solution (43) does not correspond to that of any one found in the frame
of some equivalent deterministic four-state system, which is constructed so
that to be compatible with a stochastic two-state kinetic system (39), as has
been noted in Ref. [11]. Moreover, such an equivalence can be achieved only
in the limiting case b → 0, where the deterministic four-state system takes
the form of ∣∣∣1(−)

〉
←−
a−σ

∣∣∣2(−)
〉 ν

−→
←−
ν

∣∣∣2(+)
〉
a+σ−→

∣∣∣1(+)
〉
. (44)

For this system, starting from a master equation for populations p(±)
1,2 of

individual states |1(±)〉 and |2(±)〉, introducing for them the correspond-
ing aggregated populations Γ1,2 = p

(+)
1,2 + p

(−)
1,2 and solving the equations

obtained for these populations, respectively, we indeed simply find that
Γ1(t) = 1−[λ1 exp(λ2t)−λ2 exp(λ1t)]/(λ1−λ2), which coincides with (43) at
b = 0. But if b 6= 0, for this case to be consistent with (39), we must equip
(44) with the additional transitions not only from states |1(±)〉 to states
|2(±)〉 with rates b but also between the states |1(−)〉 and |1(+)〉 with rates ν.
In result, the equivalence between the stochastic two-state system and the
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deterministic four-state system loses its sense, due to incompatibility both
with the normalization condition for populations and the detailed balance
condition for the every closed cycle of rate constants, which emerge in the
deterministic system. This signifies the novelty of solution (43) with respect
to that obtained in [11], due to its ability of combining together the con-
sideration of deterministic and stochastic processes into a unified approach
in the framework of kinetic master equation (12) accounting for both the
microscopic and macroscopic fluctuations in the system.

On the other hand, the steady-state population P∞1 (42) can be expressed
in also a new form

P∞1 =
ã

(ã+ b)
, (45)

where ã = a− σ2/(a+ b+ 2ν) is the renormalized forward rate constant. If
now to apply this expression to a macroscopic deterministic two-state system
initiated from state |2〉 with rate ã

|{2}〉
ã

−→
←−
b

|1〉 (46)

and allow for it the stochastic resonance condition a = σ at the critical point
b = ν = 0 where ã = 0, then we can observe the effect of stochastic immo-
bilization of this system in that state: P∞1 = P1(t) = 0;P∞2 = P2(t) = 1.
In this process, the system is pulled stochastically into its initial state ev-
ery time once it is about transfer to the other state. Indications for the
stochastic pulling effects are found in telecommunication fibres and electron
devices [35, 36]. Other examples of stochastic resonance processes in macro-
scopic two-state systems such as displayed by a particle in a two-well poten-
tial are diffusion in crystals, conformational transitions in macromolecules,
activated chemical reactions, etc., see e.g. [37] and references therein. How-
ever, when trying to interpret these processes by doing the same trick with
a stochastic resonance for the kinetics of population P1(t) in (43) as for
its stationary value P∞1 in (45), one inevitably is faced with an incompati-
bility: Namely, the statements are that a stochastic one-step reaction (39)
follows the second-order differential equation (41) and is hence bimodal (43),
while a deterministic one-step reaction (46) follows the first-order differen-
tial equation such as Ṗ1(t) = −(a+ b)P1(t) + a and is, therefore, unimodal
P1(t) = [a/(a + b)]{1 − exp[−(a + b)t]}, which is contradictory. Further-
more, this incompatibility cannot be relaxed fully for any instance of the
two-, three- or more state system, for example, by increase both in the
number of states and in the number of rates for transitions between states.
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However, there is a single exception for the case b = 0 of stochastic unidi-
rected one-step reaction (39) entirely equivalent in its bimodal kinetics to
the deterministic behavior of a three-stage system (44).

3.2. Stochastic irreversible two-step decay

The stochastic decay from initial state |2〉 through intermediate state |1〉
via the two irreversible steps in (22) corresponds to the unidirected two-stage
reaction

|2〉 a+α(t)−→ |1〉 k−→ . (47)

Setting b = 0 in Eq. (30) and differentiating it with the use of the first
equation of (29) yield

d

dt
P̈1(t) + [2(a+ ν) + k]P̈1(t) +

[
a(a+ 2k + 2ν) + 2kν − σ2

]
Ṗ1(t)

+k
[
a(a+ 2ν)− σ2

]
P1(t) = 0 . (48)

According to (36) for the initial conditions

P1(0) = Ṗ1(0) = 0 ; P̈1(0) = − d

dt
P̈1(0)[2(a+ ν) + k]−1 = f1 , (49)

where f1 = a(a + 2ν) − σ2 is the spontaneous initial force virtually acting
on an evolving in time population P1(t) due to fluctuations in the forward
rate, an exact three-exponential solution of (48) reads

P1(t) =
[
a(a+ 2ν)− σ2

]
×
[

exp(λ1t)

(λ1−λ2)(λ1−λ3)
+

exp(λ2t)

(λ2−λ1)(λ2−λ3)
+

exp(λ3t)

(λ3−λ1)(λ3−λ2)

]
.

(50)

This solution is over-critically damped with three non-positive modes λ1,2,3

obeying the equation

λ3+[2(a+ν)+k]λ2+
[
a(a+ 2k + 2ν) + 2kν − σ2

]
λ+
[
a(a+ 2ν)− σ2

]
k = 0 .

(51)
It is hence instructive to consider the reduced cases of (50) by relating to
different deterministic, a and k, and stochastic, ν and σ, parameters.

The first case corresponds to the limit of very frequent stochastic fluctu-
ations

2ν � a, k . (52)
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In this limit, expression (50) reduces to a bimodal solution

P1(t) =
a

a− k
[exp(−kt)− exp(−at)] (53)

that directly coincides with solution (38) at b = 0. Moreover, solution (53)
represents a well-known equation typical of describing the different two-
step transient irreversible processes from ligand-controlled reactions [38] to
radioactive decay [39].

The second case is the limit of negligibly small stochastic amplitude
σ → 0. In this case, solving (51) gives λ1 = −k;λ2 = −a;λ3 = −(a + 2ν).
For (50), this leads to a three-exponential solution

P1(t) =
a(a+ 2ν)

2ν(a+ 2ν − k)

×
{

exp[−(a+2ν)t] +
2ν

a− k

[
exp(−kt)− a+ 2ν − k

2ν
exp(−at)

]}
.

(54)

Solution (54) differs from its reversible analog (43) at σ = 0, because the
latter reduces to a unimodal form P1(t) = [a/(a + b)]{1 − exp[−(a + b)t]}
that is independent of ν, while the former remains three-exponential being
dependent on ν.

The third case is the limit of very rare fluctuations

2ν � a, k (55)

that is opposite to (52). If to combine this limit with the second case σ → 0,
a three-exponential solution (54) ceases to depend on ν, approaching the
unusual quasi-bimodal form

P1(t) =

[
a

(a− k)

]2

{exp(−kt)− [1 + (a− k)t] exp(−at)} . (56)

Finally, the fourth case is when the stochastic amplitude reaches its
maximum such as σ ∼= a. In this case, the limit taken for the stochastic
frequency ν, either (52) or (55), can influence on the bimodal parameters.
Thus, as expected from (38), solution (50) reduces to its usual form (53) in
limit (52), whereas in limit (55), the diverse bimodal solution follows:

P1(t) =

[
2a

(2a− k)

]
[exp(−kt)− exp(−2at)] . (57)
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This solution is different as with regard to that (43) of reversible reaction
(39) as well as to both those (53) and (56) of irreversible reaction (47) with,
respectively, the frequent (52) and the rare (55) low-amplitude fluctuations
in the forward rate.

Figure 3 compares the temporal behavior of bimodal solutions for the
first, third and fourth cases noted above in the corresponding limits of
stochastic fluctuation parameters ν and σ, given the deterministic rate con-
stant parameters a and k. As seen, three solutions (53), (56), (57) for
irreversible reaction (47), while all being bimodal or, at least, quasi-bimodal
in their form and look very similarly, are in fact not close to one another in
the full time interval. Consequently, in the conditions of fluctuating forward
rate constant, a single information that some transient intermediate of decay
reaction in question, say a non-stationary state population, evolves in time
according to a bimodal distribution is insufficient and does not determine
by itself both the order of reaction — one-step or two-step and the type of
reaction — deterministic or stochastic, as well as does not define the most
appropriate values of its rate and fluctuation parameters. The same is true,
even to a greater extent, for tri-, tetra- and more modal distributions of pop-
ulations too. However, in these cases, the substantial additional information
about the character of concrete multi-modal temporal patterns is required.

Fig. 3. Bimodal and quasi-bimodal population plots in three limiting cases of pa-
rameters a = 2, b = 0.2, k = 0.5 given in inverse time units.

3.3. Stochastic resonance point

Limiting cases described above are typical in a sense that they imple-
ment within themselves the bimodal projections (38), (53), (56), (57) of the
four-exponential case (34) most clearly and correctly. There is hence high
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confidence in their ability for describing in (34) also a stochastic resonance
point. A resonance point of the stochastically perturbed system represents
a specific critical point in its multi-modal dynamics where eigenvalues of
two or more modes coincide with one another so that direction of the pref-
erential relaxation process — forward or backward — is indeterminate and
the resulting overall relaxation rate is zero, given appropriate initial con-
ditions. Formally, a stochastic resonance point corresponds to a consistent
zero point implicit in the zeroth- and first-order time derivative terms of dif-
ferential equation. With respect to the bimodal equation (41) of reversible
one-stage model (39) and the three-exponential equation (48) of irreversible
two-stage model (47), both with the nonzero forward rate constant a > 0,
jointly taking the corresponding terms to zero leads to two respective iden-
tities

a(a+ 2ν) + 2b(a+ ν)− σ2 = 0 ; a(a+ 2k) + 2ν(a+ k)− σ2 = 0 . (58)

A union of these identities is compatible with a single quadruple point of a
stochastic resonance

σ = a ; ν = 0 ; b = 0 ; k = 0 (59)

consistent with a zero point of the four-exponential equation (34) for a two-
step decay model (22) too.

The afore-defined point (59) is a four-dimensional coordinate (x1, x2, x3,
x4) that denotes a single position (1, 0, 0, 0) in the reduced rate constant
space (x1 = σ/a, x2 = ν/a, x3 = b/a, x4 = k/a) scaled with a nonzero a to
form a natural scale for the rate constants in (22). Due to criterion of match-
ing the forward rate and stochastic amplitude (a = σ), this point comprises
the necessary stochastic resonance condition. On the other hand, point (59)
is a critical point in the vicinity of which three sufficient conditions are in
addition realized to allow for the over-critically damped four-exponentiality
(34) to be damped critically in a bimodal fashion (53), (56), (57). While
coinciding the forward rate a with stochastic amplitude σ resonantly, three
other system’s rates, that is, the backward rate b, the decay rate k, and the
fluctuation rate ν turn out to be almost insignificant with respect to a at
this point. Physically, this directly corresponds to the effect of stochastic
immobilization noticed above in (45), (46). The same effect follows from
solution (50) for also the irreversible two-stage model (47), but only if to
apply the resonance condition (59) in perfect order: first k = 0 and then
ν → 0. In this case, we approximately derive from (50) a bimodal solution

P1(t) =

[
1− λ1 exp(λ2t)− λ2 exp(λ1t)

λ1 − λ2

]
(60)
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with two modes λ1,2 = −(a + ν) ∓
√
ν2 + a2, and further arrive at a mode

free solution

P1(t)|(ν/a)→0
∼=
[
1− exp(−ν t) +

( ν
2a

)
exp(−2at)

]∣∣∣
(ν/a)→0

→ 0 . (61)

The latter really signifies for the two-state system (47), conditioned by k = 0,
its immobilization in the initial state |2〉, occurring due to the presence of
zero in frequency (ν = 0) yet resonant in amplitude (σ = a) fluctuations in
the forward rate.

However, applying a resonance condition (59) to (50) in the opposite
order, first ν = 0 and then k/a → 0, reduces the corresponding mode free
solution, which arises now from (57), to

P1(t) = [1− exp(−2at)] −→
t→∞

1 . (62)

This does not cause immobilization of system (47) in its initial state |2〉
but instead leads to a strange attraction of the system to its final state |1〉.
Such an attraction is furthermore strange since it does not occur in the
reversible one-stage model (39) at all. Immobilization in this model always
occurs in the initial state |2〉 independently of the order in which the critical
values of rate parameters ν and b are actually taken to zero, that is, either
first b = 0 and then ν → 0 or first ν = 0 and then b → 0. Indeed,
for both orders, we get the limit P1(t) −→t→∞ 0, which is opposite to (62) but
almost corresponds to (61). Therefore, not only in the case of low amplitude
fluctuations σ → 0 (56), but also in the case of fluctuations with resonant
amplitude σ = a (57), the limit of very rare fluctuations (55) is untypical for
the irreversible two-stage model (47). The temporal behavior of the latter
does not reproduce kinetics (43) of the reversible one-stage model (39) in this
limit, as well as does not correspond to kinetics (38) that must be common
for the limiting models of irreversible two-step decay (47), with b = 0 and
k 6= 0, and reversible one-step decay (39), with b 6= 0 and k = 0, at large
fluctuation frequency ν →∞ (52).

The above is true even with a bigger count of the general two-step decay
model (22) too. With respect to the four-exponentiality in its transient-
state population kinetics accounting for the infrequent and resonant discrete
stochastic fluctuations in the forward rate, such a more complex two-step
decay model has a far greater complexity than both an irreversible two-step
decay model and a reversible one-step model. However, the desired detailed
analysis of this item, particularly with concern to the distinction between
ordering of alternatively removing either the deterministic decay rate or the
stochastic fluctuation rate in slowly decaying and rarely fluctuating two-
step–two-state systems, requires separate consideration.
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4. Discussion and conclusions

In the present paper, the problem of the two-step decay in a microscop-
ically reduced two-state system subject to discrete macroscopic fluctuations
in the forward rate (22) approximated by a symmetric dichotomous stochas-
tic process is solved exactly. Using the Liouville–Von Neumann microscopic
approach (1)–(9) for description of the time evolution (12) of population (13)
of the ergodically degenerated and randomly broadened system’s energy lev-
els (14), the equation for kinetics of transient population in the two-state
system averaged over the stochastic process is derived in a closed analytical
form (34). It is shown that the solution of this equation, which is in gen-
eral four-exponential (36), reduces to the three-exponential (50), (54) and
bimodal (38), (43), (53), (56), (57) forms, respectively, in the corresponding
limiting cases (47) and (39). That reduction appears as adequate for a full
range of the rate constant space in (22), but a stochastic resonance point
(59). At this point, forward rate a is resonantly coincident with stochastic
amplitude σ, while decay rate k, backward rate b, and fluctuation rate ν
are negligible with respect to a. However, in the vicinity of stochastic reso-
nance point, the order of vanishing k and ν is important. Thus, if one would
like to take to zero first k and then ν, then irreversible two-stage system
(47) correctly reproduces the effect of stochastic immobilization (61) in the
system’s initial state typical of the unidirected reversible one-stage system
(39), (46). On the contrary, if one would like to do so in the opposite order,
first ν = 0 and then k → 0, the effect of vanishing of k cannot be neglected,
leading instead to an attraction of the system to its final state (62).

One reason for this discrepancy is that at a very low, but finite k, the two-
state decaying system (22) becomes non-ergodic, because the first equation
for a state’s populations in (29) breaks down the normalization condition of
these populations typical of the two-state reversible system (39). Moreover,
there can appear different types of stochastic motion in the two-state sys-
tem (22). In general, one indicates relaxation motion which reversibly takes
the system toward its stationary state with the forward a and backward b
rates, decaying motion which irreversibly degrades it away from this state
with the rate k, and fluctuation motion which randomly interrupts its for-
ward rate by means of symmetric dichotomous stochastic process with the
mean amplitude σ ≤ a and frequency ν. In the two-state system (22), these
motions can be in the distinction between using them for description of the
temporal behavior of populations. Especially, such a distinction is appar-
ent in the case of resonant and rare fluctuations, i.e. in the vicinity of a
stochastic resonance point. The latter is typical of the many non-stationary
non-equilibrium systems, such as analogue electrical circuits [40], bistable
optical devices [41], or bistable macromolecular reactions [42]. Therefore, in
terms of its temporal behavior, the two-state system (22) can be considered
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as a first approximation to those more complex systems, which exhibit a
lack of both the detailed balance condition for relaxation rates and the nor-
malization condition for populations in their kinetics, and demonstrate the
breaking of symmetry between relaxation and fluctuation phenomena under
the stochastic resonance condition as well [40]. In this context, it would
be likely to suppose that relations (50), (53), (54), (56), (57) obtained here
in the various limits (52), (55) may reveal some new kinetic properties at
the level of simple two-state decaying systems subject to resonant and rare
fluctuations in their rate constants, and can be observed in the future ex-
periments as two-, three- and four-exponential temporal patterns (38), (50),
(34)–(36) of a transient state’s populations probed in the different condi-
tions.

Thus, basing on the results obtained, the main conclusions are as follows:

1. Allowing for the forward rate in the two-state decaying system, whose
deterministic time evolution is known to be simply bimodal, to di-
chotomously fluctuate with finite mean frequency and finite amplitude
makes the stochastically averaged kinetics of a system’s transient-state
population essentially four-exponential.

2. This four-exponentiality reduces to the simpler three-exponential and
bimodal temporal behaviors in the corresponding limits of very rare
and very frequent stochastic fluctuations, respectively.

3. There is a stochastic resonance point, where the forward rate is in
perfect resonance with stochastic amplitude, while the backward rate,
decay rate and stochastic frequency are all negligible.

4. At a stochastic resonance point, the effect of stochastic immobilization
of the two-state system in its initial state emerges.

5. There occurs a critical behavior in the vicinity of a stochastic resonance
point exhibiting itself as the dependence of stochastic immobilization
in one or another system’s state on the order in which vanishing either
the decay rate or the stochastic frequency is provided first before both
arriving at zero exactly.
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