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The nonlinear dynamics of neurons can be viewed as the substrate
through which the vastity of mental states and processes making up our
subjective experience emerges from the brain as a physical object. While at
present linear dynamical systems and devices may appear to have greater
practical usefulness owing to their easier mathematical tractability, nonlin-
ear phenomena pervade nature at all scales and harbor immense generative
potential. Such phenomena have aspects of universality and, therefore, can
be elicited, among other possible scenarios, also in analog electronic net-
works containing one or more nonlinear elements, and these are particularly
convenient to realize and study experimentally. Here, a concise review of
the author’s work in this area is presented, without any attempt to com-
prehensively survey the field. Firstly, atypical circuits based on bipolar-
junction transistors, inverter gates, and neon lamps are introduced; these
recapitulate, at least phenomenologically, certain aspects of neural dynam-
ics such as the generation of irregular spike trains. Secondly, the sponta-
neous emergence of synchronization patterns featuring modular organiza-
tion, remote entrainment or implementing viable walking gaits is illustrated
in networks constructed of those and other circuits. Some reflections on the
potential relevance of comparing such profoundly different physical systems
experimentally and possible directions for future work are given.
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1. Background and introduction

1.1. Physical nature of the brain

How can the mind emerge from such a small, wet, warm, fragile, messy
lump of matter as is the human brain? Is there anything unique from the
viewpoint of the underlying physical phenomena that firmly sets it apart
from the other natural and artificial systems? After all, it is the only system
we know of that is trying to study itself. If yes, what is it and what would be
the cause of such a remarkable singularity? If not, what are the implications
for our mental existence and impression of free will? One can argue that
these are among the oldest and deepest questions that our species faces.
Dauntingly, whichever direction one turns, there appear to be dilemmas,
which are compounded by uncertainty around whether or not there is a
distinct point along the phylogenetic tree past which we can consider that
a mind begins to emerge from nervous system activity. Thus far, biophysics
in all its vigorous ramifications has yielded no experimental evidence that
from the viewpoint of matter, energy and their fundamental interactions
at the level of the brain anything unique happens, which cannot and does
not happen in other physical systems. Yet, the idea that there is nothing
fundamentally different between our brain and other matter, living or not,
even in comparison to a neuroelectrically active organ such as the heart,
generally fills us with discomfort [1–6].

One could be tempted to treat the brain as a strictly deterministic system
and the mind as an ontologically separate entity. Such a viewpoint implic-
itly or explicitly pervades modern neuroscience, in particular regrading the
mechanistic, input–output architectural models that have been developed for
particular networks, most notably the visual system. It is certainly fertile
and has enabled formulating and verifying influential hypotheses about sen-
sorimotor function and beyond. However, venturing towards higher aspects
of cognition and emotion, the limitations of this approach readily appear,
and eventually a paradox, or at least an apparent paradox, dawns: should
we assume that mechanistic descriptions of the brain are sufficient to algo-
rithmically capture the workings of the mind, then it would seem to be only
a matter of time before we can run computer simulations at a scale large
enough to reproduce the flow of our own unique identities. In that case,
one could in principle even simulate a living person faster than real-time,
thereby predicting future actions and thus negating free will. On the other
hand, should we assume that this is not possible, it would imply that our
account of brain function is fundamentally incomplete [5, 7–12].

In counterpoint to these issues, it has been repeatedly posited that
stochastic dynamics are essential for brain function, and diverse viewpoints
and models have been put forward wherein intrinsic unpredictability is con-
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ferred by entropy sources ranging from thermal noise to quantum decoher-
ence. Even though we have ample experimental evidence that stochasticity
is indeed present and important for brain dynamics, for example regarding
stochastic resonance in sensory processing, to the author’s knowledge no
clear, falsifiable hypotheses have yet emerged regarding the way in which
unpredictability in and of itself would help address the mind–brain duality.
Asserting that the mind and free will are in some form residing within or
expressed through inherently unpredictable processes may provide some ap-
parent relief from computability dilemmas, but it seems to effectively only
relocate, rather than address, the mystery of their emergence [2, 10, 13–15].

The author’s speculative work surveyed in the present contribution has
been ultimately inspired by the more recent view of the brain as a nonlinear
dynamical system. Even under the assumption of complete determinism, the
consequences of nonlinear dynamics appear to yield some level of liberation
from the quagmire described above, in that they provide the substrate for
emergence and chaoticity. These are distinct but related concepts, which to-
gether loosen the naive expectation that assuming the brain is deterministic
would imply that we should concretely be able to simulate it. With emer-
gence, we intend the ability of ensembles of interacting elements to display
highly structured behaviors having qualitative features, such as the presence
of scale-free phenomena in flocks of birds, which are not trivially predictable
from the dynamical properties of the constituent elements considered in
isolation, even when these are fully known such as in a numerical simula-
tion. With chaoticity, we intend the de facto quantitative unpredictability
of individual or collective trajectories due to extreme sensitivity to initial
conditions, even when again the underlying dynamics are completely known
and deterministic. This should not be mistaken as randomness, for the un-
derlying dynamics are fully deterministic and geometrically-ordered, giving
rise to self-similar structures known as strange attractors. The possibility
for chaos to arise also confers to a system the freedom of expressing certain
universal phenomena, known as critical phenomena, which have profound
implications and preferentially occur in the vicinity of order-to-chaos tran-
sitions [16–23].

Any attempt to introduce the theory and phenomenology of chaos and
emergence goes well beyond the narrow scope of the present review. Much
less ambitiously, here the aim is only to introduce a limited number of ex-
perimental attempts to establish some hopefully fertile parallels and corre-
spondences between the nonlinear dynamics observed in the brain and in
much simpler and smaller networks of nonlinear electronic devices.
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1.2. Connectivity, dynamics and synchronization

Since the dawn of neuroscience, histological studies performed using
neuron-staining techniques as well as dissection of the major white mat-
ter bundles have revealed the essential nature of the brain as a network.
While Camillo Golgi represented it as a continuous reticle, we modernly view
it as a structured, distributed system whose collective activity reflects the
orchestrated dynamics of billions of distinct constituent elements, namely
neurons. Such a network delineates a form of structural connectivity, effec-
tively reflecting a wiring architecture, which is realized over multiple spatial
scales and whose global features are broadly set by genetic and epigenetic
factors. At the microscopic scale, structural connectivity is determined by
the density, type, and strength of synapses. At the mesoscopic scale, it
indexes the arrangement of neurons into assemblies, layers, or partially seg-
regated circuits such as the cortical columns which implement somatotopic
and retinotopic tiling. At the macroscopic scale, it is reflected in multiple
populations of axonal fibers, some of which project radially from the brain
stem and basal ganglia, some of which bend sharply to connect adjacent
gyri, and some of which interlink specific, distant cortical areas [5, 24–27].

In its sheer complexity, the structural connectivity of the human, and
more generally, mammalian brain expresses some fundamental topologi-
cal features that are highly conserved in other natural and artificial self-
organized networks of the most diverse types, such as social relationships
and transportation infrastructure. One such feature is self-similarity in-
tended as the recurrence of similar motifs across scales; among other ways,
this scale-free organization is manifest as a power-law distribution of node
degrees, which entails the presence of a limited number of disproportionately
strongly-connected regions, that are in turn known as the “cortical hubs” and
are crucial for cognitive functioning. Another feature is small-worldness, in-
tended as the instantiation of a minuscule proportion of long-distance con-
nections, which greatly enhance the information-transfer efficiency of the
network as a whole without incurring the prohibitive costs of a densely con-
nected architecture. Statistical features such as these may be recapitulated,
concurrently or separately, by several generative models, some of which are
directly inspired by other physical processes. In the case of the brain, they
are widely considered to have emerged under evolutionary pressure as op-
timal or near-optimal solutions maximizing, for example, intelligence or re-
action speed while keeping the metabolic load and head volume down to
acceptable levels. From a physical viewpoint, the non-trivial arrangement
of structural connections acquires particular importance in consideration of
the fact that the brain exists as a system permanently operating in a non-
equilibrium condition [25–33].
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It is similarly well-known that, based on electrochemical synaptic cou-
plings, neurons collectively generate highly irregular and time-dependent
signals, which one can attempt to capture from the perspectives of synchro-
nization and causality. This effort is highly non-trivial, particularly in that
it usually entails separating the intrinsic activity spontaneously generated
while at rest, from the perturbations which are evoked by external stimuli
or endogenous events. In the domain of neuroimaging and neurophysiol-
ogy, these aspects of coordinated dynamics are considered with reference
to functional and effective connectivity. Similarly to structural connectivity,
the study of activity interdependence can be carried out across multiple spa-
tiotemporal scales by probing single cells, microcircuits or the entire brain,
separately or concurrently. At a minimum, one can search for statistically-
significant entrainment between activity over different sites, for example in
the form of phase locking, synchronization of amplitude (envelope) fluctua-
tions, or more convoluted generalized relationships: this is broadly regarded
as functional connectivity. In order to gain deeper insight, it is however
necessary to establish directed causal effects, either purely on the basis of
the intrinsic activity recorded in an observational framework, or predicated
on the responses to external stimulation administered in an interventional
framework: this delineates effective connectivity [5, 7, 8, 11, 25, 27, 34–38].

In light of the above, it appears fruitful to conceptualize the brain as
a dynamical system described by at least two distinct networks: one repre-
senting the structural couplings between its nodes, and another representing
the engagement attained between the same according to a chosen synchro-
nization or information transfer measure (Fig. 1 (a)). A complex mutual
relationship exists between these two aspects of brain architecture. One
might be tempted to view structural connectivity as completely or largely
fixed, however, the situation is considerably more nuanced due to a multi-
tude of physiological mechanisms collectively referred to as plasticity, and
encapsulated for instance in Hebb’s rule. At the macroscopic scale, after
ontogenetic development is complete, the layout of the large axonal bundles
remains largely unchanged, and any degenerative, compensatory or adaptive
changes require many orders of magnitude longer time compared to the time-
scale of neural events. However, at the microscopic level, synaptic strengths
can be pervasively and permanently modulated by processes which unfold
on the scale of milliseconds [5, 39–41].

One could, furthermore, be tempted to view synchronization and causal
interdependence as a straightforward albeit perhaps imperfect reflection of
the structural couplings. Without question, this is far from being the case
because the nonlinear dynamics unfolding at each node imply that the re-
lationship is weak and non-stationary, and the emergent spatiotemporal ac-
tivity patterns express motifs absent in the structural connectivity. Such a
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Fig. 1. Conceptual framework. (a) Relationship between structural connectivity
and synchronization in the brain. (b) Example of morphogenesis in a simulation
of the Belousov–Zhabotinsky reaction. (c) Diversified synchronization patterns
emerging from a common underlying ring network due to electronic component
parametric heterogeneities.

situation reflects a wide variety of dynamical phenomena, which altogether
yield the very rich dynamical repertoire accessible to individual neurons and
populations of neurons. It, furthermore, follows from the fact that neural
systems preferentially dwell close to order–chaos transition, where critical
phenomena confer the largest degree of freedom with respect to the spa-
tiotemporal patterns that can be generated from a given structural network.
At the critical point, the layout of interactions even becomes irrelevant as all
correlations are long-range, which has fundamental implications even though
we note that neural systems appear to dwell close to criticality, yet are not
in an equilibrium state at the critical point. In the case of the human brain,
the correspondence between structural connectivity and synchronization is
strongest for the regions and signal components indexing the lowest-level
sensorimotor processing, whereas at the global level, it is inversely related
to the degree of preservation of cognitive activity and awareness, the closest
overlap being observed during coma and under anesthesia [22, 25, 42–50].

As also regards these topics, any attempt to provide a detailed account
falls well beyond the limited scope of the present contribution. We shall only
content ourselves with introducing the notion that the observed decoupling
between structural connectivity and synchronization, representing one of the
key reflections of brain dynamics, could, at least to some limited extent, be
recapitulated and thus indirectly explored also in other physical systems,
such as networks of nonlinear electronic oscillators.



Across Neurons and Silicon: Some Experiments Regarding . . . 2035

1.3. Relevance of experimental comparison to other physical systems

The approaches of computational neuroscience and artificial intelligence
strive to provide accounts of brain function that are, one could argue in dif-
ferent senses, as detailed and realistic as possible. On the one hand, there is
the aim of representing as closely as possible the physiological processes in
terms of variables which can be experimentally measured in living systems,
such as intra- and extra-cellular potentials, and of reproducing the associated
anatomical interconnection architectures, as found for example in large-scale
simulations of spiking networks. On the other hand, there is the aim of repli-
cating as realistically and usefully as possible chosen aspects of high-level
cognition, such as in the domains of language processing, motor planning,
and image analysis, with more limited focus on the biological plausibility
of the underlying infrastructure. The enormous contribution given by these
methodologies is unquestionable, and they do provide frameworks entirely
relevant to the approaches of chaos and synchronization theory, but at the
same time, one could perhaps be misled into thinking that a high level of
physiological, architectural or functional detail is necessary to meaningfully
recapitulate any statistical aspect of brain dynamics [2, 51–54].

The rationale behind the present speculative line of work is that this
seemingly turns out not to be the case, the reason ultimately being found in
the universality of nonlinear phenomena, as exemplified by the well-known
case of scaling period-doubling bifurcations. Even though a general theory of
emergence remains lacking and, in this respect, one could argue that the field
remains in a sort of pre-Galilean phase, for instance, it is beyond question
that common synchronization phenomena occur across diverse systems and
scales. In fact, emergence, at least in its simplest manifestations, does not
in any way require complicated dynamics or large ensembles. Instead, there
appears to be something deeply, fundamentally different between linear and
nonlinear dynamical systems and it does not seem to matter much, if at all,
what the nonlinearity precisely consists of, such as a threshold, a power or
a more complicated function. The only additional requirement is set by the
Poincaré–Bendixson theorem, and it is that the collective phase space must
be at least three-dimensional in order for transition to chaotic dynamics to
be possible [16, 18, 19, 36, 38, 55–57].

A particularly compelling case of emergence in a nonlinear dynamical
system is the formation of geometrically-ordered patterns in homogeneous
media, which is elegantly exemplified by the Belousov–Zhabotinsky chemical
reaction (Fig. 1 (b)). A related phenomenon is the arising of non-trivial syn-
chronization patterns, such as clusters and waves, in networks that have a
high degree of topological symmetry and wherein the symmetry is broken via
nonlinear dynamics influenced for example, but not necessarily, by the pres-
ence of parametric heterogeneities. As described below, in such cases small
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parametric changes are often sufficient to yield patterns that are topograph-
ically very different from one another, yet share consistent global features
(Fig. 1 (c)). The potential for simple rules to generate complex shape is also
strikingly exemplified by Wolfram’s automata. These situations can alto-
gether be viewed as akin to morphogenesis, which pervades biology and had
already captured the attention of Alan Turing, whose pioneering work lead
to realizing that structures such as the ordered arrangement of the tentacles
of the hydra may be brought about by elementary nonlinear interactions. In
a similar vein, one would view the highly dynamic synchronization patterns
which are formed between neurons and brain regions as emergent features:
structural connectivity “sets the initial conditions”, but nonlinear dynamics
have the liberating effect of enabling the formation of an enormous reper-
toire of patterns. Toy models have always been highly instrumental to un-
derstanding in physics, and assuming that the nonlinear phenomena at play
are universal, one should be able to probe the underlying mechanisms also
in other, vastly smaller and simpler systems. In this regard, ring structures
have particular relevance given their low dimensionality and high degree of
symmetry: set aside possible parametric heterogeneities, each node “sees”
the same neighbors, unlike the case of chains, stars, etc. [16, 26, 38, 57–63].

Besides certain cases such as the Kuramoto model, the mathematics
available to us at present does not allow extensive analytical treatment of
nonlinear systems, and we dauntingly need to resort to numerical simula-
tions. A solid body of knowledge on the control of nonlinear dynamical sys-
tems is nevertheless accumulating, including applications to chaotic control,
information processing and transmission. While keeping well away from the
question of whether a Turing machine may ever be able to simulate the emer-
gence of a mind, which ultimately could even be inherently unanswerable by
us, we note that numerical simulations have yielded a wealth of knowledge on
the behavior of nonlinear systems across all branches of physics, chemistry,
biology, etc. For example, the virtual totality of the experimentally-observed
phase transition and pattern formation phenomena have been successfully
simulated in some form. However, it is equally incontrovertible that, ever
since the inception of computers, simulation and experiment have always
been profoundly complementary, rather than adversarial; one should, there-
fore, not take the misleading view that numerical simulations are in them-
selves sufficient for gaining deep insight into the behavior of these systems
and relegate experiments to a purely confirmatory role. On the contrary,
serendipitous experimental discoveries illuminating the richness of physical
reality are at a minimum indispensable to inspire numerical work. It fur-
thermore appears truly remarkable that simulating numerically on a digital
computer a small single-transistor system such as one of the oscillators de-
scribed below requires many orders of magnitude more transistors and power
compared to the analog physical object. The as yet latent disruptive poten-
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tial of analog computation has, in fact, attracted attention since the early
days of computer architecturing, and it appears fair to state that computing
based on Turing machines has so far prevailed largely owing to their flexi-
bility and to the ease of scalability of their modern realizations. From the
point of view of the underlying architecture and dynamics, it is unquestion-
able that brains and nervous systems are totally unlike digital processors,
foremost as their functioning is not hinged around designed features and
algorithms, but largely reflects self-organization [18, 19, 58, 60, 63–73].

More practically, at least three issues potentially affecting numerical in-
vestigations in this area appear worthy of consideration. Firstly, the numer-
ical systems encountered when modeling even small nonlinear dynamical
networks can be highly stiff, particularly in the presence of parametric mis-
matches, and tend to be concerningly sensitive to issues such as solver choice,
step size, and limited numerical precision. This is ultimately related to as-
pects of the continuous versus discrete representation of physical variables
including time, as encapsulated in the notion of asymptotic consistency.
Secondly, as mentioned above, the importance of noise and stochasticity,
which can have a powerful generative role; crucially, here we refer to noise
not only in the dynamical variables but in all system parameters, which
complicates numerical solution even further. Thirdly, perfection does not
belong to reality, only to our attempts to reduce and simplify it for aiding
understanding: in all natural and artificial systems, there are parametric
heterogeneities and all sorts of non-idealities, such as finite quality factor in
reactive components, which are not always trivial to capture numerically.
In canonical engineering practice, such imperfections are often the target
of relentless minimization efforts, but in the context of nonlinear dynamics,
they may be essential enablers of the emergence of complex global properties
[12, 16–20, 36, 38, 57, 69].

In light of the above, it does not appear unreasonable to posit that useful
insights could be gathered by comparing the human brain, alongside other
nervous systems, with different natural and artificial nonlinear systems. The
author furthermore posits that doing so not only in simulation but also via
observation and experiment is fundamentally, inescapably important. Far
from being an unusual situation, this approach, for example, maps closely
onto the daily modus operandi of mechanical engineers, who inevitably make
conjoint use of physical prototypes and simulations when determining the
properties of complex structures. Predicated on the notion that an arbitrary
nonlinearity may be sufficient to elicit emergent phenomena of interest, one
could, in principle, equally well elect to experiment with any physical system.
As we live in the era of electronics, electronic systems seem to be the most
natural choice in terms of the ability to realize large experiments with max-
imum flexibility and minimal cost. In vitro preparations such as cultured
neurons and dissected slices, while representing a powerful tool in exploring
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neural dynamics, are not without their issues: these are primarily related to
the associated procedural difficulty and cost, and compounded by often lim-
ited reproducibility and even ethical issues. Mechanical systems would, in
theory, be another equally valid option but entail generally lower integration,
and optical systems are also being considered even though the associated ex-
perimental complexity and cost remain rather high. The present approach
is, obviously, complementary and at no level antagonistic to those of compu-
tational neuroscience, artificial intelligence, and the affine areas: here, the
focus is neither on physiological plausibility nor on functional effectiveness,
but more agnostically and perhaps less ambitiously it is on replicating select
observations of emergent statistical properties about network topology and
dynamics. One way to view the potential contribution of the proposed ap-
proach is as a tool for exploring in silico and at the microscale, meaning at
the level of few tens or hundreds of nodes, the same nonlinear phenomena
that are commonly addressed by neuroscientists in vitro at the mesoscale
and in vivo at the macroscale: an example is the spontaneous formation of
modular and self-similar patterns (Fig. 2) [5, 17–20, 57, 60, 74–78].

Fig. 2. Global features, e.g. modularity and self-similarity, may emerge analogously
in synchronization matrices observed over different system sizes and measurement
scales (micro, meso and macro) and across diverse experimental preparations (in
silico, in vitro and in vivo). Further discussion in Ref. [78].
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Having tentatively outlined the underlying approach and rationale, the
remainder of the present contribution shall focus on surveying an initial set
of findings obtained in the context of diverse, and in many aspects atypical,
nonlinear electronic circuits.

2. Nonlinear oscillators and their dynamics
2.1. Rationale behind searching for atypical nonlinear oscillators

Two pervasive properties hallmarking nonlinear dynamics become ap-
parent upon inspection of any neurophysiological recording, such as those
provided by patch-clamp and multi-electrode array techniques. One aspect
is that the generation of action potentials is quantized, in fact virtually
binarized, at the presynaptic level. This all-or-nothing response plausibly
reflects the physical requirements of electrochemical transmission, wherein
neurotransmitter release cannot be controlled in a fully graded manner but
is determined by the rupturing of synaptic vesicles having finite size. This
mechanism provides significant transmission gain and implements a unidi-
rectional, master–slave coupling scheme. At the same time, the postsynaptic
processing taking place in dendritic trees is a graded, highly complex nonlin-
ear spatiotemporal summation process, which can be summarized according
to a variety of integrate-and-fire models. Even though they are considerably
less prevalent, for completeness, we note that multiple types of electrical
synapses also exist, which realize a rather different coupling scheme closer
to a diffusive process. Whether there is any deeper theoretical reason for
the all-or-nothing dynamics of action potential generation largely remains an
open question, and is related to whether significant information is encoded
in the precise times of occurrences of spikes or whether, in a more simplis-
tic view, the corresponding point process can be locally approximated as a
scalar, average firing rate [5, 20, 77, 79]. The other aspect is that neurons,
and under appropriate circumstances even isolated axons, readily have ac-
cess to a multitude of periodic, quasi-periodic and chaotic regimes which
manifest themselves as the generation of isolated spikes, bursts and irreg-
ular sequences of spikes and bursts [80–83]. Rich repertoires of activity of
these kinds have been consistently observed across the micro-, meso- and
macroscopic scales, for example in the squid giant axon [84], in assemblies
of cells [85, 86] and in entire brains [81, 87]. The specific dynamical prop-
erties of individual neurons are jointly determined by their phenotype, for
instance as regards the expression of genes controlling receptor formation,
and by electrical and biochemical variables such as intra- and extra-cellular
ion concentrations [5, 79].

On another level, in the prevailing engineering approaches, besides spe-
cific situations exemplified by modulation circuits, digital gates and certain
dynamical control systems, nonlinearity tends to be regarded as a hindrance,
something to be avoided and minimized as far as possible since it often
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translates into distortion, poor signal transmission, instability, and possibly
unreliability. Aside from the fact that for countless practical applications
this is obviously the case, a more profound reason is that we have accumu-
lated a powerful mathematical toolkit to deal with linear systems, even very
complex ones, but from a theoretical viewpoint, we remain weaker when
faced with nonlinear systems, and attempts to linearly approximate any
nonlinear system unavoidably lead to incomplete accounts of its dynamics
[18, 19, 72, 88, 89]. In fact, it could be argued that, as far as the phys-
ical world is concerned, referring to nonlinear systems is like referring to
non-elephant animals: practically everything is nonlinear, and this is not a
hindrance at all. Rather, on the contrary, it is the indispensable seed from
which, across all scales, the incredible complexity of the world we experience
sprouts. In a sense, this is reminiscent of the three-body problem, wherein
simply adding one body generally prohibits closed-form solution and opens
the way to scenarios inaccessible to two-body systems [16, 18, 19, 21, 22, 36].

At the time of writing, one has access to a wide range of well-understood
electronic oscillator circuits and topologies having diverse desirable features
such as low distortion, low power consumption, low noise, suitability for
high-frequency operation, etc.: most of these have essentially linear dynam-
ics and produce a sinusoidal output. Considering the particular case of
simple circuits based on one or at most two transistors, topologies such as
the Colpitts and Hartley oscillators are universally-known and have been
investigated so extensively that they have effectively attained a special sta-
tus of “canonical” circuits [88]. However, harmonic oscillators are inherently
unsuitable for representing the nonlinear aspects of neural dynamics which
ultimately give rise to emergence, in that they can show no transitions be-
tween different phases since they only have access to periodic dynamics; yet,
transistors are nonlinear devices and this could, in principle, be harvested
for realizing more complex systems.

The study of chaos in electronic circuits dates back to the first incidental
observations of “irregular noise” by Balthasar van der Pol nearly a century
ago, and was propelled by the much later discovery by Leon Chua of one
of the first electronic circuits which intentionally behaves in a chaotic man-
ner and generates an extraordinarily large repertoire of attractors. While a
broad variety of transistor-based chaotic circuits have been described to date,
many (though not all) represent adaptations of the above-mentioned peri-
odic oscillators, rendered chaotic for instance through inserting additional
nonlinear elements, resonant networks or otherwise disturbing integration.
While such adaptations retain desirable features for practical applications,
they also constrain exploration heavily. At the same time, a general method-
ology for synthesizing chaotic oscillators is presently lacking, and at most
semi-systematic approaches are available [60, 75, 76, 90–92]. One might con-
sequently be led to consider chaos as an infrequent occurrence in transistor-
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based circuits, but is this truly the case and is there anything fundamentally
distinctive in those oscillators that we presently regard as canonical topolo-
gies?

The experiments reported herein could in certain aspects be viewed as
an attempt to address this question; such an effort appears particularly per-
tinent to the present line of research because transistor-based oscillators are
one of the smallest circuit scenarios wherein nonlinear phenomena can be
realized, among other purposes for that of comparison with neural dynamics.
Before delving into any description of some novel circuits, it seems appro-
priate to further underline that there is no intention of considering variables
such as voltages and currents which would in any manner be physiologically
meaningful. This is unlike certain neuromorphic circuits, which attempt
to replicate neural architectures and, in particular, dynamics realistically,
by means of associating chosen physiological variables such as ion currents
and membrane potentials to corresponding electrical variables in an artifi-
cial circuit. Such spiking oscillators tend to be realizations or adaptations
of well-known mathematical models of neurons such as the Hodgkin–Huxley
and Fitzhugh–Nagumo systems. They retain physiological meaningfulness
of the variables often at the price of circuit size, yielding devices that may
include tens of transistors or even more [65, 93–95]. On the other hand,
the present line of work mainly pertains to circuits which are as simple as
possible and wherein the only nonlinearity is, for example, that provided by
saturation or by the current-voltage curves of one or at most two transistors,
as captured in the Ebers–Moll model.

2.2. Chaos and phase transitions in transistor-based circuits

To explore the possibility of synthesizing novel chaotic oscillators in a
manner as unconstrained as possible, the author adopted an approach em-
bodying a form of “synthetic serendipity”, which does not tantamount to any
systematic methodology and simply entails a large-scale numerical search.
This is based on describing the topology and component values of a hy-
pothetical circuit in the form of a bit-string, which could be viewed as a
chromosome sequence: separate segments correspond not to amino acids
but to distinct components and encode their connections as well as their
characteristics, extracted from a predetermined catalog of discrete elements
(Fig. 3 (a)). In an early study, the author deployed this approach within a
genetic algorithm, numerically simulating the dynamics of individual circuits
while aiming to maximize a fitness measure representing the entropy of the
generated time-series. As customary in this area, an implementation of the
Simulation Program with Integrated Circuit Emphasis (SPICE) was used. A
set of atypical oscillators not intentionally related to known topologies was
obtained, and subsequently selected ones were realized physically and found
to be chaotic [96].
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Fig. 3. Searching for atypical transistor-based chaotic oscillators. (a) Bit-string rep-
resenting a circuit topology and the associated discrete component values. (b) Rep-
resentative physical realization of two coupled oscillators on a hybrid module.
(c) Gallery exemplifying the diversity of attractors that can be experimentally
generated. Spiking oscillator with (d) circuit diagram (L1 = 15 µH, L2 = 68 µH,
L3 = 150 µH, C = 470 pF, R ≈ 200 Ω, V = 5 V), (e) recorded waveform and
(f) avalanche size distribution (circles: measurement, crosses: reshuffled data).
Detailed description in Ref. [97].

Later on, five chosen circuits were subject to a detailed experimental
characterization involving an automated laboratory test-bench, in prepara-
tion for their use as building blocks to realize networks of coupled oscillators.
These circuits consist of only elementary components, namely one or two
bipolar-junction transistors, inductors, capacitors, and a resistor. They are
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autonomous, in the sense that they oscillate without requiring any external
excitation. One noteworthy aspect is that they contain several overlapping
series and parallel LC networks, which make available multiple resonances
at frequencies that are not trivially related by integer ratios; these are pri-
marily determined by the possible combinations of discrete inductors and
capacitors, but further enriched by the presence of parasitic effects and tran-
sistor junction capacitances, which can play a determinant role in the circuit
dynamics. In these circuits, the transistor(s) often operate in large-signal
mode, spanning forward and reverse active, cut-off and saturation regions,
implying that there are significant nonlinearities which both determine and
are in themselves influenced by the generated signals. Practically any combi-
nation of the available resonances can be excited, and nonlinear interactions
between them may easily give rise to chaos via the quasi-periodicity route,
as well as via period-doubling and intermittency effects, which could also be
observed. Another important feature of all the dissipative circuits described
in this section, is that energy is provided by a constant voltage source, in
series to which a resistor is instanced: by setting the voltage/current slope
at the input node, effectively the output resistance of the source, the value
R of this resistor has a profound impact on the circuit dynamics, and as
such serves as the only control parameter. From an experimental viewpoint,
it is vastly easier to tune over a wide range compared to an inductance or a
capacitance, and in the course of preliminary experiments, the value of this
resistor was repeatedly found to have a stronger impact on the dynamics
compared to the supply voltage [98].

A representative example of such a circuit comprises, in addition to the
aforementioned resistor, just one transistor, two inductors and one capaci-
tor (Fig. 4 (a)). While the author refrained from making this claim in the
initial study, at least at the surface, it appears that the circuit is of a size
similar to the simplest known transistor-based chaotic oscillators, such as
the Lindberg–Murali–Tamasevicius circuit, yet its dynamics might be richer
[75, 76, 99]. Its experimental realization is trivial and can be carried out
using decades old components, incidentally exemplifying how, in this era of
big data and huge projects, some interesting discoveries can perhaps still
be made using highly inexpensive setups and apparently obsolete technol-
ogy (Fig. 4 (b)). By varying R at high resolution via a stepper motor and
experimentally obtaining the corresponding spectrogram and bifurcation di-
agram, presence of a multiplicity of phase transitions becomes well-evident;
since such acquisitions are particularly demanding, in other studies they are
often replaced with simulations. Most of the circuits of the present kind
exhibit sharp transitions between periodicity or quasi-periodicity and chaos,
whose occurrence is confirmed through estimating the largest Lyapunov ex-
ponent λmax and the correlation dimensionD2 from the measured time-series
[100, 101]. Besides the onset of chaos, which tends to occur prevalently at
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Fig. 4. Representative example of an atypical single-transistor chaotic oscillator.
(a) Circuit diagram (L1 = 10 µH, L2 = 8.2 µH, C = 30 pF, V = 5 V). (b) Physical
realization (top part: input voltage filters, bottom part: oscillator). (c) Bifurca-
tion diagram measured experimentally as a function of R. (d) Voltage waveforms
recorded in different regions (e.g., periodic, quasi-periodic, chaotic with volleys,
chaotic irregular). Detailed description in Ref. [98].

the interface between regions associated with oscillation modes at different
frequencies, some circuits such as the one shown here also display a fine-
grained bifurcation structure (Fig. 4 (c)). Visual inspection of the signals
generated at different settings of R clearly illustrates the existence of di-
versified dynamical regimes, in that by sweeping the control parameter one
elicits periodic and quasi-periodic oscillation at changing frequencies, chaos
in the form of generation of irregular discharge volleys, and chaos evident
as even more irregular cycle amplitude fluctuations (Fig. 4 (d)). In the case
of this circuit and several others of the same kind obtained by the author
and colleagues, periodicity is preserved to a detectable extent and chaos
manifests itself prevalently in the form of cycle amplitude effects, which can
appear at varying levels of asymmetry ranging from modulation of a sine-like
wave through the generation of spike-like signals. While this unquestionably
delineates a difference with respect to neural dynamics, we posit that the
relevant common feature is the spontaneous emergence of multiple phases,
associated with different dynamical features and degrees of order [98].



Across Neurons and Silicon: Some Experiments Regarding . . . 2045

As said, the ability to seamlessly transition between generating regular
spike trains, volleys or bursts, and irregular, highly disordered trains of indi-
vidual spikes is a hallmark of neural dynamics, and is observed pervasively
both in experimental recordings and in physiologically-realistic numerical
simulations [5, 79–87]. The present observation thus hints that circuits of
this kind may have relevance as building blocks for experimentally realizing
networks capable of recapitulating certain emergent features of brain ac-
tivity. Importantly, this assertion does not, in any way, imply that there is
anything “special” about these circuits; quite on the contrary, observations of
such similarity, even if taken only at face value, should inspire reflection that
there is perhaps nothing inherently unique in the dynamics of neurons, since
diversification of dynamics across regions of the control parameter space is
a feature of virtually all nonlinear systems [18, 19].

Motivated by these results, the author and colleagues later re-considered
in a broader sense the possibility of obtaining atypical transistor-based
chaotic oscillators. An important issue with the initial approach was iden-
tified, namely that the cross-over operation inherent in the genetic algo-
rithm nearly always produces an invalid circuit; consequently, given that
only mutations and not inheritance matter, the process could effectively be
simplified to a random search. Representing each hypothetical circuit as
a string of 87 bits, which encodes an enormous number of potential can-
didates (Fig. 3 (a)), the search was implemented alongside basic heuristics
allowing the outright rejection of circuits found to be topologically invalid
or dynamically inactive. As before, the procedure entailed performing nu-
merical simulations based on realistic circuit models while aiming to identify
the onset of chaos. It was deployed on a supercomputer and, among mil-
lions of invalid and inactive circuits, hundreds of potentially-viable oscillator
topologies were identified. Based on the correlation dimension D2 and its as-
sociated uncertainty δD2, two clearly distinct clusters were identified for the
non-chaotic and chaotic individuals. Crucially, in this study, considerable
attempts were made to maximize the agreement between simulation and
experiment, through careful model choice and by placing particular empha-
sis on realizing the circuits with high-precision components, assembly tech-
niques and packages minimizing parasitics (Fig. 3 (b)) [97]. Despite these
efforts, and even though the experimental results were highly repeatable
and reproducible, simulations were largely inaccurate in predicting chaotic-
ity; they were meaningful only for the purpose of establishing the presence
of sustained oscillatory activity and its predominant frequency. This finding
is in line with discrepancies observed for other similar circuits and under-
lines the difficulties inherent in accurately simulating systems of this kind
[98, 102, 103]. And yet, many of the circuits obtained through this partially-
misguided search were nevertheless experimentally found to be chaotic for
suitable values of the series resistor. The implication is striking and obvious:
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among transistor-based circuits which are viable oscillators, chaotic oscilla-
tors do not in any way represent special or rare cases, hence they are quite
easy to find. This is after all not surprising since transistors are nonlinear
elements. In other words, it seems that we are led to deem chaotic oscilla-
tors as special occurrences only because of the pervasive legacy of canonical,
periodic oscillator topologies. One concludes that there exists a potentially
huge number of interesting and useful oscillator topologies which, despite
their small size, have not yet been discovered. Many of them could be of
interest not only for the present purpose of comparison to neural dynamics
but also in practical engineering applications [97].

Among the one hundred circuits that were realized physically and care-
fully characterized, approximately half were found to be chaotic. A re-
markable range of attractors could be generated by circuits of this small
size, including spiral, phase-coherent attractors, attractors resembling the
Rössler funnel attractor, attractors associated with a spiking behavior, at-
tractors similar to the one of the Colpitts oscillator, attractors reminiscent
of Shilnikov chaos, and attractors with a peculiar triple butterfly-like ap-
pearance (Fig. 3 (c)) [18, 19]. One seemingly previously unknown circuit
topology having size and composition similar to that described above was
recurrently identified by the random search, and appears to be a particularly
versatile chaos generator; this is further considered in the next section. In
addition, two circuits were deemed to be of particular interest. One generates
a well-evident asymmetric double-scroll attractor, emerging from irregular
switching between two unstable foci. This attractor is highly characteristic
of Chua’s circuit and has been elicited in diverse scenarios including oper-
ational amplifier-based nonlinearities, inductor-less designs, cellular neural
network layouts, and monolithic designs, all of which translate into consider-
ably more complex implementations [60, 75, 76, 97]. Besides being simpler,
the present oscillator was discovered by serendipity rather than obtained as
an implementation of Chua’s circuit. The other notable circuit generates
spikes of approximately quantized height at irregular intervals, much more
closely resembling the qualitative features of neural action potentials than
the first circuit described above, albeit still operating at different scales of
time and voltage (Fig. 3 (d), (e)). While other circuits generating irregular
spike trains have been reported, the present one is considerably simpler,
and this again stems, at least partially, from the fact that it was discovered
by serendipity and does not represent the realization of a predetermined
mathematical model [95, 97, 104, 105]. Consideration of the distribution of
avalanche size (sequences of spikes separated by time-intervals below a given
threshold) in comparison to a randomly reshuffled series revealed the absence
of power-law scaling, implying the lack of critical behavior and representing
an important residual difference with respect to biological neural dynamics,
which is further discussed in the next section (Fig. 3 (f)) [22, 42, 106, 107].
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Before continuing, a brief reflection on this line of work appears appro-
priate. As said, the discovery of these circuits was predicated neither on a
systematic method nor on any first principles. On the contrary, the work
was based on experimental realizations and numerical simulations with re-
alistic models, both of which actually include a spectrum of complex effects,
such as the Early effect, voltage-variable junction capacitances, inductor self-
resonances, etc. It should be acknowledged that, in this sense, the circuits
are arguably less elementary than they may seem, since each transistor, in-
ductor and so on represents an entity more complex than its equivalent in
an idealized scenario. The impact that this has on the dynamics varies from
case to case. One could argue that these circuits are therefore less relevant to
progress than well-known, simple equation systems which have well-defined
nonlinearities and often generate similar attractors [18, 19, 36, 38]. The
author’s viewpoint on this matter is that, again, there are two approaches
which should be viewed as complementary and not adversarial. Serendipi-
tous discoveries such as those reported here have an inherent value in any
experimental realization, for which idealized components have limited rel-
evance. Moreover, when attempting to realize a predetermined equation
system electronically, one oftentimes makes recourse to integrated devices
such as operational amplifiers and analog multipliers, which results in an
incomparably larger transistor count [60, 75, 76]. In such context, one aims
to minimize any non-idealities, in contrast to the fact that nature, on the
contrary, seems to readily harvest any potential substrate for complexity, as
in a sense was done in the present, small transistor-based circuits. Without
question, this does not replace ab initio more rigorous theoretical and nu-
merical work, which is needed to elucidate the route-to-chaos mechanisms
at play, the minimum requirements in terms of what nonlinearities have
to be present, the stability, etc. The fact that similar attractors are ob-
tained between these oscillators and very different entities such as Chua’s
circuit and Röessler’s system provides further illustration of the universality
of the underlying nonlinear phenomena. Such considerations lead to a final
comment regarding the relationship with memristor-based circuits, which
are presently attracting enormous attention [75, 76, 108]. While symmetry
considerations unquestionably support the fundamental importance of this
device, to the author’s knowledge as a nonlinear element in a chaotic oscil-
lator, it does not appear to yield any unique dynamical phenomena which
have not been obtained also in nonlinear circuits built of more conventional
components. The importance of the memristor rather appears specifically
related to the fact that it opens the way to activity permanently altering
the circuit parameters through a self-contained mechanism. This has obvi-
ous importance in any attempt to represent neural plasticity, and stands in
stark contrast to the present circuits, wherein all parameters are unchange-
able by the emergent dynamics, and the only possible type of “memory” is
in the form of hysteresis effects [109, 110].
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2.3. Prime numbers, fractal structures and imperfections
as sources of complexity

Constructing the oscillators described thus far unavoidably requires, in
addition to transistors, also inductors and capacitors. While these circuits
may have notable generative potential, the extensive usage of reactive com-
ponents for their realization has undesirable practical consequences, in that
it hinders the migration from implementation based on discrete components
to the design of an integrated circuit. In turn, this effectively curtails their
relevance to explorations at the deep microscale, intended as networks com-
prising at most a few tens of nodes. Even though nonlinear phenomena
of potential interest are, as previously mentioned, to a certain extent sim-
ilarly addressable across different scales, the ability to implement neural
connectomes without excessive loss of resolution has inherent importance.
For example, with reference to human functional connectivity, the author
and colleagues have previously shown that parcellation granularity has a
profound effect on the detectability of fundamental features such as scale-
free node degree distribution, with a minimum of about 500 nodes required
to properly represent the network topology [111]. On the other hand, the
Caenorhabditis elegans, whose synaptic architecture is the only one that
has been fully mapped, possesses approximately 300 neurons [112]. Even
assuming a completeness of few percent links, these networks cannot be
conveniently realized with discrete electronic components, due to size con-
siderations and to the parasitic effects associated with implementing such a
number of couplings at circuit-board level. On the other hand, because of
their physical scaling inductors, capacitors and resistors are rather poorly
suited for construction on integrated circuits. This implies that one has to
accept either a high frequency of operation, which is exceptionally unde-
sirable experimentally, or a very low area efficiency, meaning that the vast
majority of silicon area is consumed in realizing these components as opposed
to transistors and interconnection infrastructure [113]. This situation is, in
fact, to a varying extent common to virtually all other chaotic oscillators
realized with discrete transistors and operational amplifiers [75, 76].

As said, a rigorous route-to-chaos analysis has not yet been performed
for the circuits described above, and inspection of the bifurcation diagrams,
spectrograms and time-series suggests that period-doubling, quasi-periodi-
city, and intermittency effects are concomitantly present. Nevertheless, upon
consideration of the self-evident fact that multiple overlapping resonant cir-
cuits yield distinct modes which can be simultaneously excited and “com-
pete” with each other, the quasi-periodicity route to chaos acquires some
appeal as a first-order way of conceptualizing the operation of these circuits
[98]. In a mathematical sense, quasi-periodicity arises in the presence of
oscillations linked by incommensurate ratios, however, for the purpose of
causing transition to chaos, it is often sufficient to have frequencies linked
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by non-trivial frequency ratios, so that oscillation patterns do not repeat ex-
cessively closely and the nonlinear dynamics can be effective in preventing
phase locking [18, 19, 114, 115].

One natural way of realizing non-trivial ratios is as fractions of prime
numbers, a mechanism that evolution appears to have beautifully resorted
to in enhancing the survival of some species of so-called periodic cicadas.
These insects have developed prime-numbered life cycles of 13 and 17 years
in order to reduce their vulnerability to geological effects and hybridization,
and possibly to reduce resonance with the life cycles of predators [116, 117].
In a similar vein, one can consider the simplest and oldest known oscillator
topology based on the inverter Complementary Metal-Oxide-Silicon (CMOS)
logic gate, the ring oscillator, whose frequency is determined by the propa-
gation delay and, therefore, inversely proportional to the number of stages
[113, 118]. It is straightforward to realize rings having length equal, for
example, to the three smallest odd prime numbers, namely 3, 5 and 7.

Predicated on these facts, the author developed a “pure” CMOS oscilla-
tor cell which comprises three or more such rings, cross-coupled in such a
manner as to provide an intermediate level of energy exchange, sufficient for
engendering transition to chaos but not such as to cause oscillation death.
The cross-coupling can be realized in a variety of manners, however, a partic-
ularly convenient approach involves coupling each ring to all those of higher
order, using CMOS-based diodes “stitching” together trice two arbitrary ad-
jacent nodes on each ring and, in particular, linking the following: (i) the
inputs of the chosen inverters, (ii) their outputs, and (iii) the input of the
inverter in the shorter ring to the output of the inverter in the longer ring.
In the present case, such scheme entails coupling the 3-ring to the 5-ring
and to the 7-ring, and coupling the 5-ring to the 7-ring (Fig. 5 (a)). The
resulting circuit is free of any lumped reactive element and as such facili-
tates the efficient use of silicon area and metal layers, yielding a compact
topography even when including pass-gate switches allowing the dynamic
connection and disconnection of the rings [119]. It has elements of similar-
ity but is architecturally distinct from other CMOS-based chaos generators
previously proposed by others [120, 121].

A prototype dubbed CHARM-1 and consisting of a ring of 24 such cells,
diffusively coupled via a mechanism akin to that described below for dis-
crete bipolar transistor circuits, was realized on a standard 0.7 µm, 1-poly
2-metal CMOS process (Fig. 5 (b), (c)). Consideration of the activity of
the individual, uncoupled cells reveals a particularly desirable property of
this design, which is the digital controllability of chaos generation, akin
to the effect of sweeping R in the previous section. As the 3-ring oper-
ates in isolation, a simple periodic waveform of stable amplitude is gen-
erated. If the 5-ring is connected, periodic envelope fluctuations appear.
When the 7-ring is also enabled, transition to chaos occurs, and the dy-
namics can be further enriched by adding a 9-ring (despite this not being
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Fig. 5. (Color online) Alternative approaches to chaos generation. (a) Cross-
coupled inverter rings having primal lengths, namely 3, 5 and 7. (b) Corresponding
abutted cells realized on a CMOS integrated circuit. (c) Device assembled on test
board. (d) Representative Poincaré sections demonstrating increasing complexity
as longer rings are sequentially connected. (e) Elementary single-transistor oscil-
lator circuit suitable for containing two complex reactive networks (Z1, Z2). (f)
Feynman–Sierpiński fractal resonant network of depth 2, possibly containing imper-
fections (red/arrows: elements replaced by open or short circuits). (g) Correspond-
ing resonances in the absence and presence of imperfections (black, red/arrow).
Detailed description in Refs. [119, 122].



Across Neurons and Silicon: Some Experiments Regarding . . . 2051

a prime number), or an 11-ring. Increased complexity is evident on the
corresponding Poincaré sections, delineating a pattern loosely reminiscent
of the folding steps for an origami (Fig. 5 (d)). This is confirmed by the
corresponding correlation dimension estimated from the time-series, namely
D2 = 1.1± 0.1, 1.8± 0.1, 2.2± 0.3 and 2.5± 0.6, and in this case, realistic
simulations and measurements agree closely. In presently ongoing work pre-
cursory to the realization of complex networks, the author and colleagues
are developing a revised version of this oscillator, wherein current starving
is implemented independently for each ring; this enables additional, graded
control over chaos generation, realizing a remarkable level of flexibility for a
circuit of this size [113, 118, 119].

Even though inverters are elementary logic gates, in the analog domain,
their transfer function is not trivial since the output voltage depends on
the currents through the p- and n-channel MOS transistors, which visit
subthreshold, linear and saturation modes as the input is swung between
zero and the supply voltage. Similar considerations apply to the coupling
diodes. Yet, the dynamics of this oscillator can to a certain extent be en-
capsulated in a much-simplified description containing exclusively piece-wise
nonlinearities, which might even open the way to some level of analytical
tractability. Let us represent each inverter as a capacitor of value C charged
by a transconductance stage with io = vaGi, wherein io represents the out-
put current, va the input voltage and Gi < 0 the transconductance. Since
the supply voltage is finite, up to a maximum of Vs, practically one has

io = Gi[R(va)H(Vs + vo)−R(−va)H(Vs − vo)] , (1)

wherein R(x) and H(x) are, respectively, the ramp and Heaviside step func-
tions. These are the only nonlinearities present in the model. Let us similar-
ity approximate the diodes as piece-wise resistors having threshold voltage
Vt between two nodes at voltages va and vb, yielding

id = GcR(va − vb − Vt) (2)

then, taking as an example the output voltage of the first inverter in the
3-ring va1, one can write

dva1
dt

=
Gi

C
[R(va3)H(Vs + va1)−R(−va3)H(Vs − va1)]

−Gc

C
[R(va1 − vb1 − Vt) +R(va1 − vb2 − Vt)

+ R(va1 − vc1 − Vt) +R(va1 − vc2 − Vt)] , (3)

where Gc > 0 represents a coupling conductance, vb1, vb2 are the voltages
at the outputs of the first and second inverter in the 5-ring, and vc1, vc2
represent the same for the 7-ring [119].
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In a different vein, we note that nature is pervaded by fractals, intended
as abstract entities that are self-similar in topography, topology or over time.
Surprisingly diverse objects including cloud outlines, coast lines, the vascular
tree in the brain and lungs, the branching dendritic trees and axonal pro-
cesses of neurons, the cortical gyri of the brain and even edible vegetables
such as Romanesco broccoli have fractal shape [123–125]. Self-similarity, in-
tended as the presence of a nested architecture of nodes and modules, or as
more recently proposed by the author and colleagues intended as a relation-
ship between edges and paths such as triangles, is readily detectable in the
organization of countless networks, found for example in the domains of ecol-
ogy, proteomics, and neuroscience, and also emerging from coupled chaotic
oscillators [78, 126]. No less importantly, recurring dynamical features are
recorded across diverse temporal scales in time-series produced by a wide
range of nonlinear systems, for instance in finance and physiology, particu-
larly regarding cardiac and brain activity, where coexistent scaling according
to multiple exponents can also manifest itself in the form of multifractality
[42, 127, 128].

Any attempt to survey the phenomenology and universality of fractals
falls well beyond the narrow scope of the present work; however, we note that
fractals, besides emerging pervasively in self-organized systems, also have
geometric features that make them highly desirable for solving specific geo-
metric problems in built devices [129, 130]. For instance, a fractal structure
allows folding an unlimited area into a bounded volume, or, more practically
assuming a finite number of iterations, a very large area into a small volume,
and so on. Fractal-shaped elements have recently found commercial applica-
tions in engineering with regard to the construction and miniaturization of
broadband antennas and resonators. In this context, the Sierpiński gasket
has received particular attention as a means of realizing single- and multi-
port devices whose frequency response depends on the number of iterations
(or levels, depth) of the fractal. Recent work has also highlighted the appar-
ently paradoxical properties of Feynman’s inductor-capacitor ladder realized
on the Sierpiński gasket, which in the limit of infinite depth is dissipative
even though it only comprises purely reactive components [131, 132].

Within this framework, the author and colleagues have recently inves-
tigated the possibility of conferring high-dimensional dynamics, empirically
defined as having an attractor dimension D > 3, to transistor-based chaotic
oscillators through embedding such fractal resonators, which even when
truncated have a considerably richer frequency response compared to the
simpler LC networks considered so far. In particular, the smallest single-
transistor oscillator previously identified as chaotic was selected as a start-
ing point, and its two inductors were replaced with the Feynman–Sierpiński
resonators, treated as two-port devices wherein the third vertex is left ex-
ternally unconnected (Fig. 5 (e)). Numerical simulations and experiments
concordantly indicate that increasing the fractal depth elevates the corre-
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lation dimension, even leading to hyperchaos. Interestingly, the effect is
relatively insensitive to component parametric heterogeneities; however, the
finite quality factor of the physical devices strongly hinders the generation
of high-dimensional chaos: for the case of two fractal iterations, it lowers the
maximum correlation dimension from D2 = 7.0±1.5 in idealized simulations
down to D2 = 2.7 ± 0.1 in measurements. Additional experiments demon-
strated that this issue could be addressed through realizing more complex
resonances, either by reshuffling all inductor values so that the fractal levels
are no longer scaled according to a simple sequence, or more parsimoniously
even only by introducing focal imperfections or defects. Replacing as few as
2 out of 39 inductors with open or short circuits can yield considerably richer
resonances (Fig. 5 (f), (g)), whose exact features depend on the location of
the imperfections and which aid the generation of high-dimensional chaos
when instanced in a physically-built oscillator, resulting in D2 = 4.2 ± 0.7
[122].

As regards establishing tentative parallels with brain dynamics, the oscil-
lators containing fractal resonators appear to have two noteworthy features.
On the phenomenological level, they demonstrate that high-dimensional
chaos can be generated even in the context of such simple circuits, wherein
the only nonlinearity is represented by the transistor. This appears rele-
vant because at the macroscopic scale, brain dynamics carry signatures of
high-dimensional chaotic dynamics, which are posited to transiently collapse
down to lower-dimensional dynamics in order to implement coding functions
while responding to specific stimuli [81, 133]. The present, simple circuits
might, therefore, also have relevance as experimental platforms to repro-
duce such kind of effects. On the architectural level, the results point to two
speculative commonalities with the dendritic layout. Firstly, as mentioned
above, the dendrites have fractal morphology and realize complex spatiotem-
poral summation processes; it appears that, despite the profoundly different
nature of the system and fractal structure, also in the case of these oscilla-
tors, the self-similarity of a network serves to enrich its dynamics [134, 135].
It should, however, be underlined that in this study, it was not established
whether similar effects could also be established, for example, in random
topologies yielding arbitrary resonances. Secondly, natural objects are not
mathematical fractals, not only in that they are truncated, by also in that
they display pervasive deviation from regular recurrence: accordingly, the
shape of neurites is fractal only in a statistical sense. The results obtained
with these circuits motivate querying whether such situation may not only
stem from a biological difficulty in realizing perfectly regular structures but
may also play an adaptive role: evolution could have leveraged these imper-
fections as a means of supporting high-dimensional dynamics despite leak-
age, etc., rhyming with the profound effect of even subtle defects on the
crystallographic and macroscopic properties of solids [136].
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It can easily be shown that in Feynman–Sierpiński resonators wherein
the inductor values are halved at each iteration, representing edge lengths,
and wherein the capacitances are kept constant since they do not have a ge-
ometric counterpart, the effect of increasing fractal depth is to add a pair of
conjugate imaginary poles and zeros per iteration. This implies that a Foster
equivalent network can be constructed, wherein each level of the fractal is
condensed into a block comprising an inductor and a capacitor connected in
parallel, considerably aiding the experimental realization. Furthermore, one
may represent the transistor nonlinearity in a stylized manner through a hy-
perbolic tangent and a ramp function, the only additional requirement being
to capture the junction capacitances in the form of one fixed capacitor C2

between the collector and ground [122]. Following appropriate substitutions
and normalizations, namely x = vC1 , y = vC2 , z = Ri

L̂
(1)
0

and w = Ri
L̂
(2)
0

(where L̂(1)
0 and L̂(2)

0 represent the inductors in the original circuit, now cor-
responding to the zeroth-iteration of the fractal), one obtains the following
equation system, which is well-suited for numerical investigation:

dx
dt

=
Vs − x− z − w

τ1
,

dy
dt

=
w − α(z, y)

τ2
,

dz
dt

=
1

T
(1)
0

(
x−

∑
v
(1)
j − Vth

)
,

dw
dt

=
1

T
(2)
0

(
x−

∑
v
(2)
j − y

)
, (4)

where, as said, the transistor nonlinearity can be represented by

α (x, y) = βΓ (x) tanh(ky) , (5)

where k is an arbitrary scaling factor, the inductances and capacitances are
represented by the time-constants τ1 = RC1, τ2 = RC2, T

(1)
0 = L̂

(1)
0 /R and

T
(2)
0 = L̂

(2)
0 /R, and where for each level of the fractal j = 1, . . . , n
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dv(1)j

dt
=
z − u(1)j
τ
(1)
j

,

dv(2)j

dt
=
w − u(2)j
τ
(2)
j

,

du(1)j
dt

=
v
(1)
j

T
(1)
j

,

du(2)j
dt

=
v
(2)
j

T
(2)
j

, (6)

wherein the state variables are similarly replaced by the voltages v(k)j = v
Ĉ

(k)
j

and u(k)j = Ri
L̂
(k)
j

, and the inductances and capacitances are replaced by the

time constants τ (k)j = RĈ
(k)
j and T (k)

j = L̂
(k)
j /R, realizing, for n iterations

of the fractal, a system of the order of 4 + 4n [122].
These studies exemplify two approaches to controlling the generation of

chaos which have different practical and conceptual relevance for the present
purpose. The former involves cross-coupled inverter rings having primal
length, and appears practically well-suited for realizing large mesoscopic-
scale networks on an integrated circuit. The latter entails replacing inductors
with fractal resonators potentially containing imperfections, and has appeal
as a means of obtaining high-dimensional chaos even in small transistor-
based circuits.

2.4. Concomitant avalanching, hysteresis and metastability
in an array of neon lamps

As exemplified throughout the following sections, the circuits described
up to this point enable reproducing a multitude of synchronization phe-
nomena; however, the author’s research to date has failed to elicit in them
any convincing signature of critical dynamics. Even for the transistor-
based oscillator generating quantized spikes (Fig. 3 (d)), the distribution
of inter-spike intervals is not over-dispersed compared to a Poissonian, and
no power-law scaling is evident. The implication is that, thus far, these cir-
cuits can only provide a partial recapitulation of neural dynamics, excluding
the critical phenomena which selectively occur close to the point of transi-
tion between ordered (periodic, laminar) and disordered (chaotic, turbulent)
dynamics [42, 106, 137, 138]. The experiment summarized in this section
represents an initial attempt to address this issue via recourse to a different
nonlinear electronic device, which in virtue of its dynamics appears better
suited for reproducing such effects.
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It is perhaps remarkable that, upon a suitable choice of the physical
variables and observation scale, much of the thermodynamical theory of
phase transitions can be applied across diverse dynamical systems, yielding
a robust theoretical framework within which one can formulate well-defined
predictions about critical behaviors. In paradigmatic scenarios such as the
Ising model, the correlation length and other observables diverge at the
critical point, namely as T → TC, ξ → ∞, and in its proximity, such ob-
servables follow the relationship A(T ) ∝ (T − TC)α, where α is a critical
exponent. Diverse systems are found to possess identical critical exponents,
revealing the existence of a limited number of universality classes reflect-
ing the nature of the interactions, symmetry, etc. [139]. A broad class is
that of branching processes, which are characterized by the fact that in-
dividual events generate descendants according, in the simplest case, to a
fixed probability distribution; the reproduction of living organisms, nuclear
chain reactions, the propagation of breakdown events in materials and the
generation of neural action potentials all belong to this class. When the
average probability of generating a descendant (branching parameter σ) is
close to unity, the distributions of size (number of events) and duration of
avalanches diverge according to critical exponents αS = 3/2 and αD = 2,
yielding a power spectral density which decays similarly to 1/fβ noise. Ex-
perimental evidence suggestive of critical avalanching in neural systems has
been coherently obtained across the micro-, meso- and macroscales, using
in vivo techniques such as electroencephalography, magnetoencephalography
and functional magnetic resonance imaging, and in vitro techniques such as
recording the activity of spontaneously developing neural cultures or brain
slices via multi-electrode arrays. As previously mentioned, computational
studies further indicate that operation close to the point of criticality may
confer advantages as regards, for example, to maximizing the dynamic range
available for encoding sensory inputs and the ability of rapidly switching be-
tween activity patterns [12, 22, 42, 106, 107, 140–142].

The author and colleagues have realized a circuit possessing integrate-
and-fire dynamics, which knowingly give rise to critical phenomena not only
in neural systems but also in earthquakes and nuclear reactions, by exploit-
ing the physical characteristics of glow lamps, which are small cold-cathode,
gas discharge tubes typically filled with a neon–argon mixture [22, 140].
While presently mainly relegated to the function of inexpensive line-voltage
indicators, these devices are physically complex and possess remarkably rich
dynamics. Not only they were once relied upon for constructing active logic
circuits, but electronic chaos was discovered by Van der Pol in an oscillator-
based precisely on these devices, whose potential in creating physical ana-
logues of neural dynamics has also been suggested before. Their main feature
is possessing strongly hysteretic behavior, such that the breakdown (ignition)
voltage Vb is appreciably larger than the recovery (extinction) voltage Vr,
and the probability of transition between the “on” and “off” states, respec-
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tively corresponding to low and near-infinite resistance, markedly depends
on the applied potential; for example, the corresponding rates can be ap-
proximated with e(v−Vb)/α and e(Vr−v)/β [91, 143, 144].

The circuit under consideration consists of a two-dimensional square lat-
tice, wherein each cell comprises one neon lamp connected via a resistor to a
globally-applied static voltage Vs acting as the only control parameter; each
cell is furthermore capacitively coupled to its von Neumann neighbors of uni-
tary distance (Fig. 6 (a)) [145]. An instance having size 34×34 was physically
realized on a circuit board dubbed VAN DER POL-1, and instrumented with
cameras and photodiodes accurately capturing the spatiotemporal evolution
of activity (Fig. 6 (b)).

Fig. 6. Two-dimensional 34×34 lattice of capacitively-coupled neon lamps. (a) Cir-
cuit diagram (R = 2.2 MΩ, C = 220 nF). (b) Physical realization. (c) Mea-
sured voltage at an arbitrarily-chosen node, illustrating single breakdown (ignition)
events and avalanches. (d) Hysteresis loop demonstrating first-order transition be-
tween a disordered, low-rate phase (Phase I) and a more ordered, high-rate phase
(Phase II). (e) and (f) Avalanche size and duration distributions, confirming diver-
gence and critical scaling as the globally-applied voltage approaches the spinodal
(darker/red: highest voltage). Detailed description in Ref. [145].

The peculiar dynamics of this circuit are readily apparent upon consid-
ering a chain of three cells, whose corresponding voltages we denote as v0,
v1 and v2. Assuming that, following the breakdown (ignition) of the first
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lamp, v0 < Vs and v1(0) = v2(0) = v0, one has
d
dt

(v2 − v1) =
Vs − v2
CR

,

d
dt

(v1 − v0) =
2Vs − v1 − v2

CR
(7)

whose solution is, assuming for convenience Vs = 0,
v1(t)

v0
=

1

1 + ϕ2
e−t/τ1 +

ϕ2

1 + ϕ2
e−t/τ2 ,

v2(t)

v0
=

ϕ3

1 + ϕ2
e−t/τ2 − ϕ−1

1 + ϕ2
e−t/τ1 , (8)

where τ1 = RCϕ2, τ2 = RCϕ−2 and ϕ is the golden ratio. This reveals
without loss of generality that an overshoot exceeding the globally-applied
control voltage is produced by each event, conferring to it the ability of gen-
erating descendants via the voltage dependence of the ignition probability.
Accordingly, when the control voltage is sufficiently close to the average igni-
tion potential, which is subject to considerable variation between lamps due
to construction tolerances, the avalanching behavior is promptly observed
both numerically and experimentally (Fig. 6 (c)). Moreover, it is easy to
see that v2 > v1, in other words the overshoot is largest at the farthest site
along the chain, which straightforwardly generalizes to more dimensions: as
a consequence, despite the short-range structural couplings, activity propa-
gates over distances comparable with lattice size [145]. This is reminiscent
of synchronous-mode propagation of action potentials, and of observations
in some other physical systems, wherein short-range coupling effectively re-
alizes long-range interactions, leading to mean-field behavior [146, 147].

As the control voltage is swept by an external controller, a marked
hysteresis effect is observed for the transition between two phases: one is
glass-like and characterized by low event rate and low spatiotemporal order
(Phase I), the other is crystal-like and characterized by higher event rate and
higher spatiotemporal order (Phase II; Fig. 6 (d)). As the voltage is grad-
ually increased approaching the Phase I → Phase II transition, avalanches
hallmarking the expected divergence of size and duration according to the
same critical exponents αS and αD regulating neural activity are readily
generated (Fig. 6 (e), (f)) [145].

Critical phenomena exemplified by avalanche generation are generally
associated with second-order phase transition, such as entailed in the frame-
work of self-organized criticality, which posits that collective dynamics give
rise to an attractor drawing a system towards the critical point [42, 106,
137, 138]. However, hysteresis in the present experiment unequivocally sig-
nals a first-order transition, which is further indicated by observing that,
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given the finite system size, the phases have finite lifetimes. This apparent
incongruence is resolved through considering that critical phenomena can
also appear in first-order transitions insofar as one enters the metastabil-
ity region and approaches the spinodal curve, a situation similarly found
in geophysical phenomena, fracture propagation, and network recovery; in
all these scenarios, transition precursors diverge to infinity on the spinodal
itself. In the present case, two spinodal voltages V (1)

s < V
(2)
s exist, at which

the lifetimes of Phase II and Phase I respectively vanish [146–149]. Further
confirmation of the transition order is derived from the fact that σ > 1 is
never observed, namely the system cannot be super-critical, reflecting the
discontinuous nature of the transition [140]. The present results therefore
delineate a transition belonging to the same universality class as breakdown
in disordered media, or the transition in the democratic fiber bundle model
or in the long-range Ising model on the spinodal lines [138, 146, 147].

There exists, in fact, incontrovertible evidence of metastability and hys-
teresis in the brain, grounded in neurophysiological and even behavioral ob-
servations of its ability to sustain activity patterns and cognitive states which
have long but finite lifetimes, past which sudden transition to another state
occurs [5, 11, 150]. Accordingly, non-equilibrium first-order phase transition
can be induced by an external field or additive noise, yielding situations
wherein a coexistence region is found as a function of the control parameters.
In this vein, it has recently been hypothesized that brain dynamics may not
necessarily be drawn towards a critical point by a self-organized process as
initially thought, but may operate close to a first-order transition, dwelling
in the vicinity of bistability [151, 152]. Inspired by such a work and the
present results, the author and colleagues later introduced a model based on
leaky integrate-and-fire neurons, which concomitantly generates scale-free
avalanches and metastable attractors reflecting stored patterns [153].

Altogether, the present results not only reaffirm the possibility of reca-
pitulating chosen aspects of neural dynamics including criticality in other
physical systems, in this case coupled gas-discharge tubes as opposed to
solid-state devices, but also clearly exemplify how such comparisons may
tangibly inspire a speculative re-evaluation of paradigmatic approaches to
modeling neural dynamics.

3. Synchronization and pattern formation

3.1. Cluster synchronization in a transistor network
Having introduced a variety of nonlinear electronic circuits as possible

generators of complex dynamics, the remainder of this paper will survey
some initial attempts to couple them for realizing networks related in diverse
manners to neural systems.
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One prominent aspect of the organization of natural and artificial sys-
tems is their modularity. In the context of morphology, this refers to the
fact that, in certain species, individuals comprise an indeterminate num-
ber of instances of modules, intended as well-identifiable and partially self-
contained entities such as the leaves of a tree. The question of whether
the brain and mind possess any degree of modular organization was among
the earliest ones to be asked in the primordia of neuroscience, eventually
yielding the hypothesis of a univocal association between mental skills and
bumps of the skull. While nowadays entirely discredited, this viewpoint
has been precursory to the modern theory of functional localization. It is
presently recognized that the mind possesses a certain level of segregation
between cognitive domains and skills, which is particularly evident in stud-
ies of optical illusions and autism. Similarly, structural and functional brain
networks are also organized according to a modular structure, delineating
bihemispheric as well as lateralized subnetworks, which are putatively re-
lated to sensorimotor processing, vision, cognition, and awareness. On the
whole, modularity is frequently regarded as having emerged in response to
environmental pressure, wherein specific domains would have evolved along
distinct trajectories and remained partially segregated for diverse reasons.
These include the need for operation over disparate time-scales, the fact that
low-level skills such as visual and auditory processing are preferably imple-
mented on tailored neural architectures, and the need to minimize writing
cost and enhance overall resilience to damage. Notably, some degree of mod-
ular organization is detectable even in the simplest nervous systems such as
that of the Caenorhabditis elegans, as well as in countless other natural and
artificial networks [11, 26, 154–157].

In this section, an experiment exemplifying the spontaneous emergence
of a synchronization pattern having modular features via a physical mech-
anism known as cluster synchronization is introduced. The phenomenon
represents a type of partial synchronization, intended as a situation wherein
there is, on average, detectable entrainment between the nodes of a network,
but this is not sufficient to provide an energy exchange rate maintaining a
globally-coherent trajectory: this is the region where pattern formation can
occur. While the onset of complete synchronization can be addressed via
consolidated tools such as the master stability function, the spatiotemporal
patterns emerging under partial synchronization are, in general, consider-
ably more difficult to predict. Cluster synchronization reflects the preferen-
tial entrainment among specific node subsets which become more synchro-
nized between themselves than with the rest of the network. This effect
can emerge in networks of identical or mismatched oscillators, either as a
consequence of the topology of structural connections which may ab initio
possess some degree of modular organization or as a consequence of the node
dynamics. In some cases, the locations of the modules (or communities) are
relatively easy to explain, for example owing to the action of a provincial hub
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which pulls together its neighbors, but frequently they follow a highly non-
trivial interplay between structure, dynamics and parametric heterogeneities
[19, 36, 38, 158–163].

The present experiment is based on a ring of single-transistor oscilla-
tors of the type introduced in Section 2.2, interconnected through diffusive
coupling implemented by means of resistors having value RC, attached to
the collector nodes of all pairs of neighboring transistors and realizing an
energy-exchange mechanism closely similar to an elastic band (Fig. 7 (a)).
While experimental synchronization between pairs of single-transistor oscil-
lators has been repeatedly demonstrated before, limited data were available
on larger networks, wherein more compelling instances of morphogenesis
can be found [75, 76, 164, 165]. A physical setup was devised by the author
in the form of a circuit board, dubbed STRANGE-1, carrying 30 oscillators
coupled as indicated alongside readout amplifiers and multiplexers allowing
signal acquisition with minimal disturbance to the dynamics (Fig. 7 (b)).
As expected, for very low and very high values of the coupling resistor RC,
complete synchronization and desynchronization are observed. In between
these two extremes a partial synchronization region is found, wherein, for
increasing coupling strength (lower resistor value), first phase locking occurs
while amplitude fluctuations remain decoupled, then, as the energy trans-
fer rate becomes sufficient, amplitudes also become synchronized. Such a
scenario is typical of dynamical systems containing heterogeneities, which
in this case were limited to the parametric mismatches introduced by the
component tolerances [18, 19, 36, 38, 166].

While the detection and measurement of modularity are not trivial issues
particularly as regards resolution considerations, in this case, the network
was relatively small, hence a canonical measure termed Louvain modularity
could be considered: it represents the average synchronization within as
opposed to outside modules according to a hypothetical partitioning, which
is greedily optimized aiming to maximize the modularity parameter

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) , (9)

where Aij is the matrix of edge weights (corresponding, in this case, to
phase or amplitude synchronization after suitable rescaling), 2m =

∑
ij Aij

denotes the overall connectivity, ki =
∑

j Aij the weighted node degrees
(nodal strengths), ci community membership and δ(i, j) is Kronecker’s delta
[26, 167].

Two observations were made. Firstly, Q(RC) follows a non-monotonic
trend indicating that not only synchronization spontaneously develops sig-
nificant modular features, but these are emphasized at an “optimal” interme-
diate coupling strength. Notably, this trend is observed similarly for phase
and amplitude synchronization, however, the strongest modularity appears
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Fig. 7. Single-transistor chaotic oscillators diffusively coupled to form a 30-ring net-
work. (a) Circuit diagram (excerpt). (b) Physical realization. (c) Synchronization
matrices (normalized mutual information) recorded from three board specimens
α, β and γ, demonstrating the formation of communities having a size varying
with the coupling resistor value RC and a topography reflecting the parametric
heterogeneities. Detailed description in Ref. [166].

at different coupling strengths, respectively, RC ≈ 2.2 kΩ and RC ≈ 120 Ω.
This indicates that cluster synchronization takes places concomitantly for
phases and amplitudes and that its emergence requires an intermediate level
of respective entrainment: as is known, a greater energy transfer rate is re-
quired to overlap the entire trajectories as opposed to merely maintaining
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phase locking between each oscillator pair. As the coupling strength was
increased or decreased around these values, aggregation into larger commu-
nities and disaggregation into smaller ones were clearly observed (Fig. 7 (c)).
Secondly, the trend of Q(RC) was closely repeatable over three realizations
of the circuit board; however, the topography of the communities was un-
correlated between them, indicating that it was driven by the small para-
metric heterogeneities unavoidably associated with the individual physical
components. Notably, the emergent organization was rather stable to per-
turbations, even though communities could be destroyed by adding links to
distant regions, since this leads to large changes in the landscape of energy
minima related to the synchronization manifolds. Due to the reasons de-
scribed in the previous sections, the present effects could only partially be
recapitulated in SPICE simulations [36, 38, 166].

Altogether, these results exemplify a situation wherein synchronization
patterns having complex features are formed by an elementary structural
network whose symmetry is broken through the presence of small mismatches:
the emergence of communities and their size distribution are closely con-
trolled by a single parameter, namely the coupling strength. This leads to
three speculative parallels with neural dynamics. Firstly, upon application
of suitable methods, a broad distribution of community sizes is readily ob-
served in the synchronization of brain activity, which, furthermore, appears
to respond to cognitive states dynamically: extrapolating from the present
findings, one can hypothesize that this reflects fluctuations in the under-
lying coupling strengths, which in some situations are sufficient to “hold
together” large modules and in others only entrain small groups of affine
regions [168, 169]. Secondly, the local properties of the synchronization pat-
tern, intended as the precise topography of the communities, were strongly
driven by the individual parametric heterogeneities, yet the global effects,
intended as the relationship between the coupling control parameter and
the overall network topological properties, were highly repeatable. At least
phenomenologically, the above recalls the situation for the localization of
functions over the cortex, wherein inter-individual variability leads to sig-
nificant topographical heterogeneity (leading, for example, to the need for
careful presurgical planning before lesion resection), yet global features such
as the presence of certain structure-function relationships are highly consis-
tent, even between species [5, 11, 170]. In turn, this leads to speculating that
the cortical organization of individual brains could be viewed as akin to mor-
phogenesis in elementary networks similar to the present one: genetic and
epigenetic factors reflected in the neural phenotypes play the same role of the
parametric heterogeneities, then dynamics lead to the emergence of conver-
gent, robust common features; clearly though, one fundamental difference is
that in this simple electronic system there is no plasticity. Thirdly, even ac-
knowledging the adaptive role of modular brain organization leaves open the
question of what evolution would have “locked in” to begin tuning towards
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this feature: evolution in itself is selective, not generative. Results such as
those presented here illustrate that cluster synchronization is a pervasive
phenomenon, capable of yielding rich patterns out of elementary structures.
Hence, one may speculate that, deep towards the bottom of the phylogenetic
tree, this nonlinear phenomenon may have lead to the initial emergence of
preferentially-synchronized communities in some “proto-brains”. These fea-
tures could then have become enhanced and eventually engraved also into
the structural architecture of more recent nervous systems [26, 155–157].

3.2. Effect of non-trivial structural connectivity on dynamics:
a toy model brain

As introduced above, brain structural and functional connectivity, along-
side countless other self-organized networks, possess a considerable level of
self-similarity, in other words, display scale-free features. One manifestation
of this property is as a power-law node degree distribution, which implies the
existence of hub nodes that are disproportionately strongly connected with
the entirety of the network. Such hubs are topographically scattered over
distant locations, primarily in the lateral parietal lobes, precuneus and me-
dial frontal cortex, and are preferentially interconnected between themselves
forming a so-called “rich-club”. They have specific cytoarchitectonic features,
serve to orchestrate high-level information integration, attention and aware-
ness functions, and are accordingly implicated, causally or epiphenomenally,
in a broad range of neurological disorders [5, 11, 24, 25, 31, 46, 171, 172].

The dynamics of the hub regions in the human and more generally mam-
malian brain is preferentially reflected by the so-called “resting-state net-
works”, which are spatiotemporally-coherent patterns of activation that are
spontaneously generated while at rest; these project into slow fluctuations of
brain haemodynamic variables like the blood oxygen level-dependent signal
and are detectable by means of techniques such as functional magnetic reso-
nance imaging and independent component analysis. Notably, even though
the neural dynamics unfold on the scale of milliseconds, these networks are
commonly delineated from very slow fluctuations, occurring on the order of
seconds, which reflect the heavy temporal smoothing imposed by neurovas-
cular coupling. How it may be possible to establish meaningful inferences
on neural activity at such a coarse temporal resolution remains puzzling,
yet substantial empirical evidence is available confirming that the integrity
of the resting-state networks is pervasively linked to cognitive states, traits,
and disease conditions. The prevailing view is that this is an effect of the
temporal scale-freeness of brain activity, which is apparent primarily in the
form of a 1/fβ-like spectrum and is deemed to be ultimately consequential
to operation close to criticality; such perspective allows hypothesizing that
similar information may be contained between the scale at which neural dy-
namics unfold, i.e. ≈ 102 Hz, and the scale trackable by hemodynamics, i.e.
< 1 Hz, indexing the tail of the power law [5, 28, 29, 173–178].
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Predicated on the above, the author and colleagues have explicitly ad-
dressed the question of whether cortical hubs preferentially generate low-
frequency activity. In order to avoid biasing the analyses, topographic
maps of the node degree of synchronization were calculated at the voxel
level, based on haemodynamic time-series acquired at a temporal resolution
of ≈ 1.4 Hz using multiband techniques as part of the Human Connec-
tome Project (Fig. 8 (a)) [179]. The corresponding operation is particularly
computationally-intensive since it requires calculating an array of ≈ 109

linear correlations; however, it could be accelerated, for example, through
approximation with the `1-norm and deployment on a dedicated processor
array, dubbed HEBB-1 and based on a loosely neuromorphic architecture
(Fig. 8 (b)) [180]. A remarkably strong statistical association is observed,
whereby the amplitude of low-frequency activity steadily increases with the
node degree [181]. It should be noted that in this case, the node degree of
synchronization was considered as opposed to that of structural connectivity
mainly because it could be computed from the same functional dataset and,
therefore, allows the most direct comparison; assessment of brain structural
connectivity requires different measurement techniques such as diffusion-
tensor imaging [182].

Since large-amplitude low-frequency fluctuations could clearly emerge
without a relationship to synchronization, such a relationship is not trivial
and leads to hypothesizing that a nonlinear phenomenon may link these dis-
tinct local reflections of brain dynamics, namely synchronization and spec-
tral shape. Since physiological time-series are highly noisy, this question
was addressed by comparing the experimental recordings to surrogate data
having identical value distribution and autocorrelation but devoid of any
nonlinear effect. The chosen approach yields some level of confidence in de-
tecting weak nonlinearity and is relevant especially in a purely observational
framework such as the present one, wherein there are no accessible control
parameters through which the dynamics can be causally investigated. For
reasons related to its robustness, particularly on short time-series, the cor-
relation dimension was selected for comparing the measured and surrogate
data. In the presence of temporal self-similarity, the local slopes of the
correlation integral converge to a plateau which spans an extended scaling
range and provides an estimation of the possibly fractional dimension of the
attractor; contrariwise, for a purely stochastic process, the curves do not
exhibit a plateau, because the phase space is saturated irrespective of the
embedding dimension. Accordingly, in this case, two signatures of nonlin-
ear dynamics were considered, the difference in plateau level D̂2–D2 and
the tightness of convergence δD̂2–δD2, identically and independently com-
puted for the surrogate data (D̂2, δD̂2) and the experimental data (D2, δD2)
[17–20, 34, 35, 37, 100, 101, 181]. According to both measures, a significant
topographical correspondence is observed, whereby the most intensely syn-
chronized regions, particularly in the lateral parietal and medial frontal cor-
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tex, also yield the strongest evidence of nonlinear dynamics (Fig. 8 (a));
qualitative differences are also well-evident between time-series recorded
within and outside these regions (Fig. 8 (c)).

Such an association should be interpreted cautiously due to the limita-
tions inherent in hemodynamic tracking of neural activity, to physiological
contamination and to the only weak evidence of determinism that was ob-
tained; moreover, since high-dimensional dynamics are expected in the brain,
this may at best only be a distant reflection of the underlying attractors,
also in light of the known difficulty in properly estimating the dimension in
such cases, even more so based on scalar time-series [18, 19, 81, 133, 183].
Yet, associations between connectivity and the generation of low-frequency
fluctuations cohesively transpire through the multitude of existing compu-
tational studies of the connectome, which are based on diverse approaches
including realistic spiking models, mean-field models, two-state models, Ku-
ramoto and Wilson–Cowan oscillators [175]. For example, it has been es-
tablished that in the coupled Wilson–Cowan oscillators, slow fluctuations
emerge for the degree of synchronization between communities, even in the
absence of strong modulation of the activity of the individual populations
[43, 184]. Similar effects are observed under partial synchronization in the
Kuramoto oscillators with weak delayed coupling, and in mesoscale mod-
els of neural populations having critical excitatory/inhibitory balance and
density of long-range connections [185, 186].

The author and colleagues allowed themselves to speculate that the ob-
servations could reflect a relationship between connectivity and dynamics
which is at least to some extent generalizable. In order to address this
hypothesis, a toy model network was prepared, based on a large ring of
90 oscillators analogous to that considered in the previous section. In this
case, however, 9 long-distance connections were added, which inter-linked
four ring segments elected to tentatively represent hub regions. One of them
comprised 9 nodes, whereas the remaining ones were smaller, consisting of
3 nodes each. The smaller hubs were connected with the large one according
to an intertwined pattern, reflecting an attempt to recapitulate the archi-
tecture of the default-mode network, wherein the lateral parietal and medial
frontal regions hinge around the precuneus, which has the densest and most
intricate axonal connectivity (Fig. 8 (d)). The setup was physically realized
on three circuit boards, implementing the long-distance links with capacitive
coupling so as not to change the working point of the oscillators spuriously;
fixed values were set for the coupling resistors between ring neighbors and
distant sites, respectively, RC =750 Ω and RL =40 Ω, realizing an interme-
diate level of entrainment yielding partial synchronization (Fig. 8 (e)) [181].

As expected, elevated synchronization is elicited within the collective of
the nodes interconnected to form the hubs, and the effect is consistent over
a wide range of settings of the power supply series resistor, which, as said,
controls the dynamics of each individual oscillator (Fig. 8 (f)). When these
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Fig. 8. Brain connectivity and nonlinear dynamics. (a) Co-localization of high
synchronization node degree (k) and evidence of nonlinear dynamics w.r.t. surro-
gate data (D̂2–D2, δD̂2–δD2) in cortical hubs. (b) Co-processor board accelerating
node degree calculation. (c) Haemodynamic time-series within and outside a hub
region (left, precuneus; right, precentral gyrus), respectively demonstrating pres-
ence and absence of large-amplitude low-frequency fluctuations. (d) Toy model
90-ring network including four hardwired hub regions (bigger dots/red). (e) Phys-
ical realization. (f) Synchronization matrix confirming entrainment among the
structurally-coupled nodes. (g) Representative time-series illustrating the selective
transition to chaotic dynamics within the hub segments. Detailed description in
Refs. [180, 181].
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resistors are tuned for operation well into the chaotic or periodic regions,
connectivity has no qualitative impact on the dynamics; however, when they
are tuned close to the order-to-chaos transition (e.g., R = 1223 ± 230 Ω),
a notable reorganization takes place. The network sharply splits into two,
featuring periodic or quasi-periodic dynamics with small-amplitude fluctu-
ations outside the segments wired as hub regions, and chaotic dynamics
featuring large, low-frequency amplitude fluctuations inside them. These
fluctuations emerge at a frequency considerably lower compared to that of
the oscillators, recalling the observations in computational models and reca-
pitulating, at least phenomenologically, the correspondence experimentally
observed for the brain (Fig. 8 (g)). Similar results, highly reproducible over
different network configurations, were obtained by estimating the correlation
dimension. Nevertheless, a significant limitation of this initial, provocative
work is that it is purely phenomenological; no attempts were made to under-
stand the mechanisms underlying this effect, especially regarding the roles
of node degree and topological distance of the nodes elected to construct the
hubs, which are not discernible in this experiment [26, 98, 166, 181]. Yet,
ongoing research by the author and colleagues suggests that a similar rela-
tionship between synchronization and nonlinear dynamics also arises in neu-
rons cultured in vitro, which are initially dissociated and gradually regrow
a structural network having small-world and scale-free features [187, 188].
Rigorous computational verification over multiple network topologies, sizes
and node dynamics is now required.

Altogether, these results point to a relationship between nonlinear dy-
namics and the presence of hubs, intended as nodes or node subsets strongly
structurally connected to the rest of the network including via long-range
links and, therefore, highly synchronized with it. Namely, in the two sce-
narios under consideration, there appears to be a greater expression of non-
linear dynamics within the hubs, translating into the generation of large-
amplitude low-frequency fluctuations, over a diffuse background of stochastic
or periodic activity in the rest of the network. More generally, the present
work exemplifies how a toy model electronic network can be leveraged in
exploring whether an observed effect is generalizable beyond the macro-
scopic brain, and, in turn, illustrates how such models can at times provide
insights despite the substantially different node dynamics, instantaneously
diffusive coupling, incomparably smaller size, etc. This suggests that other
toy model networks of this kind, for example capturing aspects of modu-
larity, could be of use in establishing parallels between the brain and other
physical systems, and perhaps also valuable for querying the phenomenol-
ogy of network-related diseases such as some neurodegenerative dementias
[172]. A crucial aspect of the importance of toy models in physics indeed
lies in their ability to eventually generate new paradigms, and this possibly
encompasses experimental comparisons of the present kind [58]. In this vein,
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the next section will introduce results obtained as regards another synchro-
nization phenomenon which appears to be simultaneously detectable in the
resting-state brain networks and replicable in a small electronic system.

3.3. Remote synchronization in a field-programmable analog array network

The statistical property of brain dynamics most closely associated with
the emergence of cognitive processes and ultimately consciousness is unques-
tionably the generation of activity which is at the same time integrated and
differentiated between cortical regions and circuits. This is in certain as-
pects akin to pattern formation in dynamical systems, which can only occur
under partial synchronization because states of excessive differentiation or
collective entrainment, occurring, for example, following diffuse structural
damage and during generalized epileptic seizures, are inexorably manifest
as severe dysfunction. Integration is primarily reflected in the generation of
synchronized neural discharges, which arise in a highly time-dependent man-
ner over cortical regions that may be quite distant from one another; such
consonances are central to the brain’s ability to bind together information
from distinct sensory modalities and cognitive domains. Puzzlingly, these
interdependencies not only seem to be rather weakly constrained by struc-
tural connectivity but often entail forms of apparently remote entrainment
between regions that are not directly connected to each other in a structural
sense. A similar situation may be evident even in the resting-state networks:
while low-level aspects such as the sensorimotor component map closely onto
the intra- and interhemispheric structural connections, in the default-mode
network, the synchronization of the medial frontal cortex with the posterior
nodes appears to bypass the layout of the large axonal bundles. It could be
sustained by the basal ganglia, cingulate cortex or by a diffuse representa-
tion over the fronto-parietal cortex, yet no synchronized activity is clearly
detected in these hypothetical intermediate stations [3, 5, 17, 27, 189–192].

The above readily brings to mind a phenomenon termed remote syn-
chronization, which encompasses heterogeneous mechanisms and is receiv-
ing increasing attention in diverse fields; it consists of the preferential or
even selective entrainment between nodes or subsets of nodes which are not
directly connected in a structural sense, seemingly arising without involve-
ment of the intermediate relay station(s). In the simplest scenario, it can be
exemplified by a chain of three coupled nonlinear oscillators A ↔ B ↔ C,
wherein A and C are selectively synchronized or more strongly synchronized
with each other than with B. In a metaphorical sense, B acts as the courier
of a message which it does not read. Similarly to cluster synchronization,
remote synchronization is capable of giving rise to motifs which are not a
trivial reflection of structural couplings; however, in this case, the constraint
is considerably weaker, because the subsets of preferentially-entrained nodes
do not need to “grow” along the structural connections since they can, at
least to some extent, bypass them (obviously, remotely synchronized nodes
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need to belong to the same connected component). Remote synchronization
can be elicited in diverse scenarios encompassing networks of identical and
non-identical nodes. In the former case, it requires a mechanism prevent-
ing transition to complete synchronization such as links with time delays
or phase frustrations, and it emerges as a reflection of topological symme-
tries in the structural connectivity. In the latter case, sufficient parametric
mismatch can prevent the entrainment of a node while still allowing it to
relay information between its neighbors, a situation which is well-evident
in the paradigmatic case of a star network wherein the hub has a differ-
ent natural frequency, yet, for intermediate coupling strengths, amplitude
fluctuations enable it to establish and maintain synchronization between its
leaves. This effect, which can also be elicited in complex networks, partially
overlaps relay synchronization, wherein complete synchronization among a
population of nodes is maintained by a station which is synchronized with
them in a weaker sense, such as with a lag or a generalized relationship.
Evidence suggestive of remote synchronization across diverse networks such
as electrical power distribution grids, telecommunication infrastructure and
meteorological phenomena is accumulating [38, 193–199].

Predicated on the above, the author and colleagues set out to apply an
approach similar to that outlined in Section 3.1 for investigating the forma-
tion of patterns via remote synchronization, again in the context of a ring
network. While existing research has focused mainly on networks with ei-
ther identical or strongly mismatched nodes, here the focus was accordingly
on small parametric mismatches, of the order of 1% but potentially much
smaller, engendered by production tolerances between physical electronic
components. The question was whether these would break the symmetry of
the ring in a manner akin to the observations of cluster synchronization in
the transistor network, such that remote synchronization could yield more
complex synchronization patterns. Given the absence of a robust theoreti-
cal framework for predicting the emergence of remote entrainment in such a
setting, recourse was made to an exhaustive search recalling that considered
in Section 2.2 for discovering new transistor-based oscillators; even though
inherently unrewarding from a theoretical perspective, this approach allows
the serendipitous discovery of phenomena which can, subsequently, be ana-
lyzed rigorously. Transistor-based oscillators such as those considered thus
far are poorly-suited for rapidly performing a high-dimensional search on an
experimental system since the inductor and capacitor values cannot be tuned
easily under software control. Addressing this issue, a novel oscillator was
introduced, specifically optimized for deployment on a Field-Programmable
Analog Array (FPAA) device; these are integrated circuits providing a fully
analog pathway wherein amplification and filtering are performed through
switched-capacitor banks that can be reconfigured dynamically according to
a bit-string. It should be noted that, while signal processing in these devices
is not digital, an undesirable yet unavoidable consequence of their implemen-
tation is operation in discrete-time mode, which diminishes the relevance of
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experimental study compared to numerical simulation; the situation is nev-
ertheless fundamentally different from deployment on field-programmable
gate arrays, which are entirely digital arrays: although, as recently shown,
they can realize concurrent simulations of coupled nonlinear systems, there
is no conceptual difference with respect to running the same calculations on
a typical microprocessor [200–203].

The oscillator circuit was inspired by the canonical CMOS inverter ring
topology considered in Section 2.3, but in this case, it comprises a ring of
three composite analog stages, each of which realizes summation and low-
pass filtering, overlaid to which two integrators are connected (Fig. 9 (a)).
The node dynamics can be described by the following system:

dv1
dt

= Γ
(

2πF1(G4v4 +G5v5 − v1), v1
)
,

dv2
dt

= Γ
(

2πF2(G1v6 − v2), v2
)
,

dv3
dt

= Γ
(
K1v6, v3

)
,

dv4
dt

= Γ
(

2πF3(G2v2 +G3v3 − v4), v4
)
,

dv5
dt

= Γ
(
K2v2, v5

)
,

dv6
dt

= Γ
(

2πF4(G6v1 +Givi +Geve − v6), v6
)
, (10)

wherein the only nonlinearity is the function Γ (x, y), which approximates
saturation effects due to finite voltage swing Vs according to

Γ (x, y) = R (x)H(Vs − y)−R (−x)H(Vs + y) , (11)

where the Heaviside step function H(x) = 1 for x > 0, 0 for x ≤ 0 and the
ramp function R(x) = xH(x). As for the CMOS inverter rings, satura-
tion in the physical device has more complex features, but the fundamental
emergent properties can be recapitulated while assuming this elementary
piece-wise nonlinearity. The node output voltage corresponds to vo = Gov6,
and each node receives as input the signal, denoted as vi, from the preceding
oscillator on a unidirectionally (e.g., master–slave) coupled ring of 32 units
(Fig. 9 (b)); ve denotes an additional input used only when applying external
perturbations in certain experiments. Even though remote synchronization
has been elicited in networks of Stuart–Landau oscillators coupled diffusively
in the same manner as the transistor networks considered above, in this spe-
cific case, the master–slave coupling scheme is essential for maintaining a
spatial phase gradient, which supports an interference mechanism. The ring
network was physically realized on a circuit board, dubbed LYAPUNOV-1,
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which provides the necessary infrastructure for rapid reconfiguration and
data acquisition, and which conceptually realizes a sort of “chimera” in that
it is effectively an analog computer embodied as a plug-in card for a digital
one (Fig. 9 (c)) [201].

In this system, all parameters are held constant except three, which are
treated as control parameters: the loop gain G6, the coupling gain Gi and
the integration constant K1, in turn linked by a fixed ratio to K2. As a
function of these parameters three regions can be observed, two of which
are characterized by the generation of fully-developed, broadband chaos and
quasi-periodic activity; neither supports pattern formation, for they respec-
tively feature gradual synchronization decay with distance and complete
synchronization. At the interface between them, a more generative scenario
ensues, characterized by a frequency spectrum containing distinct yet broad
peaks, which hallmark a narrower-band manifestation of chaotic dynamics
nearby the transition to quasi-periodicity (Fig. 9 (d)). In this region, the
energy transfer rate is sufficient for maintaining global, albeit imperfect,
phase synchronization (Fig. 9 (e)); however, the amplitudes remain partially
synchronized and delineate structured patterns (Fig. 9 (f)). As in cluster
synchronization, the precise topography of these patterns is driven by the
parametric heterogeneities, however, there are consistent global properties,
foremost the presence of a markedly non-monotonic effect of distance. Am-
plitude synchronization first decays, then peaks at an approximately-fixed
distance, then eventually vanishes, delineating a pattern appearing in the
form of bands parallel to the diagonal. The intensity of the effect is well-
evident upon visual inspection of representative activity time-series, which
appear almost entirely uncorrelated at a distance of ≈ 5 nodes, then seem-
ingly mysteriously become correlated again at a distance of ≈ 8 nodes,
heralding what might be interpreted as a mechanism of hidden information
transfer (Fig. 9 (g)) [201, 203].

By virtue of the elementary underlying structural connectivity, the emer-
gence of remote synchronization can be conveniently quantified according to
the index

η [A] =

∑
ij Θ [H(A− a′)]ij∑
ij H(Aij − a′)

, (12)

where one can empirically set the threshold a′ to half the average synchro-
nization between adjacent nodes and where Θ [A] nulls all locations con-
nected to the diagonal via non-zero entries on the resulting symmetric binary
matrix, thus removing synchronization paths via chains of adjacent nodes.
Upon sweeping the control parameters G6, Gi and K1, consistent observa-
tions of η > 0 are established for extended regions of narrow-band chaotic
dynamics [201].

On a different note, small-world organization emerges in countless self-
organized networks as a means of enhancing synchronizability while limiting
the number of long-distance connections, which incur substantial realiza-
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Fig. 9. Bespoke oscillator and network for attaining a form of remote synchroniza-
tion. (a) Circuit diagram. (b) Unidirectionally-coupled ring connectivity. (c) Ex-
perimental realization based on field-programmable analog arrays. (d) Spectrogram
across nodes. (e) Phase locking. (f) Maximum cross-correlation coefficient of am-
plitude fluctuations. (g) Apparent synchronization loss and subsequent recovery
over sites at increasing distance. Detailed description in Refs. [201, 203].
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tion and maintenance cost. Unlike in previous work by others involving
the strong mismatching of nodes according to a predetermined scheme, the
present form of remote synchronization entails breaking the symmetry of
structural connectivity via small parametric heterogeneities. Given that
these preferentially engender a non-monotonic decay of entrainment with
distance, a certain degree of small-world organization is conferred to the
emergent synchronization pattern. This could be captured by the canonical
index

SWS = γWS
g

/
λWS

g =
(
CWS

g Lrand

)/(
CWS

randLg

)
, (13)

where CWS denotes the average clustering coefficient according to Watts
and Strogatz, and L denotes the harmonic mean path length, both mea-
sured separately for the observed graph and a set of equivalent Erdös–Rényi
random networks. In this experiment, one finds 〈SWS〉 ≥ 1.7, which is not
irreconcilably distant from the values observed biologically for vastly larger
neural systems and which is in sharp contrast to SWS = CWS = 0 in the
underlying ring connectivity [26, 201, 204, 205].

Still further, synchronization patterns having diversified levels of nodal
strength heterogeneity are obtained as a function of the control parame-
ters. Each pattern delineates a weighted graph G expressing self-similarity
in the form of varying correlation between the edge strengths and the sums
of all triangles hinged around the corresponding node pairs; this heralds dif-
ferent degrees of quasi-idempotence of the corresponding matrix, intended
as A ≈ A2. As introduced by the author and colleagues, representing as
Ĝ(1, n) the graph associated with the matrix squared n times, this organi-
zation can be probed by calculating

ι(n) = r
(
Ξ[G], Ξ

[
Ĝ(1, n)

])
, (14)

where r(x,y) denotes the linear correlation between the elements of vectors
x and y, and Ξ[G] yields a vector g containing the edge strengths of G.
A rich repertoire of synchronization patterns emerges within the chaotic
regions of this system and, according to the proposed index, these patterns
heterogeneously feature weak (ι(1)� ι(∞)) as well as strong (ι(1) ≈ ι(∞))
forms of quasi-idempotence [78].

Closer evaluation of the present remote synchronization phenomenon in-
dicates that the non-monotonic entrainment, which spontaneously arises in
an interwoven pattern between the nodes, survives beyond the assumption
that y(t) ∝ x(t); for example, it persists when replacing the cross-correlation
with mutual information between the scalar time-series, which can capture
an arbitrary relationship of the form of y(t) = φ(x(t)). By contrast, mea-
sures capable of representing generalized synchronization, intended as a more
convoluted time-dependent entrainment of the form of y(t) = Φ(x(t)), reveal
a graded decay without remoteness: in other words, they fill the synchro-
nization dip at intermediate distances. This initially puzzling dissociation is
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confirmed when comparing linear Granger causality with transfer entropy,
which provides a model-free estimation of causal inter-dependence: such a re-
sult highlights that, in the present system, inferring the presence or absence
of remote synchronization depends crucially on how entrainment is mea-
sured. Accordingly, the auxiliary system approach confirms the presence
of an underlying generalized synchronization which decays monotonically:
in turn, this leads one to question what mechanism could seemingly “hide”
synchronization and causal inter-dependence over an intermediate range of
distances [201, 203].

That question could be answered by considering a simplified model hav-
ing the form of 

dv1
dt

= 2πF (G4v4 − v1) ,

dv2
dt

= 2πF (G1vo − v2) ,

dv3
dt

= Γ (Kvo, v3) ,

dv4
dt

= 2πF (G2v2 +G3v3 − v4) , (15)

where vo = G5v1 +Givi and

Γ (x, y) = R (x)−R (−x)H(Vs + y) ; (16)

for suitable parameter settings, in this system, each node still acts as a non-
linear relay for the input signal but, unlike in the full model, it does not
generate an own chaotic signal, that is, it contributes no new information.
While probing the dynamics of a chain of said units, it was found that re-
moteness becomes apparent via a mechanism of concomitant demodulation
and interference: the ring resonator within each node filters and dephases
the input signal, which furthermore sums to the integrator output, where
envelope detection can take place due to the asymmetric nonlinearity. In
the region where remote synchronization emerges, the spectrum is such that
the predominant peaks are located at frequencies delineating an amplitude-
modulation scheme wherein the baseband fB and the lower sideband fL
coincide, i.e. fC = fL + fB = fH − fB with fB = fL = fC/2, and therefore
can interfere constructively or destructively. This accounts for the fluctua-
tions observed in the spectrogram, which resemble a diffraction effect akin
to those elicited by monochromatic light. At the distance where synchro-
nization appears to fade transiently, the lower sideband fL is almost com-
pletely suppressed and the signal is propagated in the other two frequency
bands, namely by the carrier fC and the higher sideband fH, from which it
is later recovered via demodulation. It appears truly remarkable that such
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a convoluted arrangement could emerge spontaneously, and even do so in
an intertwined manner virtually across the entire ring, not just between a
minority of sites [201, 203].

Two additional experiments were performed by means of perturbing the
system and observing its responses in an interventional framework. This
is conceptually important since a pertinent limitation of all the other ex-
periments surveyed in the present contribution is that parallels with neural
dynamics are established purely at an observational level, which is inherently
limited in its explanatory value [34, 35, 37].

Firstly, the dynamics of individual nodes were obliterated through focally
injecting high-intensity white noise. The results indicate a predominantly lo-
cal desynchronizing effect, in turn suggesting that, in line with simulations of
diversely-sized rings, the pattern-formation mechanism reflects short-range
interactions rather than a collective behavior of the entire network; this sit-
uation stands in contrast with the long-range interactions realized in the
lattice considered in Section 2.4. This type of intervention is reminiscent of
repetitive transcranial magnetic stimulation, which can reversibly damage
functional brain networks by regionally inhibiting activity, yielding effects
that are similar to the present ones whenever peripheral nodes are targeted
[203, 206]. Interestingly, such a disruptive perturbation could also elicit
some situations of enhanced synchronization over sites distant from the in-
jection point, hallmarking the presence of a complex landscape of energy
minima, which are also visible through the emergence of non-stationary dy-
namics. Even though this aspect has not yet been addressed in any detail,
the generation of a limited number of irregularly alternating discrete states,
resembling brain microstates, was noted [19, 201, 207].

Secondly, the ability to propagate an external stimulus was probed via
summatively injecting low-amplitude pulses, aiming not to excessively dis-
tort the intrinsic dynamics and recovering the response of each node through
time-locked averaging. This approach is similar to recording the average
electroencephalographic responses evoked by low-intensity transcranial mag-
netic stimulation pulses, as done for example while mapping the effective
connectivity network to assess brain integrity after injury [189, 203]. It was
concluded that remoteness is exclusively apparent for the intrinsic activity,
in turn delineating, in the jargon of neuroimaging, an effective connectivity
network which is clearly decoupled from functional connectivity and more
closely related to structural connectivity, again resonating with similar re-
sults obtained in experimental neuroscience [7, 8]. In the author’s opinion,
these results point to fertile ground for future experimental and numerical
investigation of the present system.

Altogether, these data delineate a scenario wherein a convoluted nonlin-
ear interdependence emerges spontaneously and generates synchronization
patterns considerably richer compared to those yielded by cluster synchro-
nization in the transistor networks. The underlying mechanism could be
primarily explained in terms of an interplay between three frequency bands,
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and for suitable control parameter settings engendered concomitant signal
generation, nonlinear relay and demodulation occurring at each node. Be-
sides prompting further reflection on measure choice and on the definition
of remote synchronization and causality, with clear implications for neuro-
physiological studies, the present results illustrate the remarkable ability of
nonlinear dynamics to reproduce, at least at a phenomenological level and
even in such a small-scale network, some prominent aspects of brain orga-
nization [34, 35, 37]. In particular, as previously asserted concerning modu-
larity, even acknowledging the adaptive role of small-world and self-similar
topology leaves open the question of what evolution would have initially
“locked in” to begin tuning towards these features. Results such as those
presented here exemplify that phenomena such as remote synchronization,
which in all its diverse manifestations as yet to be discovered is plausibly
no less pervasive than cluster synchronization, can readily give rise to such
properties. Again, one is allowed to speculate that, deep towards the bot-
tom of the phylogenetic tree, this nonlinear phenomenon may have lead to
the initial emergence of small-world synchronization patterns, which subse-
quently became enhanced and eventually engraved also into the structural
architecture of nervous systems [26, 155–157].

3.4. Motor pattern generation for driving a hexapod robot

The results surveyed so far reflect instances of morphogenesis wherein the
nonlinear electronic networks generate seemingly arbitrary synchronization
patterns, which have statistical features of interest for comparison with those
characterizing the brain and nervous systems. In this final section, a different
situation is considered, wherein structural connectivity is no longer in the
form of an elementary topology such as a ring but is ab initio arranged more
complexly; this promotes collective oscillation having desired spatiotemporal
features and aiming to serve a given application. In particular, the design
of a nonlinear controller for a bioinspired insect-like robot is reported.

Most animals possess an innate ability to produce periodic movements
supporting their locomotion, a feature that is well-evident across phyla and
scales from micro-insects through large mammals. For evolutionary rea-
sons plausibly related to functional segregation and cognitive economy, the
generation of the corresponding neural activity is consistently realized via
dedicated neural architectures, known as central pattern generators. These
structures spontaneously produce sustained oscillations according to given
phase relationships which realize viable walking gaits. In turn, they are
controlled by afferences from other ganglia or higher brain regions, which
influence movement initiation and inhibition, selecting a gait alongside its
frequency and other parameters. Remarkably, the locomotion of insects
and many arthropods hinges around a limited number of highly-conserved
“canonical gaits”, such as the alternating tripod gait, the metachronal or
tetrapod gait, and the wave gait. These denote stereotyped orders accord-
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ing to which the power strokes are delivered by the legs; for example, in
the case of a six-legged creature, they respectively correspond to the se-
quences (L1,R2,L3)→ (R1,L2,R3), (L1,R3)→ R2→ (L3,R1)→ L2, and
L1 → R2 → L3 → R1 → L2 → R3. Generation of these three gaits, which
are generally associated with decreasing locomotion speed, is influenced by
environmental factors such as surface inclination and roughness, as well as by
endogenous variables related to exploring or fleeing behavior. Notably, these
patterns are not produced in a rigid or discretized manner, and a virtually
unlimited variety of intermediate gaits can be readily observed, manifest-
ing even paradoxical phase relationships between the legs. Furthermore,
as said, analogous gaits are found across species possessing vastly different
biomechanical features; for example, in ants, the power stroke is delivered
in an approximately similar manner over all six coxa-body axes, whereas in
cockroaches, there is considerably greater differentiation between the front,
middle and hind legs, yet the gaits are similar [208–212].

Central pattern generators have received considerable attention from the
bioinspired robotics community owing to their pervasiveness in biology and
because they can provide parsimonious solutions to otherwise demanding
motion control problems [213, 214]. In this vein, the author and colleagues
have realized a central pattern generator based on an adaptation of the re-
configurable oscillator initially introduced in the previous section as a means
of eliciting remote synchronization (Fig. 9 (a), Eq. (10)). Its architecture
reflects a purely connectionist approach wherein all node dynamical param-
eters are strictly fixed, and gait pattern generation is controlled solely by
modulating the connection weights and signs. In order to realize the cen-
tral pattern generator at the core of the proposed controller, an oscillator
representing a mesoscale neural ensemble was instanced corresponding to
each one of the six legs, and three overlapping sets of hardwired physical
connections were provided to engender the phase relationships realizing the
canonical gaits described above (Fig. 10 (a)) [215].

Building on the notion of a “generalized gait”, the strengths of these
three connection sets are jointly and continuously determined by a single
gait parameter P1 ∈ [0, 1]. Following a neurofuzzy approach, the follow-
ing membership functions are considered and mapped to the corresponding
input (coupling) gains of the oscillators:

Swave(P1) = 1− 1

1 + e−A1(P1−C1)
,

Smetachr(P1) = 1− 1

1 + e−A2(|P1−C2|−C2/2)
,

Stripod(P1) =
1

1 + e−A3(P1−C3)
, (17)

where Ai > 0 and Ci ∈ [0, 1] are scaling constants, and higher values of
P1 realize gaits generally associated with faster insect locomotion. Fuzzy
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Fig. 10. Nonlinear controller for hexapod robot. (a) Hierarchical network compris-
ing a common central (gait) pattern generator and one separate local (trajectory)
pattern generator per each leg. (b) Gait control parameter P1 sweep illustrat-
ing the generation of canonical gaits and intermediate ones. (c) Representative
leg trajectories (joint angles α, β and γ) showing diversified limit cycles for the
ant- and cockroach-like postures, and loss of limit cycle following deafferentation.
(d) and (e) Walking in the ant- and cockroach-like postures. Detailed description
in Ref. [215].
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membership is inherently more biologically-plausible that discrete selection
and allows a graded transition between the gaits, whose corresponding con-
nection sets are combined summatively. Furthermore, since the couplings
have heterogeneous signs and non-linearity is present, phenomena reflecting
a “competition” between the gaits can be elicited [214–216].

Accordingly, while sweeping P1 one observes not only reliable transi-
tions between the canonical gaits but also the generation of a multitude
of intermediate gaits; these are not trivially related to the canonical ones
and feature phase-reversal effects, metastable patterns and hysteresis re-
gions, which recall entomological observations (Fig. 10 (b)). The activation
of the central pattern generator can furthermore be controlled by a second
parameter P2 ∈ [−1, 1], which enables inhibiting, restarting and reversing
the walking; notably, when this parameter is suddenly changed from zero,
it is possible to observe the self-organization of the gait pattern, wherein
disordered oscillations gradually build up and establishment of stable phase
relationships follows. It should be noted that in this experiment, unlike the
previous sections and other work on chaotic control, the nonlinear oscillators
were operated in a periodic region. This choice may constrain but, impor-
tantly, does not negate the possibility of generating emergent synchroniza-
tion phenomena, as exemplified by experiments on remote synchronization
in Stuart–Landau systems [194, 214, 215, 217–220].

Having generated a gait pattern, there remains the problem of trans-
lating it into viable leg trajectories, which are constrained by the available
degrees of freedom and need to take into account the specific mechanical
features of the robot platform. Even when replicating biological central
pattern generators, this step has at times been realized using conventional
forward and inverse kinematic computations, which are conceptually con-
venient but computationally demanding and not biologically plausible. By
contrast, the present robot controller was implemented exclusively with non-
linear analog computation, in a hierarchical form wherein each node of the
central pattern generator drives a corresponding downstream local pattern
generator, which is instanced independently for each leg and tasked with
translating the phase information into joint trajectories (Fig. 10 (a)). As
such, the local pattern generators effectively operate a degrees-of-freedom
reduction operation akin to that posited for muscle synergies in humans
and other animals [208, 212, 213, 215, 221]. Each one consists of a ring of
three oscillators which drive corresponding joints and whose input weights
are again controlled continuously by two high-level parameters, P3 ∈ [0, 1]
and P4 ∈ [0, 1]; the former sets the overall coupling strength to the central
generator, the latter alters the amplitude and phase relationships between
the joints, realizing the ant- and cockroach-like postures. As for P1, these
parameters are mapped onto individual amplifier gains through linear super-
position equations, which involve a large number of fixed parameters that
had to be determined empirically. For strong coupling between the two lev-
els of the hierarchical controller, that is P3 ≈ 1, the emergence of distinct
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limit cycles specific to each posture and leg is readily observed; contrariwise,
deafferentation of the local pattern generators, that is P3 ≈ 0, causes the
loss of the limit cycle: this translates into a thrashing behavior reminiscent
of that observed in living insects for example following insecticide poisoning
(Fig. 10 (c)).

To evaluate the controller in a physical scenario, the same was deployed
to drive a robot weighting ≈ 3 kg, instrumented with telemetry sensors and
dubbed (hisenkei ari-1); this prototype represents a successor
to an early design by the author, GOLEM-1, wherein attempts were made
to realize a related locomotion control approach using a digital neural net-
work processor (Fig. 10 (d)) [215, 222]. The robot was driven in real-time by
the LYAPUNOV-1 board, suitably rewired to implement the necessary struc-
tural connectivity, relying on digital processing only for reconfiguring the
field-programmable analog arrays and relaying their rescaled outputs over
a radio link. Notably, the telemetry data not only confirm the kinematic
viability of the majority of emergent gaits but also highlight their heteroge-
neous features in terms of resulting robot attitude, body elevation, postural
stability, structural strains and energy consumption; a similar kind of non-
uniform performance under different conditions is, indeed, plausibly what
drove evolution towards expressing a multitude of insect gaits as opposed to
globally optimizing a single one [208–213].

The present results exemplify a practical application of one of the atypi-
cal oscillators introduced above, leading to a small-size hierarchical controller
which realized a high level of versatility in gait, posture and coordination.
In particular, they underline the generative potential of a connectionist ap-
proach to this task, which allows condensing substantial kinematic complex-
ity into a minimal number of high-level parameters. These are suitable for
purposeful setting by networks representing higher-level cognitive processes,
or even for control via brain-machine interface systems. It is expected that
the spectrum of biologically reminiscent behaviors available to the controller
could be substantially expanded through going beyond the present purely
open-loop implementation; for instance, further research needs to address
the possibility of adaptively reconfiguring the local and central pattern gen-
erators based on environmental feedback.

4. Commentary and future directions

The experiments surveyed in this essay represent an initial and specu-
lative attempt to establish some parallels, at least at a phenomenological
level, between aspects of the dynamics of two profoundly different entities.
On the one hand, the brain and nervous systems across the micro-, meso- and
macroscopic scales, on the other hand, simple nonlinear electronic circuits
and networks not corresponding to structurally- or physiologically-realistic
neuronal models [5].
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Namely, it was shown that rich phase transition structures spanning peri-
odic and chaotic regions reminiscent of those elicited in neurons and axons,
together with the generation of quantized spikes and bursts thereof, can
be replicated even over diverse types of simple transistor-based oscillators
[97, 98]. It was likewise demonstrated that avalanches scaling with the pre-
cise same critical exponents regulating spontaneous neural activity can be
generated in a lattice network of gas-discharge tubes, and that this takes
place concomitantly with metastability and hysteresis, in turn pointing to
the possibility that alike mechanisms, related to first-order transition, may
also be at play in biological systems [145, 153]. It was similarly exemplified
how the generation of chaos could be influenced by structures such as cross-
coupled inverter rings having primal lengths and transistor-based oscillators
harboring fractal resonator networks; in this context, observations on the
effect of irregularities and imperfections, which could have relevance for the
interpretation of biological fractals such as dendritic trees, were established
[119, 122]. It was furthermore illustrated how a rich community structure
spanning multiple scales as a function of coupling strength could be readily
elicited in a ring network of single-transistor oscillators, whose symmetry is
broken by small parametric mismatches [166]. It was subsequently shown
how synchronization patterns having apparent small-world, self-similar fea-
tures could arise through remote synchronization in another ring network,
wherein modulation and interference effects lead to non-trivial entrainment
between the nodes [201, 203]. Besides highlighting some potential pitfalls
in applying linear measures to complex systems such as the brain, alto-
gether these results fuel speculating on how key features of brain network
organization could find their distant roots in fundamental synchronization
phenomena, which might have originated motifs and topological features
subject to later adaptive selection and enhancement [25, 30, 36, 38]. Fur-
thermore, it was demonstrated how the expression of nonlinear dynamics in
the form of large-amplitude, low-frequency fluctuations such as those driv-
ing brain hemodynamic responses could be readily engendered by structural
connectivity even in a drastically-simplified toy model network of cortical
organization into hub regions [181]. Lastly, it was exemplified how nonlin-
ear oscillators of the present kinds could offer a fertile substrate for realizing
complex functions such as generating motor patterns and leg trajectories re-
alistically driving an insect-like robot, simultaneously yielding biologically-
plausible emergent behaviors beyond the designed features [215].

It is unquestionable that there are pervasive, profound differences be-
tween biological neural systems and the circuits and networks considered
herein, which have so far only recapitulated in a fragmented manner few
selected aspects of neural dynamics. The former operate on a completely
different spatiotemporal scale, realize vastly more complex interactions and
coupling schemes through synapses and multiple neurotransmitter systems,
are highly adaptive via plasticity which is entirely absent in the latter, and
plausibly operate in another regime wherein critical dynamics play a more
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prominent role, and wherein the level of synchronization between coupled
units is lower [5, 17, 20, 22, 25, 27]. Yet, it seems equally incontrovertible that
the emergent phenomena expressed by the present circuits place their physi-
cal dynamics closer to those of biological neural networks in comparison with
digital computers and plausibly also in comparison with several analog neu-
romorphic systems, particularly in that both are generally based on different
principles, centered foremost around explicitly designed features rather than
around emergence and self-organization [17, 21, 38, 63, 65, 67, 71].

The main contribution of the present work is thus arguably to be found in
the fact that it exemplifies experimentally how certain emergent phenomena,
observed at diverse scales in biological neural systems, could tentatively be
recapitulated through considerably smaller and simpler networks of analog
electronic devices. These were selected among the realm of other possible
nonlinear physical apparatus, e.g. mechanical and optical systems, mainly
out of practical considerations related to their realization and manipula-
tion. Besides offering a hopefully useful platform for performing experi-
ments translatable across in silico, in vitro and in vivo situations, results
such as the present ones will perhaps inspire reflections around the possible
absence of any inherently unique dynamical phenomenon in the brain. In
the author’s view, nature, through evolution, might rather have efficiently
harvested nonlinear phenomena that are pervasive in the physical world for
realizing the infrastructure which eventually supports the emergence of cog-
nitive activity. In an allusion to astrobiology as well as to Giordano Bruno,
we could briefly allow ourselves to wonder whether the latter truly repre-
sents a singularity or there are other instances perhaps inaccessible to us. At
least some emergent phenomena are sufficiently general that they could be
readily elicited even in electronic circuits which are dynamically and topolog-
ically quite unrelated to neurons and brains, sharing virtually only the fact
that they possess nonlinear dynamics. As such, the present findings appear
to vindicate the enormous generative power of even elementary nonlinear
circuits, and therefore should reinvigorate their study as potential building
blocks also for practical engineering applications; at a minimum, they should
point to a closer consideration of oscillator topologies beyond the canonical
ones [2, 3, 18, 19, 60, 65, 75, 76].

The longest-term goal in this field undoubtedly consists of formulating a
general theory of emergence translating into systematic tools for predicting
and inducing collective behaviors. On the one hand, this would plausibly aid
in understanding the biophysical origins of the mind, and on the other hand,
it may enable harvesting the potentially enormous computational capabil-
ity of analog nonlinear systems, which is expected to vastly exceed that of
present-day digital computers per transistor and per power unit, as indirectly
testified by the performance of the brain itself [2, 17, 20, 57, 59, 66, 67, 71].

Achieving such a goal would plausibly be aided by a deeper understand-
ing of pattern-formation mechanisms, motivating further experiments con-
sidering larger, more complex structural connectivity. In that regard, future
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work should leverage the present oscillators for physically replicating ner-
vous connectomes across different resolutions, for example capturing the
full architecture of the Caenorhabditis elegans, or a mesoscopic model of an
insect brain, or a macroscopic representation of a mammalian one. Fur-
thermore, there is an obvious need to implement forms of plasticity allowing
self-organization and memory beyond the minimal extent attainable in these
thus-far fixed circuits: besides the preferable usage of self-contained devices
such as memristors, an intermediate step may involve implementing digital
analysis of the generated signals with real-time control of circuit parame-
ters such as supply voltage or capacitor bank selection. Taking such a step
appears relevant foremost for ascertaining whether any meaningful learning
process can or cannot be replicated in this context [5, 17, 20, 25, 27, 46].
On another note, besides epistemological considerations around the inherent
complementarity of simulation and physical measurement, there is a need
to clarify the contribution and limitations of numerical models in this area,
particularly as regards the prediction of global emergent properties which
may be qualitatively affected by elemental heterogeneities, non-idealities and
the alike: taking such a step will better delineate the scientific relevance of
experiment-based explorations such as the present one [18, 19, 58, 68, 70, 74].

On another note still, it appears necessary to consider more closely the
effects of non-stationarity and noise, whose impacts on the emergent prop-
erties of brain dynamics are empirically well-evident. With regards to the
former, there is a need to evaluate the possibility of replicating aspects such
as the spontaneous formation of microstates; these are discrete, irregularly
alternating brain states which are detectable in neurophysiological record-
ings in the form of features that were only in passing juxtaposed to the
dynamics of the present oscillators [19, 207]. As regards the latter, there is
a need to address the generative potential of noise, diversely intended as its
ability to enhance synchronizability, its ability to reveal hidden attractors for
example related to bistable states, and even its ability to boost processing
capabilities via phenomena such as stochastic resonance [14, 15]. Further
research should also be performed applying notions of nonlinear and chaos
control to these circuits, particularly with respect to the possibility of en-
riching their dynamical repertoire via external tuning, for instance aiming
to maintain operation close to a transition point: as for plasticity, this might
at first be conveniently implemented through an external digital controller
[72]. The present work should, therefore, at best be considered as a pre-
cursory and undoubtedly incomplete account of the ability to recapitulate
neural dynamics in nonlinear electronic oscillators.

Lastly but no less importantly, there appears to be ample opportunity for
more explicitly integrating the notions which guided the present work with
the domains of computational neuroscience, artificial intelligence and neu-
romorphic computing. For instance, nonlinear structures such as reentrant
neural networks, whether deep or not, are clearly well-suited for generating
emergent phenomena, as are multi-agent systems and many other learning
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automata, hence, there is an obvious motivation to approach them, perhaps
more ambitiously, also from the perspectives of chaos and synchronization
theory. A similar argument seems to apply to simulations and experimental
realizations of neural circuit architectures not explicitly intended as sub-
strates for emergence but as designed implementations of chosen functions
[52–54, 59, 109, 110].

It is hoped that, despite all its limitations, the present preliminary, spec-
ulative and perhaps unusual attempt to draw together neuroscience and
nonlinear electronics will possibly aid in inspiring others to undertake and
continue interdisciplinary research across these areas.
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