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We apply, for the first time, the importance-truncation (IT) proce-
dure based on the many-body perturbation theory for the multi-shell SU(3)
scheme basis of the ab initio symmetry-adapted no-core shell model (SA-
NCSM). It is shown that the IT method can yield a quantitative justi-
fication for the symmetry-based truncation of the SA-NCSM approach.
Furthermore, we demonstrate that the IT algorithm can be applied in a
symmetry-truncated model space and it leads to even more dramatic re-
duction in dimensionality of the nuclear eigenvalue problem.
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1. Introduction

Over the last decade, ab initio approaches to nuclear structure and re-
actions succeeded in achieving first-principles descriptions of light p-shell
nuclei [1–3]. This accomplishment was propelled by a major progress in
the development of realistic nuclear potential models [4, 5] along with the
emergence of massively parallel supercomputers. Extending reach of first-
principle nuclear structure studies towards heavier open-shell nuclei places
serious demands on computational resources and represents a great challenge
even for the emerging exascale computing facilities. This points to the need
of further major advances in many-body methods to access a wider range
of nuclei and experimental observables, while retaining the ab initio predic-
tive power. These considerations motivate us to develop and investigate the
importance-truncation method for the multi-shell SU(3) scheme basis that
underpins the SA-NCSM approach [6].

2. Ab initio SA-NCSM and multi-shell SU(3) scheme basis

The SA-NCSM is a many-body configuration-interaction method founded
on techniques of the no-core shell model (NCSM). It solves the Schrödinger
equation for A nucleons

Ĥψ(~r1, . . . , ~rA) = Eψ(~r1, . . . , ~rA) (1)

by computing eigenstates and eigenvalues of the nuclear Hamiltonian matrix
in a basis representation. The intrinsic non-relativistic nuclear Hamiltonian
is defined as

Ĥ = T̂rel + V̂NN + V̂3N + . . .+ V̂Coulomb , (2)

where T̂rel is the relative kinetic energy T̂rel = 1
A

∑
i<j

(~pi−~pj)2
2m (m is the

nucleon mass), the V̂NN is the nucleon–nucleon interaction included along
with the Coulomb interaction V̂Coulomb between the protons and possibly
higher rank V̂3N , V̂4N , . . . interactions.

Both NCSM and SA-NCSM approaches retain many-nucleon basis states
of a fixed parity, consistent with the Pauli principle, and limited by a many-
body basis cutoff Nmax. The Nmax cutoff is defined as the maximum number
of harmonic oscillator (HO) quanta allowed in a many-nucleon basis state
above the minimum for a given nucleus. While the NCSM calculations are
typically performed in an M -scheme basis, where the many-nucleon basis
states are constructed with a good total magnetic projection M that is the
same for all basis states, the SA-NCSM framework adapts multi-shell SU(3)
scheme basis.
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The multi-shell SU(3) scheme basis states are decomposed into spatial
and intrinsic spin parts, where the spatial part is further classified according
to the SU(3)⊃SO(3) group chain. The significance of the SU(3) group for a
microscopic description of the nuclear collective dynamics can be seen from
the fact that it is the symmetry group of the successful Elliott model [7],
and a subgroup of the physically relevant Sp(3,R) symplectic model [8],
which provides a comprehensive theoretical foundation for understanding
the dominant symmetries of nuclear collective motion. The SA-NCSM basis
states are labeled schematically as

|~γ;N(λµ)κL; (SpSn)S; JM〉 , (3)

where Sp, Sn, and S denote proton, neutron, and total intrinsic spins, respec-
tively, N is the total number of HO excitation quanta, and (λµ) represent a
set of quantum numbers that labels an SU(3) irreducible representation, or
“irrep”. The SU(3) irrep labels (λµ) bring forward important information
about nuclear shapes and deformation, according to an established map-
ping [9]. For example, (00), (λ 0) and (0µ) describe spherical, prolate and
oblate deformation, respectively. The label κ distinguishes multiple occur-
rences of the same orbital momentum L in the parent irrep (λµ). The L is
coupled with S to the total angular momentum J and its projectionM . The
symbol ~γ schematically denotes the additional quantum numbers needed to
specify a distribution of nucleons over the major HO shells and their single-
shell and inter-shell quantum numbers. Specifically, in each major HO shell η
with degeneracy Ωη, protons (or neutrons) are arranged into antisymmet-
ric U(Ωη) × SU(2)Sη irreps [10], with U(Ωη) further reduced with respect
to SU(3), providing the single-shell labels

[
f1, . . . , fΩη

]
αη(λη µη)Sη. Note

that a spatial symmetry associated with a Young tableau
[
f1, . . . , fΩη

]
is

uniquely determined by the imposed antisymmetrization and the associated
intrinsic spin Sη [10]. A multiplicity index αη is required to distinguish mul-
tiple occurrences of SU(3) irrep (λη µη) in a given U(Ωη) irrep. Coupling
of these single-shell configurations further yield inter-shell SU(3)×SU(2)S
quantum numbers for protons and for neutrons; the proton and neutron
configurations are finally coupled to good (λµ)κLS; JM . All of these labels
uniquely determine the SA-NCSM basis states (3).

There are two major advantages of the SA-NCSM that follow from the
use of the SU(3) scheme basis:

1. The SU(3)-based organization of the model space allows the complete
Nmax space to be down-selected to the physically relevant subspace
that tracks with an inherent preference of a system towards low-spin
and high-deformation dominance. The SA-NCSM approach enables
to refine the definition of the model space, which for the NCSM is
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fixed by simply specifying the Nmax cutoff. In particular, SA-NCSM
model spaces can be characterized by a pair of numbers 〈N⊥max〉Nmax,
which implies inclusion of the complete space up through N⊥max, and a
subspace spanned by complete sets of equivalent irreps N(λµ)SpSnS
for N⊥max < N ≤ Nmax. This makes calculations in larger Nmax spaces
feasible with current computational resources.

2. Within the space down-selected to a subset of N(λµ) irreps and in-
trinsic spins Sp, Sn, and S, the spurious center-of-mass (CM) motion
can be factored out exactly. This ensures the translational invariance
of the SA-NCSM wave functions.

3. Importance truncation

The importance-truncation (IT) algorithm [11] has emerged as a suc-
cessful method capable of selecting a relevant basis states that are essential
for a close reproduction of a target wave function in a large Nmax model
space. Our aim is to couple the IT method with the unique ability of the
SA-NCSM approach to restrict model space to physically relevant subsets
of irreps and study properties of this combined method.

Let us suppose that H is a large model space spanned by many-body
states |i〉. We assume that the size of this model space prohibits direct
diagonalization of the Hamiltonian matrix. It is important to note that
while in the traditional IT-NCSM approach a model space is fixed by the
Nmax cutoff, in our new method, one can also define the model space to
include only a subset of states that span dominant N(λµ)SpSnS irreps. Let
us define a subspace H′ ⊂ H, characterized by the cutoff N ′max, N ′max <
Nmax, to be a starting point of the calculation. We assume that within this
subspace, one can perform exact diagonalization of the Hamiltonian, and
compute corresponding eigenvalues and eigenvectors. This decomposition
defines Hamiltonian Ĥ0 and a set of reference states

|Ψνref〉 =
∑
i∈H′

Cνi |i〉 , (4)

which satisfy
Ĥ0|Ψνref〉 = Eνref |Ψνref〉 . (5)

Formally, one can decompose full Hamiltonian to

Ĥ =
∑
ν

Eνref |Ψνref〉〈Ψνref |+
∑
µ/∈H′

Eµ|µ〉〈µ| , (6)

and define perturbation Ŵ = Ĥ − Ĥ0. The perturbation part Ŵ can be ap-
proximately taken into account via the Rayleigh–Schrödinger perturbation
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theory. The set of reference states (4) represents zeroth-order approximation
of the wave function. The first-order correction is given by

|Ψν1 〉 = −
∑
j /∈H′

〈
j|Ŵ |Ψνref

〉
Ej − Eνref

|j〉 = −
∑
j /∈H′

〈
j|Ĥ|Ψνref

〉
Ej − Eνref

|j〉 . (7)

It is, therefore, natural to define an importance-measure parameter of the
basis state |i〉 /∈ H′ as follows:

κνi = −

〈
i|Ĥ|Ψνref

〉
Ei − Eνref

. (8)

Note that the IT approach is based on the assumption that κνi is corre-
lated with the probability amplitude of the basis state |i〉 in the eigenvector
obtained in the full model space H.

A numerical threshold κmin ≥ 0 defines the limit for the acceptance of
a basis state |i〉 /∈ H′. For a set of reference states, the basis state |i〉 /∈ H′
is accepted if it satisfies |κνi | ≥ κmin for at least one reference state. The
model space H′ can be augmented by a set of accepted basis states for
a given threshold κmin, and one can diagonalize Hamiltonian in this new
model space. Resulting eigenvectors can, in turn, establish a new set of
reference states (4), and the procedure can be repeated with a smaller value
of κmin. In the limit κmin → 0, one obtains eigenvalues and eigenvectors of
Hamiltonian in the complete model space H.

4. Numerical results

We augmented the SA-NCSM framework as implemented by the state-
of-art code LSU3shell [12] by the IT algorithm. As the proof-of-concept
study, we investigated the lowest lying states of 6Li using realistic JISP16
nucleon–nucleon interaction [5] and HO energy ~Ω = 20MeV.

The initial set of reference states was generated by diagonalizing Hamil-
tonian in the complete N ′max = 2 space. A starting value of the numerical
threshold was set to κmin = 0.1, and exponentially decreased at each step
of the algorithm. The number of accepted states for a given κmin threshold
depends on the total number of reference states. Obviously, a greater num-
ber of reference states entails higher probability that a given basis state will
be accepted. In the current study, we utilized three reference states as our
aim was to investigate several lowest lying states.

The relation between the importance-measure value κνi and correspond-
ing coefficient in the wave function expansion Ci for the ground state in 6Li
is shown in Fig. 1 for several values of numerical threshold κmin. Fractions
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of selected basis states η are displayed in each panel. One can observe clear
correlation between the two quantities, which demonstrates the fact that the
importance-measure parameter κνi can be used as a reasonable estimate of
the relevance of the basis state in the wave function.

0 10 20 30
0

10

20

30

0 2 4 6 8 10
0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

0.20
 

 

 

6Li            
J  = 1+

1

Nmax= 8

=0.001

 

 

 

=0.014

 
 

 

| C
i
 | 

 x
 1

0-3

=0.12

| i  | x 10-3

 

 
 

=0.78

Fig. 1. Correlation between the importance-measure value κνi and corresponding
coefficient Ci in the ground state of 6Li is depicted for different fractions η of the
complete Nmax = 8 model space.

Fig. 2. Binding energies of the five lowest 1+ states in 6Li as a function of the
fraction η of states selected in the complete Nmax = 12 model space (left) and 〈2〉12
symmetry-adapted model space (right). Data points represent IT calculations for
different values of numerical threshold κmin ranging from 0.1 to 0.
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The convergence rate for the lowest Jπ = 1+ states is demonstrated in
the left panel of Fig. 2, where the convergence of energies in the complete
Nmax = 12 model space is shown. Less than 10% of basis states, corre-
sponding to κmin ≈ 1.19−4, accounts for 99% of the Nmax = 12 ground
state binding energy. The total probability amplitudes of the most domi-
nant SU(3)×SU(2)S subspaces in the ground state wave function are listed
in Table I. A striking pattern can be recognized from this decomposition.
Namely, a dominance of states with high deformation (λ 0), (λ−2 1), (λ−4 2)
and low spins Sp = 1/2, Sn = 1/2, S = 1. This familiar picture known from
the SA-NCSM calculations [6] is confirmed here quantitatively by the IT al-
gorithm. Comparison of the probability amplitudes between truncated and
complete Nmax = 12 model space shows large similarity.

TABLE I

Total probability amplitudes of the most dominant SU(3) × SU(2)S subspaces in
the 6Li ground state wave function obtained for κmin ≈ 1.19−4 truncated model
space and the complete Nmax = 12 model space (κmin = 0).

N~ω (λµ) Sp Sn S Prob. [%] Prob. [%]
κmin ≈ 1.19−4 κmin = 0

0 (0 1) 1/2 1/2 0 1.234 1.187
(2 0) 1/2 1/2 1 60.802 59.587

2 (4 0) 1/2 1/2 1 12.861 13.065
(0 2) 1/2 1/2 1 2.662 2.604
(2 1) 1/2 1/2 1 2.001 1.992

4 (6 0) 1/2 1/2 1 7.334 7.618
(2 2) 1/2 1/2 1 1.079 1.106
(4 1) 1/2 1/2 1 0.554 0.570

6 (8 0) 1/2 1/2 1 2.871 3.101
(4 2) 1/2 1/2 1 0.458 0.492
(6 1) 1/2 1/2 1 0.374 0.392

8 (10 0) 1/2 1/2 1 1.050 1.172
(6 2) 1/2 1/2 1 0.183 0.210
(8 1) 1/2 1/2 1 0.124 0.135

10 (12 0) 1/2 1/2 1 0.343 0.385
(8 2) 1/2 1/2 1 0.070 0.082
(10 1) 1/2 1/2 1 0.044 0.048

12 (14 0) 1/2 1/2 1 0.072 0.080
(10 2) 1/2 1/2 1 0.015 0.024
(12 1) 1/2 1/2 1 0.011 0.014

We also investigated the efficiency of the IT algorithm when applied
to symmetry-truncated 〈2〉12 model space, which is spanned by the most
relevant SU(3)×SU(2)S subspaces (for details, see [6]). The convergence of
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the binding energies is shown in the right panel of Fig. 2. We conclude that
≈ 30% of selected basis states are responsible for 99% of 〈2〉12 model space
binding energies.

5. Conclusion

Importance-truncation procedure was, for the first time, applied to multi-
shell SU(3) scheme basis of the ab initio SA-NCSM. We have shown that
it can provide a quantitative prescription for the selection of relevant ba-
sis states thus enabling a significant reduction of matrix dimensions used
in SA-NCSM calculations. The combination of symmetry-guided selection
of relevant subspaces with IT selection criteria can be used for even more
dramatic reduction of model spaces, which is a necessary step towards ad-
vancing applicability of ab initio studies towards medium-heavy nuclei.
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