ROTATIONAL BANDS IN SUPER-HEAVY NUCLEI WITHIN THE LSD+YF MODEL*

BOŻENA NERLO-POMORSKA, KRZYSZTOF POMORSKI

Institute of Physics, Theoretical Physics Department
Maria Curie-Skłodowska University, Lublin, Poland

J. BARTEL

Institute Pluridisciplinaire Hubert Curien, Université de Strasbourg
Strasbourg, France

(Received December 21, 2018)

Rotational energies of heavy and super-heavy nuclei are evaluated in the cranking model which couples the pairing field with the rotational motion. The nuclear ground-state deformation is determined within the macroscopic–microscopic model.

DOI:10.5506/APhysPolBSupp.12.665

1. Introduction

An investigation of heavy and super-heavy nuclei requires a proper model to reproduce masses and rotational energies. We had obtained in the past [1] a very good agreement with experimental data for heavy nuclei using the Yukawa folded (YF) single-particle potential [2] and the Lublin–Strasbourg Drop (LSD) [3]. The Strutinsky shell-correction method [4] and the BCS theory [5] were used to evaluate the shell and pairing energy. The equilibrium deformations of the nuclei were determined with the Modified Funny Hills (MFH) [1] shape parametrisation, and the energies of the rotational states obtained using the cranking model [6]. It was shown in Ref. [7] that a good agreement with the experimental data, especially for larger angular momenta, can only be achieved when a coupling of rotation and the pairing mode is taken into account. We are now going to extend our calculations to rotational states of super-heavy nuclei using a new Fourier-type shape

parametrization [8] to describe nuclear deformations more accurately. First results of this project as obtained in a 3-dimensional deformation space are presented below.

2. Theoretical model

In the macroscopic–microscopic method [9], the total energy of a nucleus at a given deformation (def) is the sum of the macroscopic energy and microscopic corrections due to shell and pairing effects

\[E_{\text{tot}}(\text{def}) = E_{\text{LSD}}(\text{def}) + E_{\text{shell}}(\text{def}) + E_{\text{pair}}(\text{def}). \]

(1)

The shell-correction energy is obtained as the difference between the single-particle energy sum and the corresponding Strutinsky averaged result [4], while pairing corrections are determined as the difference between the BCS [5] energy and the single-particle level sum, plus an average pairing energy [10]. Energy landscapes were calculated in Ref. [1] on a two-dimensional grid of Modified Funny Hills [11] shapes with the Lublin–Strasbourg Drop and using Yukawa-folded single-particle levels for the quantal corrections. Rotational states were determined within the cranking model in the ground-state minimum and reproduced the experimental data or served as predictions in the case of heavy and super-heavy nuclei as shown in Fig. 1. We are now going to investigate these and some new even–even super-heavy nuclei using the new Fourier-shape parametrisation [8] in a 3D space including elongation (\(q_2\)), octupole (\(q_3\)) deformation and neck degrees of freedom (\(q_4\)).

Fig. 1. Nuclei for which the energies of rotational states have been determined in the MFH (× and ⋆) and Fourier (□) shape parametrizations. The \(\beta\)-stability line is drawn as a guideline.
3. Results

The calculations were performed for even–even nuclei with charge numbers from $Z = 94$ to $Z = 112$, since nuclei with larger Z are probably not living long enough to perform spectroscopy studies [12]. In Fig. 2, we present the difference of theoretical and experimental [13] masses of nuclei between No and Hs. With the single exception of 264Hs, this deviation never exceeds 0.3 MeV. As an example, the deformation energy surface $E_{\text{def}} = E_{\text{tot}}(q_2, q_3, q_4) - E_{\text{sph}}^\text{LSD}(0, 0, 0)$ of 254No is presented in Fig. 3 as a function of the deformation parameters q_2 (elongation) and q_3 (left–right asymmetry), with a minimisation with respect to q_4 (neck parameter). One observes two pronounced minima corresponding to the ground state.

![Diagram of deformation energy](image1)

Fig. 2. Difference between theoretical and experimental masses $M_{\text{th}} - M_{\text{exp}}$ for No up to Hs even–even isotopes as a function of the neutron number N (see Ref. [1]).

![Diagram of deformation energy](image2)

Fig. 3. Deformation energy E_{def} for 254No as a function of elongation q_2 and octupole parameter q_3 minimised with respect to q_4 (neck degree of freedom).
and the fission-isomeric state. In Fig. 4, the deformation energy surface
\[E_{\text{def}} = E_{\text{tot}}(0.3, q_3, q_4) - E_{\text{LSD}}^{\text{sp}}(0, 0, 0) \]
of this nucleus 254No is displayed for the ground state ($q_2 = 0.3$), which turns out to be octupole and hexadecapole symmetric.

![Image of deformation energy surface](image_url)

Fig. 4. Deformation energy E_{def} for 254No as a function of q_4 and q_3 in a ground-state elongation $q_2 = 0.3$.

To obtain the rotational energies,
\[E_L = L(L + 1)/2J \]
the moments of inertia J are calculated microscopically within the cranking model [6] for the ground state using a Yukawa-folded single-particle potential. Rotational energies of No isotopes for $L/\hbar = 2, 4, 6, 8, 10, 12$ are compared with the experimental data [14] in Fig. 5. As seen from the figure, one obtains an almost perfect agreement when a pairing strengths of
\[GN_q^{2/3} = 0.32 \hbar \omega_0 \]
with $N_q = N, Z$ and $\hbar \omega_0 = 41 \text{MeV}/A^{1/3}$ when the pairing window of $2\sqrt{15N_q}$ single-particle levels [15] is used. Figure 6 gives a prediction of the E_{2+} ro-

![Image of rotational energies](image_url)

Fig. 5. Theoretical and experimental rotational energies E for 254No as functions of the angular momentum L.
Rotational energies for even–even nuclei between No and Cn. In a forthcoming extension of the present work, we are going to predict the rotational energies of heavy and super-heavy nuclei with $92 \leq Z \leq 126$ and $132 \leq N \leq 200$ within LSD+YF model using the Fourier shape parametrisation [8, 18] in a 4D deformation space.

Fig. 6. Rotational energies E_{2+} for even–even isotopes of nuclei between No and Cn in their ground state as functions of the neutron number N [16, 17].

This work has been partly supported by the Polish–French COPIN-IN2P3 collaboration agreement under project number 08-131 and by the National Science Centre, Poland (NCN), grant No. 2016/21/B/ST2/01227.

REFERENCES

