LEADING ELECTROWEAK CORRECTIONS TO THE PROCESS $pp \rightarrow b\bar{b}H$ IN THE STANDARD MODEL AT THE LHC*

Le Duc Ninh

LAPTH, Université de Savoie, CNRS
BP 110, 74941 Annecy-le-Vieux Cedex, France
and
CERN, Theory Division, 1211 Geneva 23, Switzerland

(Received November 11, 2007)

We investigate the leading one-loop electroweak corrections to the process $pp \rightarrow b\bar{b}H$ in the SM. We find that the NLO electroweak correction to the total cross-section at the tree level is about -4% if the Higgs mass is 120 GeV. In the limit of vanishing bottom Yukawa coupling the cross section is generated solely at the loop level. This contribution is very small at $M_H \sim 120$ GeV and increases with growing Higgs mass, reaching about $+17\%$ of the cross-section when the Higgs mass is about 150 GeV.

PACS numbers: 14.80.Bn, 12.15.Lk

1. Introduction

In the Standard Model (SM) the dominant mechanisms for Higgs production at the Large Hadron Collider (LHC) are the gluon and electroweak (EW) gauge boson fusion processes [1]. Higgs production associated with heavy quarks like the top or bottom quark is not considered as a discovery channel because of its small total cross-section. However, if one wants to determine the bottom-Higgs Yukawa coupling (λ_{bbH}) then Higgs production associated with a bottom–antibottom pair could provide a direct measurement of this coupling. In the minimal supersymmetric standard model (MSSM), the bottom Yukawa coupling is enhanced by a factor $\tan \beta$, the ratio of the vacuum expectation values of the two Higgs doublets. For high $\tan \beta$ this provides an important discovery channel for the supersymmetric Higgses. In order to exploit this production mechanism to study the Higgs couplings to b’s, one must identify the process and therefore one needs to

tag both b’s, requiring somewhat large \(p_T \) b’s. This reduces the cross-section but gives a much better signal over background ratio. The next-to-leading order (NLO) QCD correction to the exclusive process \(pp \to bbH \) has been calculated by two groups [2]. The aim of this work is to calculate the leading electroweak corrections (LEWC) to the exclusive \(bbH \) final state at the LHC. These LEWCs are triggered by top-charged Goldstone loops whereby, in effect, an external b quark turns into a top quark. Such type of transitions can even trigger \(gg \to bbH \) even with vanishing \(\lambda_{bbH} \), in which case the process is generated solely at one-loop level.

2. Numerical results

At the LHC, the dominant contribution comes from the sub-process \(gg \to bbH \). The contribution from the light quarks in the initial state is therefore neglected in our calculation. The total cross-section as a function of \(\lambda_{bbH} \) can be written in the form

\[
\sigma(\lambda_{bbH}) = \sigma(\lambda_{bbH} = 0) + \lambda_{bbH}^2 \sigma'(\lambda_{bbH} = 0) + \cdots,
\]

\[
\lambda_{bbH}^2 \sigma'(\lambda_{bbH} = 0) \approx \sigma_{NLO} = \sigma_{LO}[1 + \delta_{NLO}(m_t, M_H)],
\]

where \(\sigma(\lambda_{bbH} = 0) \) is shown in Fig. 1 (right), \(\sigma_{LO} \) and \(\sigma_{NLO} \) are shown in the same figure (left). \(\sigma(\lambda_{bbH} = 0) \) is generated solely at one-loop level and gets large when \(M_H \) is close to \(2M_W \). This is due to the threshold effect occurring when the Higgs is produced by an on-shell-W fusion process.

Fig. 1. Left: the leading order (LO) and NLO cross-sections as functions of \(M_H \). Right: the cross-section in the limit of vanishing \(\lambda_{bbH} \). The phase space integral is done by using BASES [3], the loop integrals are done by using LoopTools [4].

I would like to acknowledge the Marie Curie Early Stage Training grant and the Rencontres du Vietnam scholarship.
REFERENCES