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Brains are the most complex systems in the known Universe. Under-
standing brain dynamics, control of behavior and mental processes is the
ultimate challenge for science. It requires multi-level explanations, start-
ing from evolutionary pressures, genes, proteins, cells, networks of neurons,
psychophysics, subjective experiences at the mental level, and social inter-
actions. Many branches of science contribute to this endeavor. Physics
provides experimental and theoretical tools at the molecular and brain
signal processing level, and mathematical tools at the level of neurody-
namics. Inspirations from understanding brains are of great practical im-
portance in many fields, including neuropsychiatry, neuropsychology and
artificial intelligence. Neurodynamics provides the best language to link
low-level molecular phenomena to high-level cognitive functions. Compu-
tational simulations help to understand molecular dynamics and analyze
real brain signals. This is a very fruitful area of research that requires
global, interdisciplinary effort of experts from many branches of science.
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1. Introduction

In the XXI century, science has finally reached the stage at which we
can start to understand complex systems, including connections between
brain, behavior and mind. Physics of mind should describe processes that
govern mental events. This idea 20 years ago seemed to be so far-fetched
that an article in Computer Physics Communications was accompanied with
editor’s remark: “We hope our readers will find inspiration in these more
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unusual contributions, such as that of Duch on Computational Physics of
the Mind ” [1]. Two decades later Physics of Life Reviews has organized a
special issue on the physics of mind. Recent article in Nature Physics calls
for “unconventional collaborations with researchers” to build a “physics of
society” [2].

New techniques to analyze genetic and cellular processes at molecular
level measure brain signals and use computational tools to model brain pro-
cesses, facilitating development of multi-level theories of brain functions.
Physics is at the core of brain research, providing experimental techniques
for people studying genomes and proteins, cells and their structures, but
also developing new neuroimaging and electrophysiological techniques, and
computational models of neural dynamics that help to understand mental
processes.

I will present here an overview of attempts to use computational mod-
els of brain functions to develop new language for understanding mental
processes. It will provide a path from physis to psyche. Pauli wrote in
1952 [3]: “It would be most satisfactory if physics and psyche could be seen
as complementary aspects of the same reality”. We are slowly reaching this
point. In recent years, a number of interdisciplinary research centers has
been created in Poland, including our Center for Modern Interdisciplinary
Research at the Nicolaus Copernicus University, with laboratories working
on genomics, molecular biology, environmental chemistry, nanotechnologies.
Our Neurocognitive Laboratory works on neuroimaging, brain neuroplastic-
ity, theoretical approaches to brain signal analysis, computational modeling
of neurodynamics, neuropsychology and developmental psychology. We see
a great potential in interdisciplinary multi-level approach to brain research
that should help to maximize human potential at all stages of life.

The next section reviews history and the current situation of brain/mind
research, followed by the current state of multi-level phenomics addressing
global brain initiative goals. In the fourth section, geometric model of mental
spaces is introduced, followed by the section on neurodynamics in attractor
networks. Trajectories of continuous dynamics may be visualized and af-
ter discretization provide an abstract model of individual mental processes.
Such models may be implemented in software representing cognitive archi-
tectures. However, in contrast to psychological theories based on artificial
constructs [4], they are grounded in physical processes in the brain that can
be objectively measured [5].

2. Historical remarks

Psychophysics was an important part of physics for a long time. Under-
standing the relation of objective measurements to psychological sensations
has motivated Newton to work on the model of spectral hues represented
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by points on a circle. In the XIX century, Hermann von Helmholtz has
worked less on electromagnetism than on the physiology of perception, color
vision, theories of perception of space and sound or nerve physiology. Cre-
ation of good models to relate various features of sensory perception proved
to be much more difficult than creation of models based on objective mea-
surements of physical quantities. Methods of measuring the strength of
psychological sensations in relation to the intensity of physical stimuli were
developed by E.H. Weber (1834, 1846) and G.T. Fechner, whose classic book
Elements of Psychophysics was published in 1860. This book had strong in-
fluence on Ernst Mach, who developed measurement theory and wrote that
“a psychophysical measurement formula assigns numbers to sensations in
the same way a thermometer assigns the temperature to a state of heat”.
This has proved to be much more difficult than Mach has imagined, because
sensations are the final step of a complex process converting sensory signals
into subjective percepts.

In 1920, Schrödinger has published 3 papers in the Annalen der Physik [6]
describing color vision using curved Riemannian manifolds. Psychological
spaces for representation of pure tones, odors and tastes were also proposed.
Unfortunately, physicists have lost their interest in psychophysics, with no-
table exception of acoustics and optics communities concerned with tone,
speech and visual perception. The work by famous physicists at the begin-
ning of XX century has been largely forgotten in the excitement brought by
quantum physics. Development of new neuroimaging techniques and compu-
tational models helped to overcome difficulties of conducting experimental
and theoretical brain research. Recently, it became clear that the way to un-
derstand the mind leads through modeling of neural processes at many levels,
from biophysical to the systems level [7]. Brain research is very difficult be-
cause each brain is unique, influence of experiment on cognitive system is
irreversible, therefore, stability, comparison of results, and attempts to gen-
eralize them are hard to manage. Recent replicability crisis in psychology
and the difficulty of creating psychological constructs that correspond to
brain processes has prompted some researchers [8] to claim that psychology
cannot be an empirical science. However, tools that are developed now may
provide models predicting functions of individual brains.

An attempt to base psychology on behaviorism, objective observations,
was motivated by successes of physics. Kurt Lewin (born in Mogilno in
1890), one of the founders of social psychology, has published several influ-
ential books in 1936 [9], 1938 [10], and 1951 [11] describing psychological
processes in topological spaces, focusing on conceptual representation of
mental states and understanding their dynamics using psychological force
field analysis. Unfortunately, these forces were based on subjective psycho-
logical constructs inferred from behavioral observations. Daniel Kahneman
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in his Nobel Prize speech in economics (2002) said: “As a first-year student,
I encountered the writings of the social psychologist Kurt Lewin and was
deeply influenced by his maps of the life space, in which motivation was rep-
resented as a force field acting on the individual from the outside, pushing
and pulling in various directions. Fifty years later, I still draw on Lewin’s
analysis of how to induce changes in behavior . . . ” [12].

Grand field theory project of Lewin has never been completed, but we
are now in much better position to create such a theory. Dynamical theory
of mental processes may be based on forces that operate on mental states
represented by attractor dynamics describing events in psychological spaces.
Psychological forces may be defined as the probability of transition from
one cognitive state in the “valence field” (emotional states) to another state
(Lewin’s impact is reviewed in [4]). In Lewin’s approach, cognitive dynamics
of human behavior is represented as a movement in phenomenological (he
has used the word “hodological”) space, “life space” or a “field” that includes
person’s values, needs, goals, motives, moods, hopes, anxieties, and ideals.
Forces in this field arise in social situations, driving cognitive movement
toward or away from goals of the person. Lewin’s description of mental
change includes 3 stages: unfreezing or escaping the inertia, transition with-
out clear idea where it leads, and freezing or crystallizing new behaviors.
He has used physical concepts in metaphorical way to describe psycholog-
ical phenomena, but we can now link them to the dynamics of attractor
neural networks, simulated as well as observed using electrophysiological or
neuroimaging methods [13, 14].

Developments in the theory of complex systems give a chance to renew
the interest in psychophysics and the neurodynamics of the brain. Com-
putational physicists will undoubtedly play a major role in these modeling
attempts. The final goal — understanding brains and building artificial
minds — encompasses much more than the original goals of psychophysics.
Computational tools allow chemists, physicists and biologists to solve prob-
lems that are too complex for human brains, for example, to build complex
networks of molecular signaling pathways, genetic and metabolic processes
in biological systems, with knowledge automatically extracted from tens of
thousands of publications [15]. Building tools for psychology and develop-
ing autonomous mind-like systems may completely change the way science
is done.

Psychophysics has another important aspect, even more difficult than
quantification and description of psychological sensations. The problem of
explaining relations between the mental and the physical world is known
as the “psychophysical problem”, or the mind-body problem, and has been
known since antiquity. Many scientists believe that it has not yet been fully
resolved, as the review of the history of psychophysics shows [16]. Under-



Multi-level Explanations in Neuroscience I: From Genes to Subjective. . . 1985

standing means finding models that can be expressed either in a symbolic
way, or by using mathematical equations and computational simulations.
Questions “why” are answered by evolutionary biology, taking into account
specific living conditions of various species. Questions “how” require eluci-
dation of mechanisms. In contrast to common opinion, we have models of
brain functions allowing for understanding of principles, but not all details,
of the psychophysical problem.

Large international efforts are now undertaken to create “International
Brain Initiatives” around the world. Global neuroscience should “align as-
pects of the various national brain research projects around the world” [17].
In 2013, United States “Brain Research through Advancing Innovative Neu-
rotechnologies” (BRAIN) Initiative, and the European Brain Project were
announced, leading to “Canberra Declaration” of International Brain Initia-
tive, a global collaboration that includes now Australia, Canada, China, Eu-
ropean Union, Japan BRAIN/MINDS project, Korea and United States, and
involvement of international organizations, programs such as IEEE Brain ini-
tiative. These multi-billion dollar projects are aimed at acceleration of brain
research, including basic research and neurocognitive technologies. Global
initiatives represent opportunities for physicists to work with cognitive scien-
tists on development of new experimental techniques, signal analysis meth-
ods, computational models and simulations. The BRAIN Initiative is sup-
ported by 5 USA federal agencies and over 20 private partners that formed
the BRAIN Initiative Alliance [18]. The National Institute of Health BRAIN
2025 report [19] defined 7 highest priorities:

— Identify and provide experimental access to the different brain cell
types to determine their roles in health and disease.

— Generate circuit diagrams that vary in resolution from synapses to the
whole brain.

— Produce a dynamic picture of the functioning brain by developing and
applying improved methods for large scale monitoring of neural activ-
ity.

— Link brain activity to behavior with precise interventional tools that
change neural circuit dynamics.

— Produce conceptual foundations for understanding the biological basis
of mental processes through development of new theoretical and data
analysis tools.

— Develop innovative technologies to understand the human brain and
treat its disorders, and create and support integrated human brain
research networks.
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— Integrate new technological and conceptual approaches produced in
goals 1–6 to discover how dynamic patterns of neural activity are trans-
formed into cognition, emotion, perception, and action in health and
disease.

I will focus here on the last topic, relations between brain and mind.
While this is a very broad topic, the states of the brain may be investi-
gated from two broad perspectives: electrophysiological and neuroimaging,
and computational simulations of neurodynamics linked to mental states
described by psychological constructs.

3. Phenomics: understanding the brain at many levels

Phenomics is the branch of science concerned with identification and
description of measurable physical, biochemical and psychological traits of
organisms [20]. Many branches of phenomics have been created to describe
processes and entities at molecular level: genomics, epigenomics, proteomics,
metabolomics, interactomics, transcriptomics, exposomics, virusonomics,
healthomics etc. Connectomics describes all kinds of connections between
brain regions and types of neurons. Behavioronomics describes and classifies
various types of behavior. As a result omics.org has a list of hundreds of
various “omics”, analyzing functions and interactions in various -ome layers
of biological entities [21].

Currently, characterization of full set of phenotypes of an individual is
at rather low level, characterize genomes. A few best-known large scale
phenomics projects include:

— Human Genome Project, since 1990;

— Human Phenome Project, since 2003;

— Human Epigenome Project, since 2003;

— Personal Genome Project, 2005;

— Human Connectome Project, since 2009;

— Developing Human Connectome Project, 2013.

These and several other large-scale phenomics projects try to create
“genotype–phenotype” maps and link phenotypic characteristics to health,
disease and evolutionary fitness. Consortium for Neuropsychiatric Phe-
nomics [22] investigates phenotypes of people suffering from serious mental
disorders at all possible levels since 2008. Can neurocognitive phenomics



Multi-level Explanations in Neuroscience I: From Genes to Subjective. . . 1987

be developed to understand general behavior of people, their mental states?
Depending on the precise questions asked, brain processes at various tempo-
ral and spatial levels may be most relevant, from 10−10m to 1m, and even
wider time scale, from picoseconds to years (Fig. 1). Full understanding of
animal behavior requires analysis of many processes: formation of proteins
based on information stored in genes and involvement of internal environ-
ment in post-translational processes, assembly of cell structures — mem-
branes, receptors, ion channels, synapses — and emergence of biophysical
properties of neurons, their interactions with other brain cells, formation of
whole brain networks resulting from interactions with external environment,
dynamical states that may arise in such networks, responsible for percep-
tion, control of movement, formation of cognitive phenotypes, explaining
normal and abnormal behavior, including psychiatric syndromes. Different
branches of science have contributed to the growing knowledge at each of
these levels. Physics contributes not only providing experimental methods
at every level, but also theoretical biophysical models for understanding and
simulating neurodynamics at the system level.

Fig. 1. Spatial and temporal resolution of processes influencing brain activity.
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Understanding of human behavior has been based on observation and psy-
chological theories that has been disconnected from the brain mechanisms
responsible for behavior. Psychiatry has traditionally used psychological
constructs to describe behavioral syndromes that shared some core charac-
teristics. Manuals that are used for diagnosis of mental disorders list different
symptoms and if some subset is observed in patient’s behavior, assign them
to broad categories such as autism spectrum disorders or schizophrenia. In
recent years, psychiatrist understood that “. . . these categories, based upon
presenting signs and symptoms, may not capture fundamental underlying
mechanisms of dysfunction” [23]. Instead of classification of mental disease
by symptoms, multi-level neuropsychiatric phenomics has been proposed to
describe processes that regulate working of the large brain systems.

National Institute of Mental Health (NIMH) in the USA promotes anal-
ysis of major brain networks and their dynamics, regarding it as the best ap-
proach for understanding abnormal behavior. Five high-level brain systems
have been distinguished, each composed of many subsystems that are labeled
by psychological constructs. For example, Cognitive Systems are responsible
for many processes, including several types of memory, attention, perception,
language and cognitive control. Negative Valence Systems are primarily in-
volved in responses to aversive situations or context, such as fear, anxiety,
and loss. Positive Valence Systems enable reactions to positive motivational
situations or contexts, such as reward seeking, consummatory behavior, and
reward/habit learning. Social Processes Systems mediate responses in inter-
personal settings of various types, including perception and interpretation
of others’ actions. Arousal/Regulatory Systems provide appropriate home-
ostatic regulation of such systems as energy balance and sleep, generating
activation of neural systems appropriate in various contexts.

These large brain systems depend on the processes at genetic, molecular,
cellular, circuit levels, and may also be characterized by physiological and be-
havioral changes, subjective mental reports. Collecting all this information
in a big “Research Domain Criteria” (RDoC) matrix should help to fill the
gaps of our knowledge. Many white spots still remain. This research should
provide bridges between all levels, linking adjacent level, from environment
to behavioral syndromes and subjective states. Neural network level allows
for simulation of functions assigned to specific psychological constructs. By
identifying biophysical parameters of neurons required for normal neural
network functions, it is possible to modify these parameters and investigate
abnormal network states. For example, creating models of working memory,
or shifts of attention that depend on properties of individual neurons as well
as the whole network may show the range of biophysical parameters that
preserve normal functions. Going outside this range will break the system
in various ways that can be related to known mental problems.
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Following psychiatry similar approach should be actively pursued in psy-
chology and learning sciences [24]. Examples of this strategy will be pre-
sented below. However, before doing that, some remarks on our ability to
understand subjective mental states will be made.

4. Geometric model of mind

A few attempts to create description of mental events in psychological
spaces have been made in the past. Kelly has created personal construct
psychology (PCP), using geometry of psychological spaces as alternative to
logic [25]. His ambitious project was aimed at complete theory of cognition,
action, learning and intention. Psychological constructs were used to divide
space into “repertory grid” to analyze schemas that are the basis of decision
making and world views. This approach was used in psychotherapy to build
models of patient’s behavior. PCP ideas are still developed by a community
of psychologists who run Journal of Constructivist Psychology. There are
many software packages for construction of repertory grids. However, PCP
offers a very crude representation of mental models. Shepard [26, 27] tried to
formulate universal laws of psychology in appropriate psychological spaces.
His approach based on group theory was quite successful in psychophysics.
Lewin, Kelly, Shepard and many other psychologists have dreamed about
such geometrical model of mind for a long time (see [28] for brief history).

Subjective mental states seem to be outside the realm of physics. What
we can aim at is to find isomorphism of brain states and transitions between
these states, and corresponding mental states. Brain and mental states are
like two sides of the same coin, brain states and behavior observed from out-
side, and mental states interpreted and expressed inside the system itself.
Brain states are estimated from analysis of EEG, MEG, NIRS-OT, PET,
fMRI and other signals. To link them with mental states, we need to ex-
tract quasi-stable microstates that are responsible for perception of objects,
actions, thoughts and imagery. Projection of continuous brain signals on a
set of semi-discrete attractor network states allows for recognition of inten-
tions to act. This is the main approach to the brain-computer interfaces
for mental control of computer programs or various devices for the disabled
people.

Forward models of fMRI data in response to auditory or visual stimula-
tions with pictures or video have been constructed [29]. These models may
be used to reconstruct information about stimuli from fMRI data, including
abstract semantic information, and even complex stimuli such as sentences.
Reconstructions of mental representations are quite noisy, but show that
some brain states may be categorized in a meaningful way describing them
in a symbolic way. Distribution of brain activity measured by fMRI was
determined for imagery of over 1700 objects [30, 31], creating brain atlas of
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activations that have semantic interpretation. Generic decoding of brain ac-
tivity for arbitrary seen and imagined objects has been demonstrated, using
fMRI signals to predict visual features that are created by deep convolu-
tional neural networks used for image recognition. A set of decoded features
that contains some invariants emerging in hierarchical images processing
may be used to identify seen/imagined object categories that have not been
used for training [32]. This technique can also be used to decode images in
dreams [33].

John Locke (1690) defined consciousness as “the perception of what
passes in a man’s own mind”. Brain is very noisy and we are able to per-
ceive only strong peaks of neural activity that can be identified and are suffi-
ciently persistent to be categorized. Quasi-stable brain activity patterns are
associated with phonological or motor representations and can be expressed
either in a verbal way (speech or silent thought) or by motor actions. Con-
scious mental events are just shadows of deeper physical reality [34]. This
metaphor may be compared to the famous allegory presented in the Republic
of Plato: prisoners in a cave see only shadows of real things projected on
the wall. The task of philosophers is to perceive the true form of things.
Externally observable behavior and internal conscious states are results of
drastically simplified neurodynamical states, the strongest activations that
can be clearly distinguished from noise in neural system.

From the formal point of view, we are searching for mapping between
mental states S(M) and brain states S(B). Words describing mental states
are used for communication, serving as labels of internal microstates. From
the point of view of causality, such a macroscale description may carry more
information than microscopic description [35]. Spivey [36] in his book The
Continuity of Mind proposed to view mental events as continuous trajecto-
ries in the state space based on activity of neural assemblies. Dimensionality
of such a representation is too high for such a representation to be useful.
This idea is also at the basis of Friston’s free energy principle [37]: brains
have to maintain non-equilibrium steady-state (homeostasis) restricting the
state of whole organism to a limited number of quasi-stable state, creating
attractors that help to maintain dynamical equilibrium. Haken’s synerget-
ics ideas [38] present a different approach to self-organized systems, focusing
on emergence of macroscopic order from microscopic interactions and phase
transitions between different states. Transitions between attractor states in
brain networks have different character.

Dale and Spivey [39, 40] recommended symbolic dynamics analysis of
the trajectories in the space of brain activations. Symbolic dynamics suffers
from combinatorial explosion of the number of symbols in high-dimensional
spaces and brain-based state space is not suitable for direct representation
of subjective mental states. We are aware of very few processes that go on
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in the brain. Useful representations of meaning, allowing for recognition of
large number of concepts from fMRI signals, have surprisingly low dimen-
sionality. In the pioneering paper by Mitchell et al. [29], concepts were char-
acterized by just 25 attributes, while Binder et al. [41] in their brain-based
framework for semantic representation have used 65 attributes. Such vectors
have coefficients that estimate silence of properties that can be associated
with a given concept based on sensory, motor, spatial, temporal, affective,
social and cognitive experiences, derived from large text corpora. Vector
representing word meaning have coefficients that estimate contributions of
global brain activations for a combination of properties to the final activa-
tion characteristic for a given word, as seen in the semantic atlas [30]. Such
vectors may be used to generate fMRI activations with good accuracy [29].

Representation of mental states in psychological spaces spanned by di-
mensions using brain-based attributes should reflect qualities of experience
important for description of inner experience. Mental states, movement of
thoughts could be presented as trajectories in psychological spaces. To find
correspondence between brain and mental states, decomposition of brain
states into components for each attribute should be performed. Some at-
tributes may be approximately identified by activation of well-defined brain
regions, for example sensory components such as color or smell. Other at-
tributes, such as emotional states, social aspects or self, are related to acti-
vation of complex subnetworks. Nevertheless, it will be possible not only to
label brain states using symbols, but to use brain states to create trajecto-
ries of mental states, creating geometrical model of mind. Such an approach
could also solve the problem of the lack of good phenomenology of men-
tal states [42] and show explicitly mind–brain–body relations, bridging the
famous gap between subjective and objective worlds.

Artificial intelligence is a branch of science that tries to solve problems
for which there are no effective algorithms but sufficient heuristic knowl-
edge has been accumulated to find approximate solutions. Attempts to
construct models of mental processes at the symbolic level have brought
artificial intelligence close to cognitive science. In the functionalist tradi-
tion, Newell in Unified Theories of Cognition [43] defined mind as “a control
system that determines behavior of organism interacting with complex en-
vironment”. Computer models of such control systems are called “cognitive
architectures”. In particular, Brain-Inspired Cognitive Architectures (BICA)
are based on functional divisions of software modules into perception, work-
ing memory, declarative memory and executive functions, as it is outlined
in the recent proposal for Standard Model of the Mind [44]. Such architec-
tures represent knowledge at symbolic level. They are quite useful in some
applications but have not yet led to general human-level intelligence. Brains
work using deeper representation based on perception, allowing for natural
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associations and creative imagery. Only in recent years, deep machine learn-
ing techniques allowed to analyze visual, auditory and other types of inputs
necessary for perception at the level similar to human. Many inspirations
for computational intelligence have already been derived from neural sys-
tems, including machine learning algorithms [45] and models of creativity
in artificial systems [46, 47]. A survey of AI and machine learning relations
with neuroscience shows how current advances have been inspired by brain
research, and how both fields may benefit from mutual interactions [48].

In the following section, I will show how geometric models of mental pro-
cesses may be derived from computational models of biologically-inspired
neural networks. Neurodynamics offers a new language that may explain
normal and abnormal behavior that is hard to understand using psycholog-
ical constructs.

5. Neurodynamics

Cognitive Computational Neuroscience (CCN) researchers created many
software packages to simulate biologically inspired or even biologically plau-
sible neural systems. Sophisticated compartmental models of single neurons
(for example NEURON and GENESIS) include geometry of dendrites and
specific ion channels, but are computationally very demanding for simula-
tions of larger networks. The Brain Simulation Platform of the Human Brain
Project [49] plans to scaffold models of molecular-level principal neurons
and cellular-level reconstructions of cortical and sub-cortical regions, models
for implementation in neuromorphic computing systems, and network-level
models of the mouse brain. Such a simulator will be very complex. Ex-
perience with the Blue Brain project [50], detailed simulation of a single
cortical column, shows that it may be difficult to use it for understanding
of cognitive functions.

At the other end of the spectrum, we have population-based neural mod-
els that do not represent single neurons at all. A large number of excitatory
and inhibitory groups of neurons is used to define mesoscopic dynamics of
a network based on mean-field models. Such a simplification of neural ac-
tivity allows for the whole brain modeling. Macroscopic phenomena, such
as EEG or BOLD signals measured by fMRI can be reproduced and ana-
lyzed. The best example here is The Virtual Brain (TVB) simulator [51],
enabling simulation of large-scale brain networks dynamics, realistic connec-
tivity, use of tractographic data from Diffusion Tensor Imaging to generate
connectivity matrices and build rough structures of cortical and subcortical
brain networks. The connectivity matrix defines the connection strengths
and time delays via signal transmission between all network nodes. The
Virtual Brain simulates and generates the time courses of various forms of
neural activity including Local Field Potentials (LFPs), EEG, MEG and
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fMRI signals. TVB software is used to generate, manipulate and visualize
connectivity and network dynamics, providing tools for classical time series
analysis, analysis of structural and functional connectivity, exploration of
network parameters, parallel simulations on computer clusters. Population-
based models are used to simulate effects of neurological brain damage and
neuropsychiatric disease.

Between these two extremes, detailed simulation at a single neuron level
and population-based models, there are neural simulators based on simplified
integrated and fire spiking neurons (ex. NEST and Open Source Brain [52]),
and simpler models based on point neurons and rate coding, preserving key
biological properties: excitatory and inhibitory connections with leak chan-
nels for spontaneous depolarization of neurons. The Neuroscience Gateway
(NSG) [53] facilitates access of computational neuroscientists to computa-
tional models that may run on High Performance Computers (HPC) and
offers cloud resources, sponsored by the National Science Foundation.

Emergent simulator is well-developed and offers minimal models that
capture most important biological properties [54, 55]. The Hodgkin–Huxley
point neurons in Emergent are based on a conductance-based models that
aggregate values of ion concentration and trans-membrane ion flows, see
Fig. 2. Networks of such neurons can be simulated with manageable com-
putational costs. Five types of ion channels are included in Emergent [54]:
excitatory input channels e and inhibitory channels i, the leak channel l for
spontaneous depolarization, and two channels that control accommodation
a and hysteresis effects h. Each trans-membrane ionic channel α is described
by 3 parameters: Eα, gtα, and ḡα.

Fig. 2. Model neuron and its ionic channels, as used in Emergent simulator.
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Parameter Eα is a static property of neurons, representing the reversal
potential for ions flowing through channels α, i.e. the difference of electrical
potential between the inside and the outside of the neuron in equilibrium
state, when electric forces are equal to the trans-membrane diffusion force
acting on ions. Parameter gtα represents the proportion of the total number
of channels α that are open. Parameter ḡα indicates the total conductance
for α when all of the channels for α are simultaneously open. The product
gtαḡα consequently represents the conductance for channel α at time t.

The potential V t
α for α at timestep t depends on the membrane potential

at t (V t
m) and on the equilibrium potential of α denoted Eα; V t

α = V t
m−Eα.

The current I is calculated using Ohm’s law, as the conductance multiplied
by the potential (1)

Itα = gtαḡα
(
V t
m − Eα

)
. (1)

All five types of α channels have ionic currents that can be calculated in
this way. In the “leaky bucket” model of neuron, ions are flowing in and out,
controlled by these five types of channels:

α = e : The excitatory input synaptic channels that let Na+ ions to enter
the cell. It opens when glutamate neurotransmitter is released by the
presynaptic neuron and binds to the synaptic receptor. In this case,
gte is linearly dependent on the excitatory net input.

α = i : The inhibitory channels let chloride ions Cl− in, usually as a result
of activation of GABA-sensitive receptors. This reduces membrane
potential towards the resting potential of about −70 mV.

α = l : The leak channels allow for flow across the membrane of potassium,
calcium and sodium ions, controlling spontaneous depolarization of
neurons.

α = a : Accommodation is a mechanism that models neuronal fatigue, in-
volving inhibitory currents (K+ channels) that are sensitive to mem-
brane potentials and open when calcium concentration is high. This
is a longer term effect that helps to escape from attractor states.

α = h : Hysteresis maintains for a short-time highly excited state of neurons
in the absence of inputs, thanks to the voltage-dependent calcium and
sodium channels that are open when membrane polarization is high.

For all channels, Eα and ḡα are constant in each simulation. The leak
channels do not adjust their opening rate, so usually gtl = 1. For other
channels, gtα is variable. The precise update equation depends on the α
channel considered, as ionic channels are sensitive to the different factors
described above.
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Model neurons are organized in layers representing different brain areas,
connected with each other in reciprocal way by projections (long axons),
linking cortical regions. General principles of cortical connectivity may be
summarized in a few points:

— afferent connections are accompanied by symmetrical efferent connec-
tions, effectively making networks recurrent [56];

— the structure of maps and intra-map connectivity follow similar prin-
ciples all across the cortex;

— inhibitory competition dynamics regulates intra-layer activity levels;

— learning is implemented as a biologically-plausible mix of Hebbian
learning and two-phases error propagation.

Detailed description of integrate-and-fire mechanism of neuron activa-
tion, network construction and equations used to calculate excitation and
inhibition, is presented in the book Computational Explorations in Cognitive
Neuroscience: Understanding the Mind by Simulating the Brain by O’Reilly
and Munakata [54], and a short description of the models used below for
illustration of brain dynamics in our paper [57].

Attractor dynamics is used here to illustrate working of bottom-up atten-
tion processes. Dwelling in each attractor basin gives sufficient time enabling
reliable signal detection, object recognition or formulation of thoughts that
act as verbal labels associated with attractor basins. Transitions between
attractor states correspond to shifts of attention or stream of thoughts.

The connectivity of different layers follows general principles of layered
cortical maps, and in the case of reading model used here includes two input
layers: letter sequences in visual inputs, or phoneme sequences in auditory
input layer. A larger semantic layer represents cortical areas of the brain.
Various subnetworks in the brain compete for access to the highest level
of control-consciousness. The winner-takes-most mechanism leaves only the
activity of most coherent, strongest subnetworks, inhibiting other activa-
tions. This facilitates signal detection, creating stable attractor microstates
that can be reliably distinguished from the noise in the brain and linked to
phonological labels and motor actions. This mechanism allowed Huth et al.
[30, 31] to create semantic map that shows unique cortical activations for
over 1700 words. They are sufficiently similar in brains of different people
to enable reliable categorization of brain states corresponding to semantic
concepts.
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Emergent is using Leabra model, Learning in an Error-driven and Asso-
ciative, Biologically Realistic Algorithm [58]. This model has 6 important
features: (1) it is based on integrate and fire point neurons; (2) only a
small percentage of neurons are highly active at each time, i.e. sparse dis-
tributed representations are learned; (3) many layers of transformation are
included in most models of cognitive functions; (4) inhibition is realized using
k-winners-take-all (kWTA) mechanism; (5) a combination of Hebb correla-
tion learning (neurons that are active at the same time develop stronger
connections), and (6) error correction supervised task learning is used.

In the model of reading (based on standard 3-ways model [54], see Fig. 3),
we shall assume that each neuron of the semantic layer represents a micro-
feature. In reality, such features are also encoded by distributed networks.
This is the basis for “brain-based semantics”, proposed by Binder et al. [41].
The 3 layers between each input and semantic layer transform the signal
from one representation to the other in both directions, i.e. the model may
be trained by showing words in a written form, phonological form or distri-
bution of active semantic microfeatures as input, and requiring appropriate
distribution of activity in the two other layers. Showing the word “deer” we
expect to activate phonological representation of spoken word and semantic
representation of the concept of “deer”. After training on a set of words, the
network prompted by an input shows attractor dynamics, converging on the

Fig. 3. Model of reading, with 140 units in semantic layer.
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basin of attractor corresponding to the stimuli. If there is no clamping of
input, after some time, spontaneous transition to associated attractor basins
is made.

In the case of low-dimensional dynamical systems, symbolic dynamics
(SD) may be used to analyze sequence of states. Phase space is parti-
tioned into regions labeled with different symbols Ai. Every time the system
trajectory is found in one of these regions, appropriate symbol is emitted.
Sequence of symbols gives a coarse-grained description of dynamics that
can be analyzed using statistical tools, ex.: A1, A2, A1, A4, A3 . . . Al-
though discretization of continuous dynamical states looses the fluid nature
of cognition, in some cases, symbolic dynamics may show interesting cog-
nitive representations [36]. For example, distinguishing 4 microstates A,
B, C, D in multichannel global field power EEG patterns of people with
fronto-temporal dementia, schizophrenia and panic disorder, and analyzing
frequency of transitions between these states allowed for reliable diagnosis
based on transition profiles [59].

Symbolic Dynamics is a useful technique for low-dimensional dynami-
cal systems. In high-dimensional cases, the number of symbols grows ex-
ponentially high, even if each dimension is divided into two regions for
d-dimensions, there will be 2d symbols. In the case of neurodynamics, we
are mostly interested in high-dimensional dynamical systems, with d > 100.
Trajectories of such a dynamical system representing changes in distribu-
tion of neural activities in the longer time scales may be visualized using
recurrence plots (RP) [60], fuzzy symbolic dynamics [13, 14] or some other
method of visualization of high-dimensional vector time series data.

Recurrence matrix R is based on approximate equality of trajectory
points [60]. Distances between trajectory vectors in time are calculated
between each time point

R
(
t, t′

)
= R

(
x(t),x

(
t′
))

=
∥∥x(t)− x

(
t′
)∥∥ ,

where the norm may exponentially rescale distances to emphasize small dis-
tances and convert them into a color code, as displayed in Fig. 4. Frequently,
a binary matrix Rij is used with distances smaller than ε replaced by zero.
Such recurrence plots are black-and-white [60]

R(t, t′; ε) = Θ
(
ε−

∥∥x(t)− x(t′)
∥∥) .

Many measures of complexity and dynamical invariants may be derived from
recurrence plot matrices: generalized entropies, correlation dimensions, mu-
tual information, redundancies, trapping times, etc. Probability of recur-
rence may be computed from recurrence plots, or from clusterization of
trajectory points that shows how strongly some basins of attractors cap-
ture neurodynamics, how large they are and for how long the trajectory
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Fig. 4. Recurrence plots and fuzzy symbolic dynamic plots of trajectories based on
140 neural units.

stays in each basin. Recurrence quantification analysis (RQA) finds non-
linear invariant measures of a time series and their physical interpretation,
including sample entropy, detrended fluctuation analysis (DFA), measuring
statistical self-affinity of trajectories, maximum line length (Lmax), largest
Lyapunov exponent mean line length (Lmean), mean prediction time of the
signal recurrence rate (RR), probability of recurrence determinism (DET),
repeating patterns in the system laminarity (LAM), frequency of transitions
between states, trapping time in a given attractor state. Such an analysis
has been successfully applied to many real signals, including diagnosis of
autism spectrum disorder from EEG measurements at very early age [61]

S(x(t),x0) = Θ (ε− ‖x(t)− x0‖)⇒ exp (−‖x(t)− x0‖) .

We have developed a Toolbox called Viser for various visualizations of
trajectories [62]. Fuzzy symbolic dynamics is a natural way to generalize
symbolic dynamics and recurrence plots. Instead of indicator functions that
label distinct regions of the phase space, membership functions are used
to indicate degree to which a point on the trajectory belongs to a fuzzy
set. For two or three membership functions, one may directly plot values of
these functions for each point on the trajectory. Recurrence plots measure
distance of all previous trajectory points to each new point. FSD measures
distances to several fixed points. Another useful visual representation, called
Prototype Distance Plots (PDP) [63], is to place membership functions in
all regions with high-density of trajectory points, defining prototypes in the
centers of attractor basins. PDP matrix is similar to the recurrence plots,
but it has lower number of rows, one for each prototype, with the number
of columns equal to the number of trajectory points.
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Such a visual representation of trajectories shows various aspects of dy-
namics that are difficult to discover looking at individual components, local
trajectory clusters and their relations. FSD and PDP can be applied to raw
signals, transformed signals (ex. ICA/PCA components), or to signals in the
time-frequency domain. In general, 3 steps are required:

— Standardize original data in high-dimensional space;

— Find cluster centers (e.g. by k-means algorithm): µ1, µ2, . . . µd ;

— Use non-linear mapping to reduce dimensionality.

Sharp indicator functions are used to define discrete symbols and use
symbolic dynamics, replacing trajectories x(t) by strings of symbols. Soft
functions characterize points on trajectories in lower-dimensional spaces, de-
pending on the number of reference functions used. Despite drastic reduc-
tion of dimensionality, fuzzy symbolic dynamics in two- or three-dimensional
spaces shows interesting features of trajectories Y (t) = (y1(t;W ), y2(t;W )).
Gaussian membership functions yk(t;W ) = G(x(t)−xk;σk) with large dis-
persion may be used, estimating probability of trajectory arriving at some
distance from the reference points in the phase space

yk(t;µk, Σk) = exp
(
−(x− µk)TΣ−1k (x− µk)

)
.

The key problem is to find good reference points for membership func-
tions that will reveal structures of states and their relations [13]. It may
also be useful to define first linear projections, combinations of signals from
sources or electrodes that show significant coherence. Trajectories in such
a space show switching between activity of subnetworks, and may also be
presented using visualization. For example, the idea of “biologically mean-
ingful dimensions” has been recently used to define tendency towards certain
mental disorders [64], such as autism [65] or Obsessive–Compulsive Disorder
[66]. Projections based on strength of joint activity of selected pairs of re-
gions that are functionally connected define directions that show tendency
to different mental disorders. Each individual case is a point in a cloud that
may be diagnosed, but clouds for some disorders show significant overlaps
with clouds for other disorders. For example, resting state fMRI analysis
of functional connections for schizophrenia and autism spectrum disorder
shows overlapping populations, with schizophrenia population showing in-
creased liability on the ASD dimension, but not vice versa [67].

This may be a robust finding, but it is also possible that differences
between these populations may be revealed if the number of dimensions
is increased, or better correlation measures are employed. Temporal res-
olutions of fMRI is too low to show what is the character of underlaying
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dynamics: it could be an intermittent shift between different attractors or a
fluctuation within a single broad attractor basin. Solution to such questions
may have a great therapeutic significance, helping to define new forms of
neurofeedback [68]. So far, resting state data have provided only averages
over relatively long-time period (about 10 minutes), so we can only display
a static picture.

Visualization of neurodynamics has not been yet a major area of re-
search, so many questions are still open. There is no universal best way of
looking at brain processes. Selection of relevant brain regions or connections
between some regions, as dimensions in which trajectories are displayed de-
pends on the task, as has been shown in the case of OCD, schizophrenia, and
autism spectrum disorders. In practice, activity of a larger number of re-
gions of interest (typical parcellation used in functional brain atlases defines
100–240 regions) is used, so visualization methods based on dimensionality
reductions are necessary. One simple way to create meaningful trajectory
visualizations is to find most frequent patterns of activation Ai = A(Di) for
a given condition (such as disease type) Di and place there reference FSD
membership function Fi(x) = F (||x−Ai||;σi). For example, using the power
of event-related potentials computed from averaging EEG signals was used
to label 4 distinct states. Symbolic dynamics used to analyze frequency of
transitions between these states was sufficient to distinguish several mental
disorders [59].

Supervised clustering techniques may determine typical patterns where
centers of the FSD reference functions should be placed. Trajectory of neu-
rodynamics will then lie close to one of the axis, i.e. for disease Di, we
may expect that Fi > Fj , i 6= j. The trajectory may switch between sev-
eral patterns, showing tendency to several disorders that may be manifested
in the dynamics of a single brain. An example of switching between two
high-dimensional patterns visualized using FSD is shown in Fig. 5. Large
fluctuations around two relatively stable patterns are observed, switching
between them. A few additional attractor basins that are relatively similar
to the major attractors are also seen. Moving the point of view by shift-
ing reference functions to the center of these attractors helps to see more
features that distinguished them from others.

We have developed optimization methods that calculate centers and
dispersions of FSD reference functions in a way that increases average or
minimal separation between adjacent attractor basins to show properties of
high-dimensional trajectories in more details [63]. Using such tools, we may
investigate various effects in complex dynamical networks. Neurodynamics
may be characterized by various measures: position and size of basins of
attractors, transition probabilities, types of oscillations around each attrac-
tor, fluctuations around centers of attractor basins. Some of these features
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Fig. 5. Example of two large basins of attractors characterizing different forms of
behavior.

may be computed using recurrence analysis. However, such features as the
strength of the attractor are rather difficult to evaluate. Using artificial neu-
ral models, such as those implemented in Emergent simulator, the depth or
strengths of attractors may be investigated by plotting the variance of the
trajectory around mean value in the attractor basin (this estimates the size of
the basin) as a function of noise (Emergent has many ways of adding noise,
including membrane, synaptic or activation potential noise). Variance of
distances measured from the center of the cluster of trajectory points grows
with synaptic or membrane noise; for narrow and deep attractors, it grows
slowly, but for wide attractor basins, it grows fast. At large noise levels, the
basin of attractor is not able to trap the system dynamics. Mutual inhibi-
tion of all desynchronized neurons in such a noisy system destroys attractor
basins. The threshold for this process gives an estimation of how hard it is
to get out of the attractor [69].

In general, characterizing attractor basins in high dimensions is difficult:
there may be many paths that lead to other attractor basins, the trapping
(dwell) time is, therefore, a unique characteristics of the attractor state, and
depends strongly on the noise level. Transitions between attractors cannot
be easily predicted and depend on various neural mechanisms, including
relative strength of all 5 types of ion channels. Spontaneous attention re-
quires synchronization of neural activity around some pattern and is a result
of multiple constraints satisfaction, inhibitory competition, neural fatigue,
excitatory inputs, bidirectional interactive processing between associated at-
tractors sharing some features. These effects can be seen in visualization of
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activity of the semantic layer in the model of reading, in the 140-dimensional
layer with semantic units, phonological and orthographic input layers, inter-
acting with each other through hidden neuron layers.

We have performed many simulations to understand neurodynamics of
such systems. Concepts that have similar meaning, such as hind-deer or cost-
wage, have semantic layer patterns that are largely overlapping, their basins
of attractors are close to each other. Training with more variance in phono-
logical or written form of words may increase variance of attractor basins
and improve generalization for distorted inputs. Without neuron accommo-
dation, attractor basins are tight and narrow, leading to poor generalization
and weak associations with other concepts. With accommodation, basins of
attractors shrink and vanish after short time because neurons desynchronize
due to the fatigue; this allows other neurons to synchronize, leading to ac-
tivation of new concepts. Resulting trajectory visits many attractor basins,
and may come back after some time to previous basins, simulating spon-
taneous stream of thoughts arising in the mind. Even if the system comes
back close to previously visited states, it is modified, semantic activations
are changed by the context provided by past trajectory. This is seen in the
recurrence plot in Fig. 4, where some states have dark blocks to the left of
the diagonal, signifying that trajectories come close to previous attractor
basins.

To understand the long-term dynamics, one may label each quasi-stable
state with the name of the nearest attractor basins that arises when the
system is prompted with a given word. In this way, we can create symbolic
dynamics based on a sequence of visited attractor basins. Some transitions
are rare, so like in molecular dynamics, long-time simulations are needed
to explore all potential transitions between attractor basins. They depend
on priming (history of previous dynamics, or stimulation with new context)
and stochastic dynamics driven by the noise in the system.

Averaging over 10 runs with 25 labeled states, a directed transition graph
has been created using the reading model, as shown in Fig. 6 [70]. Boxes
contain labels of attractor basins (words used in training), and directed
edges have two numbers m/n, showing how many times each transition
appeared, and how many transitions were made from a given box. For
example, edge connecting rope and post is used 3 times out of 16 transitions
from rope. In this way, we have non-linear sequence of transitions that carries
information analogous to symbolic dynamics [71, 72]. Although many books
on symbolic dynamics for simple dynamical systems and chaotic systems
have been written so far, graphs of the type presented here have not been
analyzed. Some measures developed in recurrence quantification analysis
can also be used on symbolic dynamics directed graphs.
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Fig. 6. Transitions between attractors in a trained network with stochastic dynam-
ics and moderate noise level.

Sometimes neurodynamics cycles between several states are entering into
a kind of obsessive loop, for example alternating between “tart” and “flan”
(Fig. 6). Connected attractor basins share some microfeatures, some are
deactivated by accommodation and inhibition processes. Visualization us-
ing recurrence plots or fuzzy symbolic dynamics does not show individual
features of patterns. These patterns change rapidly during transitions from
one state to the other. The landscape of actual and potentially accessible
attractor states in the phase space changes in time. FSD plots make an
impression that basins of attractors that have been explored in the past still
exist, but they may not be accessible for some time, depending on the state
of neurons encoding microfeatures in the semantic layer.

Real brain dynamics may be analyzed in similar way, looking for tran-
sitions between brain activations [31]. EEG oscillatory signals may be av-
eraged to obtain global power in different frequency bands for each elec-
trode, providing an analogue to microfeatures that are used in simulations.
While this has been used with considerable success for early diagnosis of
autism [61], the signals measured by the electrodes are mixtures coming
from many sources. Reconstruction models should give more reliable equiv-
alent of microfeatures. Most meaningful results allowing for understanding
of brain processes in psychological terms should be based on decomposition
into subnetwork activity. Brain-based semantics used in Natural Language
Processing is a step on this way [41], but it has not yet been based on real
brain activations.
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FSD visualization and directed graphs showing neurodynamics in sim-
plified form may be based on the resting state neuroimaging data and EEG
analysis of such data may reveal interesting patterns in the rare cases of
Multiple Personality Disorder, showing two or more distinct types of groups
of patterns that characterize the behavior. The use of attractor dynamics to
construct mental models is within our reach although a lot of work remains
to be done.

6. Conclusions

Psychological constructs used in psychiatry do not have direct connec-
tions to physical reality and are thus not capable of capturing brain mech-
anisms responsible for behavior [23]. Neurodynamics provides a useful lan-
guage that allows for deeper understanding of behavior and many properties
of mental processes. It may be linked to parameters that characterize bio-
physical properties of neurons and their connections, and to the network level
that controls behavior, attention, memory activations and actions. Compu-
tational models provide a test ground for analysis of dynamical systems, but
they can also be applied to real brain signals. There are many interesting
questions that can be formulated in the language of neurodynamics. For
example, a few questions related to dynamical models of neural systems are
listed below:

— How to visualize and characterize different types of attractors arising
in long-term dynamics of biologically inspired neural systems?

— How does depth/strenght and size of basins of attractors depend on
neural properties and on neural connectivity, and what is a good way
to describe such properties?

— How does accessability of attractor basins depend on properties of
ion channels, neuron accommodation, inhibition strength, local exci-
tations, long-distance synchronization and various types of noise?

— How stable are different neural models, how strongly trajectories de-
pend on precise values of parameters?

— Are statistical features derived from recurrence quantification stable
or do they suffer from numerical artifacts?

— Symbolic dynamics based on directed graphs derived from analysis of
multiple runs generating long trajectories carries a lot of information
but methods to analyze it yet to be developed. Some ideas may be
adopted from network science [73].



Multi-level Explanations in Neuroscience I: From Genes to Subjective. . . 2005

— Transition probabilities between attractor basins may be used as a
measure of distance to present dynamics in spaces with psychologically
meaningful dimensions; such distances are not symmetric, but Finsler
spaces may be used to define such representations.

Application to real brain signals leads to more questions:

— How to decompose real brain signals into components that represent
microfeatures defining brain-based semantics [41]?

— EEG analysis in the source space should be more useful than in the
signal (electrode) space, but it requires precise information about elec-
trodes and anatomical MRI scans, that are rarely available. Yet, re-
currence quantification analysis performed by Bosl et al. [61] in signal
space gave excellent results for very early diagnosis of ASD, showing
clearly age-dependent changes in brain activity. How non-linear analy-
sis of neurodynamics differs when analyzed at the source and the signal
level?

— Can selection of functional fMRI connections that allowed for defi-
nition of biologically meaningful markers distinguishing ASD, OCD,
schizophrenia and major depression tendencies [64, 66, 68] be also
found by analyzing coherence or other measures applied to the EEG
signals in the source space?

— Trajectories of neurodynamics presented in large-scale subnetworks ac-
tivation space may reveal information about normal and abnormal
mental processes, providing unique map of mental space. Is there a
unique decomposition of the whole brain activity into a combination
of large scale networks that involve partially overlapping regions?

— fMRI signals have temporal resolution that may be not sufficient for
analysis of switching between large-scale networks; localized well-
trained activity may be washed out by averaging over regions of in-
terest. Co-registration of fMRI and EEG signals is difficult but seems
to be necessary for gaining precise information about brain dynamics
[74, 75].

Characterizing influence of genetic and molecular processes on potential
network states leads to many questions:

— What are precise relations of ion channels, proteins that build them
and genes that code for these proteins? In the case of some disease
such as autism, large number (about 1000) genes are weakly correlated
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with symptoms of the disorder. Many deficits at molecular level may
lead to similar dysfunctions at the network and behavior levels, how
can we characterize them?

— Mental disorders in childhood are the end result of specific develop-
mental pathway. Precise diagnostics requires understanding how be-
havioral symptoms differ depending on abnormal structures of specific
types of neurons in different brain areas?

— Neural models of mental functions may replicate results of simple psy-
chological experiments [54]. Changing network connectivity or chang-
ing properties of individual neurons gives estimates of the range of
parameters that preserve normal neurodynamics. In this way, tenden-
cies towards different mental diseases may be linked with molecular
and genetic level. How detailed should the models be to allow for
realistic conclusions?

— How are neural properties influenced by pharmacological interven-
tions? This requires detailed models of ion channels.

— Our model of the effects of influence of calcium channelopathy on
neuronal dynamics [57] explains some detailed properties of emergent
reflex attention. It is the first computational model of calcium chan-
nelopathy theory of autism outlined in [76]. It may be applied to other
disease, providing mechanistic explanation of higher levels of cognition
that is linked to genetic and molecular level.

Finally, mapping between neural and mental spaces may also be ad-
dressed:

— It is now possible to decode images from the brain [31]; similar tech-
niques could be used to project brain signals into a space of meaning-
ful psychological dimensions that reflect inner experience. Trajectories
that fall into attractor basins can then be treated as representations of
certain mental states, viewing “mind as a shadow of neurodynamics”
[28, 34].

— Spontaneous thoughts and effects of bottom-up attention are simulated
by transitions between attractor basins. The speed of such transitions
is a natural measure of how quickly the brain will resynchronize when
a new thought or stimulus comes. It should be correlated with psycho-
logical measures of the ability of switching between mental processes,
multitasking and flexibility of thinking [77].
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— The speed of mental calculations and memory processes depends on
neural noise [78] and can be simulated using neural models.

— Formation of new basins of attractors depends on the learning pro-
cedures, existing associations, conceptual framework that already ex-
ist. This should allow for investigation of various memory distortion,
formation of strong beliefs, polarization of opinions and conspiracy
theories [79].

— Dyslexia and other disorders may be studied using neural models of
information flow between different brain regions. Neural models may
provide some suggestions how to optimize this information flow, what
type of stimuli may change properties of attractor basins and how the
speed of new stimuli presentation may affect comprehension.

Neurodynamics leads to emergent processes that cannot be explained
using psychological constructs and verbal descriptions. It provides a new
language, fruitful novel approach that will certainly deepen our understand-
ing of the brain.

This study was supported by the National Science Centre, Poland (NCN),
grant No. UMO-2016/20/W/NZ4/00354. I am grateful to Krzysztof Dobosz
for visualization of neurodynamics presented in several figures in this paper.
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