Measuring abundances and flow of light clusters as “rare probes” in future heavy-ion collision experiments at NICA and FAIR energies would provide unique insights into the QCD phase diagram.

DOI:10.5506/APhysPolBSupp.10.899

In a recent publication [1], we discussed the insights that light nuclear clusters can provide for the QCD phase diagram shown in Fig. 1, in particular within the NICA program, providing fixed target (BM@N) and collider (MPD) experiments. This diagram includes lines for Mott dissociation [2] of deuterons (d), tritons (t) and alpha particles (α), taken from [3], together with the parametrization of the chemical freeze-out line [4]. The chiral and deconfinement lines are from [5] based on a local NJL model and the DD2 equation of state [6]. The nonlocal PNJL extension [7] has a critical endpoint at a location supporting the conjecture of a tricritical point due to a quarkyonic matter phase [8]. The projection of its location to the freezeout line at $E_{\text{lab}} = 15–25 \ A\text{MeV} \ (\sqrt{s_{NN}} = 5.6–7.1 \ \text{GeV})$ coincides with a dip in the slope of the directed flow of protons and light clusters [1]. At higher energies, the expectations from the law of mass action [9] are confirmed well by the ALICE experiment [10] whereas at lower energies, the expected strong modifications due to the Mott effect for light clusters [1–3] shall be observed, e.g., in the NICA experiment.
N.-U. Bastian, D. Blaschke, G. Röpke

Fig. 1. QCD phase diagram with chemical freezeout [4] and Mott lines for the dissociation of light nuclear clusters [2,3]. For details, see [1,5].

N.-U.B. and D.B. were supported by the National Science Centre, Poland (NCN) under contract No. UMO-2011/02/A/ST2/00306. D.B. and G.R. acknowledge support by the MEPhI Academic Excellence Project under contract No. 02.a03.21.0005.

REFERENCES