NONLOCAL QUARK MODEL
FOR THE COMPOSITE HIGGS PARTICLE*

ALIAKSEI KACHANOVICHa, DAVID BLASCHKEa,b,c

aInstitute of Theoretical Physics, University of Wrocław, Wrocław, Poland
bBogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
cNational Research Nuclear University (MEPhI), Moscow, Russia

(Received February 16, 2017)

We propose an interpretation of the Higgs boson as a scalar \(\bar{t}t\) bound state within a nonlocal Nambu model. The momentum-dependent top-quark mass is generated dynamically by the nonlocal four-quark interaction which results in a top-quark condensate that breaks chiral symmetry. We present a formula for the Higgs mass that elucidates how the nonlocality leads to true binding in the scalar channel with a Higgs mass below the sum of the constituent top-quark masses, in accordance with phenomenology.

DOI:10.5506/APhysPolBSupp.10.915

Conceptual problems with the elementarity of the Higgs particle [1–4] could be solved by introducing it as a composite particle within a nonlocal Nambu model [5]. The effective action for this model of the top-quark sector has the form [6] similar to the local case [7]

\[
S = \int \! d^4x \left(\bar{t}(x) \left(-i \partial_\mu \gamma^\mu + m \right) t(x) - \frac{G}{2} J(x) J(x) \right),
\]

with the nonlocal scalar current \(J(x) = \int \! d^4y g(y) \bar{t}(x + \frac{y}{2}) t(x - \frac{y}{2})\), where \(g(y)\) is the form-factor responsible for the nonlocality. We consider Lorenzian \(g_L(p) = (1 + (p/\Lambda)^2\alpha)^{-1}\) and Gaussian \(g_G(p) = \exp(-p/\Lambda_G)^2\) types, where \(\alpha\) and \(\Lambda\) are regularization parameters. In the chiral limit, the scalar \(tt\) bound state has a mass which is lower than the sum of the masses of its constituents [8]

\[
M^2 = 4m^2(0) - 4 \langle \langle m^2(0) - m^2(p) \rangle \rangle.
\]

In Fig. 1, we show the dependence of the masses for the top quark and the Higgs boson on the dimensionless coupling \(GA^2\) for three models of the nonlocal form-factor \(g(p)\).

In all three cases, the Higgs boson is described as a composite scalar mesonic bound state of $t\bar{t}$ quarks which get their mass from dynamical chiral symmetry breaking. The effective range Λ is of the order of the electroweak gauge boson mass, while the coupling strength G of the model is two orders larger than the Fermi coupling G_F. The two free parameters form a dimensionless number GA^2 which for our examples lies in the range of $3.35 \ldots 7.64$ suggesting the possibility to unify the heavy with the light quark sector, where $GA^2 \sim 5.6$ is found in these models.

The authors acknowledge support from the National Science Centre, Poland (NCN) under grant number UMO-2011/02/A/ST2/00306.

REFERENCES