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We propose that rapidity-dependent momentum correlations can be
used to extract the shear relaxation time τπ of the medium formed in high-
energy nuclear collisions. Shear viscosity drives the initial fluctuations of
the medium toward equilibrium at a rate characterized by the shear relax-
ation time. Momentum fluctuations, in excess of thermal fluctuations, that
survive to freeze out, are remnants of the initial state, and influence the
rapidity dependence of momentum correlations. We describe a method for
calculating the rapidity dependence of two-particle momentum correlations
with a second order, causal, diffusion equation that includes Langevin noise
as a source of thermal fluctuations. In comparison to RHIC data, we find
that the ratio τπ/ν ≈ 5–6, where ν = η/sT is the kinematic viscosity.
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1. Introduction

The medium produced in high-energy heavy-ion collisions is expected to
rapidly reach a locally equilibrated quark–gluon plasma (QGP) state. How-
ever, at the onset of the formation of the QGP phase, the stress energy tensor
describing energy and momentum densities is surely anisotropic over the col-
lision volume and out of equilibrium. Hydrodynamics has been widely used
to model the dynamics of the expansion and cooling of the system; viscous
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forces in hydrodynamic theories characterize the nature of the fundamen-
tal microscopic interactions that drive the system toward equilibrium. For
this reason, experimental measurements of observables that are sensitive to
viscous effects are critical for constraining these hydrodynamic theories. In
addition to viscosity, these theories incorporate other such transport coef-
ficients that similarly characterize the fundamental nature of the medium,
but few have any experimental constraints.

We expand on our work [1] to propose a method for extracting another
transport coefficient, the shear relaxation time τπ, from the rapidity de-
pendence of transverse momentum, pt, correlations. In Sec. 2, we describe
how correlations between momentum fluctuations are simultaneously driven
toward an equilibrium state and also propagated through the medium by
diffusion. The shear relaxation time characterizes the rate of isotropization
of the medium due to shear viscous forces and, therefore, the rate at which
correlations are transported through the medium. In particular, we focus
on the spread of correlations in rapidity. In Sec. 3, we describe how these
correlations are observable through the rapidity dependence of two-particle
transverse momentum correlations, C, and highlight the sensitivity of the
data to τπ. Finally, in Sec. 3.1, we describe how transport coefficients can
be studied through moments of the rapidity distribution of C.

2. Diffusion of momentum correlations

Correlations of momentum fluctuations are sensitive to both the so-called
first and second order transport coefficients that characterize the dynamics of
medium created in relativistic nuclear collisions. Relativistic hydrodynamics
is often used to model the dynamics of these collisions and the equations of
motion are determined by solving differential equations representing energy
and momentum conservation, ∂µTµν = 0, and particle current conservation,
∂µJ

µ = 0. Here, Tµν is the stress energy tensor and Jµ is the particle current
density. Schematically, including non-equilibrium motion amounts to adding
source terms to the differential equations such that the stress-energy tensor
and current density take forms such as Tµν = Tµνideal+∆Tµν and Jµ = Jµideal+
∆Jµ. The ∆Tµν and ∆Jµ terms encompass effects from out-of-equilibrium
dynamics due to shear and bulk viscosities, thermal conductivity, etc.

Transport coefficients like the shear and bulk viscosities show up in the
so-called first order theories that have had success explaining dissipative
dynamics. However, first order theories do not address the time scales over
which dissipative forces transport correlation signals through the medium.
Second order theories usually address this issue by utilizing a relaxation
time approximation that enforces causality through the introduction of a
relaxation time — a characteristic time that dictates the rate at which a
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fluid approaches (local) equilibrium. Therefore, the shear relaxation time,
τπ, is as fundamentally important for characterizing the medium as is the
shear viscosity itself.

The rapidity dependence of transverse momentum correlations is par-
ticularly sensitive to τπ. Imagine two neighboring fluid cells with different
transverse momenta. Shear viscosity acts between them such that the slower
cell is sped up and the faster cell is slowed down, driving the two toward
an average. In doing so, momentum is transferred in a direction that is
perpendicular to the direction of the flow — in this case, in the longitudinal
(rapidity) direction. Over time, fluid cells at relative rapidity separations of
∆η ∼ 1–2 units can influence each other’s transverse momenta. In this way,
large momentum correlations at very small ∆η will diffuse to larger rapidity
separations, and τπ controls the rate of this process.

We focus on correlations of transverse momentum fluctuations at two
different points in the fluid

r(x1,x2) = 〈g(x1)g(x2)〉 − 〈g(x1)〉〈g(x2)〉 . (1)

Here, g ≈ T0r−〈T0r〉 is the difference in transverse momentum density from
the global average at position x. The initial values of both the fluctuations g
and the correlation function (1) are determined at the initial moments of the
collisions. We look for correlations (1) that survive through the dynamical
evolution, assuming final-state particle momenta are representative of local
momentum densities of the fluid at freeze-out.

While shear viscosity diffuses correlations (1) in rapidity, the fluctuation–
dissipation theorem states that all dissipative terms are accompanied by
stochastic fluctuations due to microscopic interactions. This stochastic noise
ensures that even if viscous forces are able to drive the system to equilib-
rium, stochastic fluctuations would induce random momentum correlations
throughout the system. Schematically, including a stochastic term in the
stress energy tensor like Tµν = Tµνideal + ∆Tµν + noise will source correlations
in (1), see [1–3].

Additionally, the longitudinal expansion of the medium due to the motion
of the colliding nuclei competes with the longitudinal momentum transfer
due to shear viscosity. Therefore, we calculate the evolution of correlations
following [1] using linearized, second order, Müller–Isreal–Stewart hydrody-
namics with noise and one-dimensional longitudinal expansion. Linearized
forms of second order equations are discussed in [3–5]. To investigate the
evolution of momentum correlations (1), we write the hydrodynamic equa-
tions for momentum density rather than velocity. Further, in [1], we show
that these evolution equations can also be written for momentum density
fluctuations. At linear order, shear and longitudinal modes are decoupled,
therefore, only shear forces will contribute to the rapidity dependence of (1).
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Longitudinal modes may send compression sound waves in the longitudinal
direction, however, these modes do not change the positions of fluid cells
or relative longitudinal distances between cells. Longitudinal modes also do
not transfer any transverse momentum between cells.

We distinguish longitudinal and transverse modes using the Helmholtz
decomposition. We indicate the divergence free component of the momen-
tum density fluctuation as g. Now, correlations (1) emerge from only initial
state correlations and vortical forces. By keeping only the curl free compo-
nents of momentum fluctuations, longitudinal modes would modify a similar
correlation function. These correlations could be used to study bulk viscos-
ity, sound modes, and thermal and baryon conductivity. We leave this for
future work.

Following Ref. [1], we derive a causal diffusion equation for correlations
of momentum density fluctuation (1) rather than g itself. If viscosity has
enough time, all fluid cells will approach the average value, driving g → 0
and 〈g(x1)g(x2)〉 → 〈g(x1)〉〈g(x2)〉 and, therefore, r(x1,x2) → 0. Noise
causes random fluctuations — changes of g — sourcing random correlations
in (1). For more information about how correlations emerge from noise, see,
for example, Refs. [6–9]. Consequentially, in equilibrium, correlations (1) do
not vanish, but approach some value r → req.

It turns out that the quantity ∆r = r − req also satisfies the diffusion
equation, and we obtain[

τπ
2

∂2

∂τ2
+
(

1 +
κτπ
τ

) ∂

∂τ
− ν

τ2

(
2

∂2

∂(∆η)2
+

1

2

∂2

∂η2a

)]
∆r = 0 . (2)

We define the relative ∆η = η1 − η2 and average ηa = (η1 + η2)/2 spatial
rapidities for pairs of fluid cells at different longitudinal positions. Given
the Bjorken expansion, we equate spatial rapidity with rapidity, and τ is the
proper time.

Equation (2) describes the causal diffusion of correlations (1) in excess of
random correlations from noise. We parameterize the shear relaxation time
τπ = βν, where ν = η/sT is the kinematic viscosity, η/s is the shear viscosity
to entropy density ratio and T is the temperature. The coefficient β dictates
the rate at which signals propagate through the medium and is related to the
speed of sound by cs = β−1/2. Notice that τπ scales the time derivatives, and
effectively determines the rate at which the correlation function changes.

Three transport coefficients appear in (2), the kinematic viscosity ν, the
shear relaxation time τπ, and finally, the coefficient κ which scales gradients
in speeds of fluid cells. For example, in a conformal fluid, where the only
scale is T , τπ ∼ 1/T , η ∼ s ∼ T 3, and κ = 4/3. In this work, we calculate
κ following [10] using the coupled differential equations for causally delayed
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heating with the Bjorken flow

ds

dτ
+
s

τ
=

Φ

Tτ
;

dΦ

dτ
= − 1

τπ

(
Φ− 4η

3τ

)
−κ
τ
Φ ; κ =

1

2

{
1 +

d ln(τπ/ηT )

d ln τ

}
.

(3)
Using a parameterization of η/s with T that we take from [11] in combination
with (3), we calculate a time dependence of temperature, entropy density,
and κ to use in (2).

3. Rapidity correlations

Experimental measurements of two-particle transverse momentum cor-
relations are related to correlations (1) by

C = 〈N〉−2
〈∑

i

∑
j 6=i

pt,i pt,j

〉
−〈pt〉2 = 〈N〉−2

∫∫
〈∆r(x1,x2)〉dx1 dx2 . (4)

Here, pt is the transverse momentum of particle i or j and 〈. . . 〉 is an
event average. The STAR experiment has measured (4) differentially as
C(∆η,∆φ), where ∆η is the relative pseudorapidity and ∆φ is the relative
azimuthal angle between particle pairs [12, 13]. A differential measurement
in ∆φ can be used to study the contributions from geometrical fluctuations
and we leave this for future work. To eliminate contributions to (1) from
geometrical fluctuations, we integrate C(∆η,∆φ) over ∆φ. Since geomet-
rical fluctuations can be characterized by a Fourier cosine series, then the
integral of any cos(n∆φ) on the interval 0 < ∆φ < 2π will vanish. In Fig. 1,
STAR integrated C(∆η,∆φ) in the region |∆φ| < 1.

To find agreement between the measured data in Fig. 1 (red points)
and our calculation (solid lines) from (2) and (4), several parameters in (2)
must be determined. We use a parameterization of η/s from [11] with (3)
to calculate the time dependence of the temperature, kinematic viscosity,
and coefficient κ. The best agreement with data results from choices of a
formation time of τ0 = 1.05 fm, a freeze-out temperature of TFO = 150 MeV
and β = τπ/ν = 5.5. The value of β = 5.5 and the non-Gaussian shape of
the distribution are our primary results. Importantly, we are able to find
similar results in the range of 5 < β < 6, indicating that the data can put
realistic constraints on τπ [14].

In the case of first order (β = 0) diffusion, the distributions C(∆η) are
always Gaussian in shape given Gaussian initial conditions. Even with non-
Gaussian initial conditions, first order diffusion rapidly drives the distribu-
tion to be Gaussian. The STAR measurement of C(∆η) in central collisions
distinctly shows non-Gaussian shapes that are flatter and even suggest a
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Fig. 1. Relative rapidity distribution of transverse momentum correlations for
Au+Au collisions at

√
s = 200 GeV. β = 5.5, τ0 = 1.05 fm, τf,b=0 = 1.05 fm,

TFO = 150 MeV. Data is from the STAR experiment [12].

double peak structure. This indication of a deviation from the β = 0 case
is the motivation for this work. Notice that (2) resembles Telegrapher’s
equation which has wave and diffusion components. The wave nature of (2)
indicates that the initial distribution of ∆r will travel as a wave with speed
β−1/2 in Cartesian space. The relative rapidity coordinate system enforces a
symmetry, so the initial ∆r peak will travel as two oppositely moving peaks.
Longitudinal expansion slows the (rapidity) propagation of the peaks by a
factor of τ−2. The diffusive nature of (2) acts to produce a diffusion hump
that fills the region between the peaks. If freeze-out happens rapidly, the
wave pulses will not separate enough to be individually visible. Consequen-
tially, the distribution appears flattened near ∆η = 0. The data suggests
a dip at ∆η = 0 in central collisions which we interpret as the wave pulses
separating. It may be possible to resolve the dip with better knowledge of
the initial distribution of correlations. We chose the initial width of ∆r to
match distribution in the most peripheral collisions, but it is likely that the
initial distribution is narrower.
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3.1. Moments

Examining the moments of the correlation distributions C(∆η) is a com-
plementary way of studying the effects of transport coefficients. In [1], we
found that the width of C(∆η) is most sensitive to the viscosity, but the
apparent flattening at ∆η = 0 could not be explained with only first order
theories of viscous diffusion. Indeed, an earlier work [15] found that the
viscosity value itself could be extracted from C(∆η) by comparing the width
in central collisions to that in peripheral collisions; the STAR experiment
measured (1) in [12] for this reason and subsequently found the flattening
of C(∆η) in central collisions.

In Fig. 2, we show the centrality dependence of the root-mean-square
(RMS) width of the distributions shown in Fig. 1. STAR data is from [12]
and the error band is representative of their estimates of the uncertainty due
to their fitting procedure.
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S STAR Phys. Lett B704 (2011) 467-473
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Fig. 2. RMS width of C(∆η) from Fig. 1 versus Npart. Data points are from [12].
Error bands on the data represent uncertainty in the experimental fitting procedure
to the experimental points from Fig. 1. The solid line is the theoretical comparison
calculated from the theoretical distributions in Fig. 1.

The width of C(∆η) indicates very little about the non-Gaussian shape
of the distribution. To address this, we look at higher moments, namely
the kurtosis. Recall that for any random variable ξ, the first moment is
the average, 〈ξ〉, and second moment is the variance σ2 = 〈(ξ − 〈ξ〉)2〉. All
higher central moments are calculated similarly as 〈(ξ−〈ξ〉)n〉 with integer n
indicating the nth moment. So-called standardized moments take the form
of 〈(ξ − 〈ξ〉)n〉/σn. Given a distribution that is symmetric about zero, the
average is zero 〈ξ〉 = 0 and then σ2 = 〈ξ2〉, and is related to the RMS
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width by σRMS =
√
〈ξ2〉. Additionally for symmetric distributions, the

third moment, known as the skewness, is also zero. The fourth moment,
known as the (excess) kurtosis 〈(ξ − 〈ξ〉)4〉/σ4 − 3, may illuminate features
of C(∆η), that the width may not. For Gaussian distributions, the kurtosis
is zero. Compared to the Gaussian, distributions that are more sharply
peaked or have more rapidly decreasing tails will have a positive kurtosis.
For distributions with a flatter peak or more slowly decreasing tails, the
kurtosis will be negative.

Figure 3 shows the kurtosis of distributions in Fig. 1 as a function of
centrality. Notice that the values are mostly negative, indicating a flatter
peak and/or broader tails in comparison to a Gaussian shape. To highlight
the importance of the distribution tails, compare in Fig. 3 the kurtosis of the
calculated C(∆η) with tails extending to infinity (solid line) to the kurtosis
calculated in the range of the data (dashed line). The open circles represent
our extraction of the kurtosis from the STAR data in Fig. 1 in the range of
∆η < 1.55. Cutting off the tails of the distribution artificially lowers the
kurtosis, but the solid line still shows a significant negative kurtosis in central
collisions where the second order diffusive effects are most noticeable. We
are working to develop a method for extracting transport coefficients from
moments of the data for more direct experimental use. This work is in
progress.
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Fig. 3. Kurtosis of C(∆η) from Fig. 1 versus Npart. We extract the open circles
from experimental data in Fig. 1 in the range of ∆η < 1.55. The dashed line
represents the kurtosis calculated from theoretical values Fig. 1 in the same rapidity
range. The solid line is the theoretical kurtosis calculated including the tails of the
distribution.



Extracting the Shear Relaxation Time of Quark–Gluon Plasma . . . 1147

Additionally, the kurtosis appears also useful as a theoretical tool. Fig-
ure 4 shows the kurtosis for each centrality plotted as a function of time.
For all centralities, we take the initial values of ∆r to have a distribution
matching the most peripheral collisions (70–80% centrality in Fig. 1) and
assume those collisions have no diffusion. The shape of this distribution is
Gaussian and, therefore, has zero kurtosis. In more central collisions, these
initial correlations then spread following the wave and diffusive nature of (2).
The initial peak separates into two separate peaks moving away from each
other with a speed β−1/2 in Cartesian coordinates. In relative rapidity coor-
dinates, this separation is modified due to longitudinal expansion. Figure 4
indicates that peak separation happens quickly. In the first 2 fm/c, the kur-
tosis drops rapidly as the ∆η = 0 part of the distribution becomes flatter due
to the peak separation. As the system evolves, the longitudinal expansion
practically freezes the peaks in place in relative rapidity and, therefore, the
kurtosis changes slowly, while viscosity attenuates correlations driving them
toward a more Gaussian shape. Notice that even the comparatively long-
lived central collisions develop most of their non-Gaussian rapidity structure
in the early moments — during the QGP phase.
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Fig. 4. Kurtosis of C(∆η) from Fig. 1 versus time for select centralities. The rapid
drop at early times corresponds to wave-like propagation of correlations dictated
by (2). Endpoints of each centrality curve match the value of the solid line in Fig. 3
at the same centrality.

4. Conclusion

Transport coefficients such as the viscosity ν or the shear relaxation time
τπ = βν are characteristic quantities that dictate how a dynamic medium
transitions from an initially anisotropic state toward an equilibrated state.
Viscosity dictates how fluctuations in the fluid are driven toward equilibrium
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and the relaxation time controls the rate at which this process acts. While
experiments have developed several techniques and observables to constrain
estimates of the viscosity, very little has been done to constrain values of τπ.
In this work, we argue that τπ can be estimated from the rapidity dependence
of two-particle momentum correlations (4). We find good agreement with
data using β = τπ/ν = 5.5, where ν = η/sT is the kinematic viscosity.
Significantly, we obtain comparable results using the range of 5 < β < 6
[14]. This indicates that the data can indeed be used to put realistic limits
on the value of τπ.

We interpret the shape of the relative rapidity distribution of transverse
momentum correlations C(∆η), Fig. 1, with a causal diffusion equation (2)
that describes the evolution of correlations (1) in excess of correlations in-
duced by stochastic noise [1, 14]. By examining (1), we see not only that
causality is enforced by the relaxation time which scales time derivatives,
but also that correlations spread in relative rapidity like wave pulses with
speed β−1/2. The separation of these wave pulses explains the flattening of
the peak of C(∆η) in central collisions.

Our diffusion equation (2) was derived considering only longitudinal flow,
but to achieve the typical initial temperatures at RHIC, 1+1D hydrodynam-
ics requires longer lifetimes than 3+1D models. This may bias our current
result and we will address this issue in future work. Our values of β agree
with kinetic theory predictions β = 5. Calculations from scalar field theory
suggest 5 < β < 7 [16], which is also in agreement with our estimate. Using
AdS/CFT values like β = 1.23, we are not able to obtain agreement with
data in Fig. 1 using reasonable parameters.

We also study the moments of the distributions C(∆η) with the ambition
of making estimations of transport coefficients more experimentally accessi-
ble. We show the centrality dependence of the RMS width and the kurtosis
of C(∆η) in Figs. 2 and 3, respectively. We argue that the width is most
sensitive to the viscosity but not the relaxation time, however, the kurtosis
is indeed very sensitive to the relaxation time. The most central collisions
that most clearly demonstrate the wave nature of (1), correspondingly have
the most negative kurtosis.

A significant benefit of this work is the development of evolution equa-
tions like (2) for correlations rather than point-by-point densities on a grid.
In contrast to hydrodynamic or transport simulations e.g. [3, 17, 18], that
have computationally expensive numerics and lose two-particle spatial cor-
relation information when performing freeze-out, we map the evolution of
correlations throughout the whole lifetime of the collision with compara-
bly small numerical resources. Finally, we comment that more information
can be obtained about two-particle correlation functions by studying pre-
equilibrium fluctuations [19].
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