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We present a calculation of the electromagnetic form factors of the ρ+
meson. Our formalism is based on the point form of relativistic quantum
mechanics. Electron–ρ-meson scattering is formulated as a coupled-channel
problem for a Bakamjian–Thomas mass operator such that the dynamics of
the exchanged photon is taken explicitly into account. The ρ-meson current
is extracted from on-shell matrix elements of the optical potential of the
scattering process. As a consequence of the violation of cluster separabil-
ity in the Bakamjian–Thomas framework, our current includes additional,
unphysical contributions, which can be separated from the physical ones
uniquely. Our results for the form factors are in a good agreement with
other approaches.
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1. Introduction

For the structure of the simplest hadrons made of two light quarks, there
exists a vast amount of experimental data on the pion electromagnetic form
factor, but for the ρ meson, there is only little data, and only in the time-
like region. The experimental difficulty of acquiring data on the ρ meson
is due to its very short lifetime. This makes the calculation of the ρ-meson
form factors of particular theoretical interest. The knowledge of the elec-
troweak properties of the simplest hadrons is of great importance for our
understanding of the strong interaction at low energies.

We use point-form relativistic quantum mechanics to calculate the ρ-me-
son electromagnetic current (for a mini-review on the applications of the
point form, see Ref. [1]). The characteristic feature of the point form is the
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property that only the generators of space-time translations are interaction-
dependent, whereas the Lorentz generators are free of interactions, with the
advantage of keeping Lorentz covariance manifest1.

We employ the so-called Bakamjian–Thomas (BT) construction [3] to in-
troduce interaction terms in the total four-momentum operator by means of
a mass operator containing all the dynamics of the problem. One advantage
of the BT approach is that it allows even for instantaneous interactions while
maintaining Poincaré invariance. However, in general, cluster separability
(macroscopic locality) is violated in BT [4]. In this paper, we discuss the
consequences of this violation on the electromagnetic current and present a
solution how to deal with them.

2. Formalism

The electromagnetic form factors are the observables that describe the
electromagnetic structure of a bound state. Unlike most other theoretical
calculations, we extract the form factors from the whole physical process
in which they are measured, i.e. elastic electron–meson scattering: We for-
mulate this process as a coupled two-channel problem for a BT mass op-
erator [5]. The two channels, the electron–quark–antiquark (eqq̄) and the
electron–quark–antiquark–photon (eqq̄γ∗) are coupled through vertex op-
erators which are derived from QED [6]. The natural multi-particle basis
states in the point-form BT framework are velocity states characterized by
the overall velocity ~v, the center-of-mass momenta {~ki}, and the canonical
spin projections {µi} of each particle [7]. The confining interaction between
the quarks is modeled by an (instantaneous) harmonic-oscillator potential
which is added to the free invariant eqq̄ and eqq̄γ∗ mass operators. From
matrix elements of the one-γ∗-exchange optical potential between velocity
states, obtained from the coupled-channel problem by a Feshbach reduction,
we can extract the matrix elements of the electromagnetic ρ-meson current
as [8]

Jµ
(
~k′ρ, µ

′
ρ;
~kρ, µρ

)
=
√
ωkρωk′ρ

∑
µ′qµ
′
q̄

∫
d3k′q
ωk′q

√
ωk̃′q

ωk̃′q̄
ωk̃′q

+ ωk̃′q̄

√
ωk̃qωk̃q̄
ωk̃q + ωk̃q̄

×
√
ωk′q + ωk′q̄
ωk′q̄

√
ωkq + ωkq̄

ωkq

∑
µq

ψ∗µ′ρµ′qµ′q̄

(
~̃
k′q

)
ψµρµqµ′q̄

(
~̃
kq

)
×Qq jµq

(
~k′q, µ

′
q;
~kq, µq

)
+ (q ↔ q̄) , (1)

1 This property is explicit when one calculates the point-form Poincaré generators from
a given Lagrangian density by integration over a hyperboloid in Minkowski space [2].
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where ωki =
√
m2
i + ~k2

i , ~k
(′)
i is the incoming (outgoing) three-momentum of

particle i in the overall rest frame, a tilde on the top denotes a momentum in
the meson rest frame, ψ is the meson wave function, jµq is the quark current,
and Qq is the quark charge in units of the elementary charge e.

It turns out that there are 11 independent spin matrix elements of the
current (1), which means that one needs 11 form factors to fully parametr-
ize it. These are the usual three physical form factors f1, f2, and gM , and
additional 8 spurious (unphysical) form factors, associated with covariants
proportional to the sum and difference of incoming and outgoing electron
four-momenta2. Furthermore, all form factors depend, in addition to the
momentum transfer squared Q2 (Mandelstam t), also on Mandelstam s, the
total invariant mass squared of the electron–meson system. The reason for
the appearance of these spurious dependencies is the violation of cluster
separability in the BT framework. A numerical analysis shows that some
spurious contributions vanish for large s, which suggests to take the limit
s→∞. The resulting current resembles the one obtained within a covariant
light-front approach [9] and the physical form factors can be extracted in
an unambiguous and clean way, without any spurious contributions. In
particular, for a momentum transfer in the x-direction, we have [8]

F1

(
Q2
)
= lim
s→∞

f1

(
Q2, s

)
= lim
s→∞

(−1)√
s

[
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)
+J0
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)]
,
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(
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f2

(
Q2, s

)
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(
−4m2

ρ

)
Q2
√
s
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)
,

GM
(
Q2
)
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(−i)
Q
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, (2)

where
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(3)

2 Notice that some of these structures violate current conservation, however covariance
and hermiticity of the current are still satisfied.
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with mqq̄ the free invariant mass of the qq̄ system, u the radial ρ-meson wave
function, and S±µ′ρµρ the spin rotation factors given by

S±µ′ρµρ = lim
s→∞

1

2

∑
µq ,µ̃q ,...

(±1)µq−
1
2D

1
2
µqµ̃q

[
RW

(
k̃q
mq

, Bc (vqq̄)

)](
~εµρ · ~σ

)
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×D
1
2

µ̃q̄µ̃′q̄

[
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(
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, B−1
c (vqq̄)Bc

(
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))](
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)
µ̃′q̄µ̃
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q

×D
1
2
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[
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(
k′q
mq

, B−1
c

(
v′qq̄
))]

. (4)

Here, the Ds are the usual Wigner D-functions depending on a Wigner
rotation RW associated with a canonical (rotationless) boost Bc, vqq̄ = (kq+
kq̄)/mqq̄ is the four-velocity of the free qq̄ system, and ~εµρ are the spin-1
meson polarization three-vectors in the rest frame.

3. Results

For the numerical computation of the form factors, we take a simple
harmonic-oscillator wave function for the u. It depends on the oscillator
length a, which is fixed, together with the quark mass mq, by the ground
state (the ρ meson with mρ = 0.77 GeV) and the first two radial excitations
of the vector-meson spectrum. For the values fixed at mq = 0.34 GeV and
a = 0.312 GeV, the form factors are depicted in Figs. 1–3.
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Fig. 1. F1
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with parameters mq = 0.34 GeV, a = 0.312 GeV and mρ =

0.77 GeV.
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with the same parameter values as in Fig. 1.
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with the same parameter values as in Fig. 1.

Our predictions for the magnetic dipole and the electric quadrupole mo-
ment, are µρ = 2.2 and Qρ = −0.47 (in units | e |/2mρ and | e |/m2

ρ), respec-
tively. These predicted values lie between those of most other approaches.
Particularly with the covariant light-front approach of [9], we find excellent
agreement when the same wave functions and parameters are used in both
calculations.

4. Conclusions and outlook

In the present work, we have applied our previously developed point-form
coupled-channel formalism to the calculation of the ρ-meson electromagnetic
form factors. As in the spin-0 pion case, we also find for the spin-1 ρ-meson
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remarkable similarities with the covariant light-front approach of Carbonell
et al. [9]. Current and future applications of our quite general formalism
include deuteron form factors [10], electroweak form factors of heavy–light
mesons [11–13], nucleon form factors and pion-cloud effects [14], baryon
transition form factors such as N–∆ transition form factors [15], and meson–
baryon vertices [16].
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