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The study of nuclear limits has been performed and new physical mech-
anisms and exotic shapes allowing the extension of nuclear landscape be-
yond the commonly accepted boundaries have been established. The tran-
sition from ellipsoidal-to-toroidal shapes plays a critical role in potential
extension of nuclear landscape to hyperheavy nuclei. Rotational excita-
tions leading to the birth of particle (proton or neutron) bound rotational
bands provide a mechanism for an extension of nuclear landscape beyond
spin-zero proton and neutron drip lines.
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1. Introduction

The studies of the nuclei at the limits are guided by human curiosity, by
the need to understand new physical mechanisms governing nuclear systems
in these extreme conditions and by the demand for nuclear input in nuclear
astrophysics. There is the set of the questions related to the physics at the
limits listed below which looks deceivably simple but extremely difficult to
answer. These questions are: What are the limits of the existence of nuclei?
What are the highest proton number Z at which the nuclear landscape and
periodic table of chemical elements cease to exist? What are the positions of
proton and neutron drip lines? Are there some physical mechanisms which
allow to extend the nuclear landscape beyond spin-zero limits? What type
of nuclear shapes dominate these extremes of nuclear landscape?

Over recent years, our group has undertaken a systematic efforts in the
studies of these questions within the framework of covariant density func-
tional theory (CDFT) [1]. The analysis of Refs. [2–4] performed with three
major classes of covariant energy density functionals (CEDF) has allowed
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to evaluate the global performance of these functionals in the description of
the ground-state properties of even–even nuclei. It addition, it permitted
to estimate systematic uncertainties [5] in their description and the propa-
gation of these uncertainties on approaching nuclear limits for the Z ≤ 106
nuclei. Moreover, such an analysis has allowed to estimate theoretical un-
certainties in the predictions of the two-proton and two-neutron drip lines
for the Z ≤ 120 nuclei (see Refs. [2, 3, 6]) and compare them with those ob-
tained in non-relativistic theories (see Refs. [3, 7]). Note that in the CDFT,
statistical uncertainties emerging from the details of the fitting protocol are
significantly smaller than systematic ones originating from the choice of the
form of the functional [8]. This is contrary to the case of non-relativistic
Skyrme energy density functionals in which these two types of uncertainties
are comparable at nuclear limits [7, 9].

These results formed the basis for a subsequent analysis of the extension
of nuclear landscape to hyperheavy nuclei [10, 11], the study of the properties
of toroidal hyperheavy nuclei [10, 11] and the discovery of new mechanism
of the extension of nuclear landscape beyond spin-zero limit by means of
rotational excitations [12]. In the present paper, they will be briefly reviewed
and, in addition, will be supplemented by new results.

The paper is organized as follows. Section 2 is dedicated to the discussion
of toroidal shapes in hyperheavy nuclei. The impact of rotational excitations
on the boundaries of nuclear landscape and underlying physical mechanism
are considered in Sect. 3. Finally, the summary is presented in Sect. 4.

2. The dominance of toroidal shapes in hyperheavy
Z ≥ 126 nuclei

The state-of-the-art view on the nuclear landscape is presented in Fig. 1.
It is born out of the systematic axial relativistic Hartree–Bogoliubov (RHB)
calculations of Refs. [3, 10, 11] supplemented by triaxial RHB calculations
for the ground states and fission barriers of selected set of the nuclei [10, 11].
These calculations are based on the DD-PC1 functional [13] which is one of
the best CEDFs [3]. For the Z < 100 nuclei, we see the classical nuclear
structure with pronounced spherical shell gaps at particle numbers 8, 20, 28,
50, 82 (and N = 126) leading to the bands (shown by gray color) of spherical
nuclei in the nuclear chart along the vertical and horizontal lines with these
particle numbers. In addition, the traditional picture of the transition from
spherical shapes to prolate ones, then to oblate ones and, finally, to spherical
shapes on moving from one spherical shell closure to another one is seen for
these nuclei.
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Fig. 1. (Color online) The distribution of ellipsoidal and toroidal shapes in nuclear
landscape. The nuclei with ellipsoidal shapes are shown by the squares the color of
which indicates the equilibrium quadrupole deformation β2 (see colormap). Note
that ellipsoidal shapes with the heights of fission barriers smaller than 2.0 MeV
are considered as unstable (see the discussion in Sect. III of Ref. [14]). Two-
proton and two-neutron drip lines for toroidal nuclei are shown by solid black lines.
The white region between them (as well as the islands inside this region shown in
gray) corresponds to the nuclei which have toroidal shapes in the lowest in energy
minimum for axial symmetry (LEMAS). The islands of relatively stable spherical
hyperheavy nuclei in the Z > 130 nuclei, shown in light gray color, correspond to
the solutions which are excited in energy with respect of the LEMAS corresponding
to toroidal shapes. Note that in the same nucleus, two-neutron drip lines for
spherical and toroidal shapes are different. This is the reason why some islands of
stability of spherical hyperheavy nuclei extend beyond the two-neutron drip line
for toroidal shapes. The extrapolations of the two-proton and two-neutron drip
lines for ellipsoidal shapes, defined from their general trends seen in the Z < 120

nuclei, are displayed by thick dashed orange lines.

However, these features are in general gone for superheavy (Z = 100–
124) nuclei. In this region, normal- and super-deformed oblate shapes be-
come dominant for high-Z nuclei (see Fig. 1). Further increase of proton
number triggers the transition to toroidal shapes1. This transition is driven
by Coulomb repulsion: for high-Z systems, the Coulomb energy is signifi-
cantly larger for the ellipsoidal shapes than for toroidal ones (see discussion
in Sec. XII of Ref. [11]). As a consequence, the toroidal shapes, correspond-

1 Many features of toroidal shapes in nuclear physics are discussed in Ref. [15] but
these discussions do not extend to hyperheavy nuclei. In recent years, there is an
increased interest to toroidal high-spin isomers (see, for example, Refs. [16–18]).
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ing to large negative values of the β2 quantity2 become energetically favored
as compared with ellipsoidal ones in the nuclei with high-Z values. This
is illustrated in Fig. 2 where the competition of three local minima with
β2 ∼ −0.8, β2 ∼ −2.3, and β2 ∼ −3.8 are clearly seen. The first minimum
corresponds to biconcave disk (oblate) shapes, while other two to toroidal
shapes. Dependent on the combination of proton and neutron numbers, one
of these minimum becomes LEMAS. In lower-Z nuclei, the biconcave disk
shape corresponds to LEMAS (see Fig. 1). The LEMAS in the nuclei in
the vicinity of the Z ∼ 136, N ∼ 210 corresponds to toroidal shapes with
β2 ∼ −2.3 (Fig. 2 (c) and Ref. [19]). Going away from this region favors
toroidal shapes with substantially larger (in absolute value) β2 quantities
(Fig. 2 (a) and Ref. [19]). Typical density distributions corresponding to
these shapes are shown at the top of Fig. 3.

Z = 138

Fig. 2. Deformation energy curves of selected Z = 138 hyperheavy nuclei obtained
in axial RHB calculations with the DD-PC1 functional.

2 The β2 and γ quantities are extracted from respective quadrupole moments
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∫
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∫
d3rρ(~r )

(
x2 − y2

)
, (2)

via
β2 =

√
5

16π

4π

3AR2
0

√
Q2

20 + 2Q2
22 , (3)

γ = arctan
√
2
Q22

Q20
, (4)

where R0 = 1.2A1/3. Note that Q22 = 0 and γ = 0 in axially symmetric RHB
calculations. The β2 and γ values have a standard meaning of the deformations only
for ellipsoid-like density distributions with |β2| . 1.0. For toroidal shapes (β2 .
−1.2), they should be treated as dimensionless and particle normalized measures of
the Q20 and Q22 moments of the density distributions. The β2 quantity defines the
radius R of the toroid and its tube radius d: with increasing absolute value of the β2
quantity, R increases and d decreases. The γ quantity defines the deviation of the
density distribution from symmetric (γ = 60◦) toroid.
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Fig. 3. (Color online) Proton single-particle energies for the lowest in total energy
solution in the nucleus 324138 calculated as a function of the β2 quantity. Solid
and dashed lines are used for positive- and negative-parity states, respectively.
Proton density distributions, corresponding to local minima shown in Fig. 2 (a)
as well as to the solution with β2 = −4.8, are displayed at the top of the figure.
They are shown in the plane containing toroid for toroidal shapes and in the plane
containing the axis of symmetry for biconcave disk. The density colormap starts
at ρn = 0.005 fm−3 and shows the densities in fm−3. Dot-dashed blue and dashed
orange lines are used for the Fermi level EF and zero energy, respectively.

Figure 1 compares the extrapolations of the two-neutron and two-proton
drip lines for ellipsoidal shapes with those obtained for toroidal nuclei. Note
that these extrapolations are quite close to respective drip lines obtained for
the islands of spherical hyperheavy nuclei. The calculated two-neutron drip
line for toroidal shapes is close to the extrapolation of this line for ellipsoidal
shapes. On the contrary, the situation is completely different on the proton-
rich side of the nuclear landscape: the transition to toroidal shapes in the
Z > 120 nuclei creates a substantial expansion (the area between solid black
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and dashed orange lines in Fig. 1) of the nuclear landscape. The reason for
that is clearly seen in Fig. 3 on the example of the 324138 nucleus. The
Fermi level EF for ellipsoidal-like shapes is located at positive energies and
thus such shapes are unstable against proton emission. On the contrary,
the transition to toroidal shapes drastically modifies the underlying single-
particle structure and, as a consequence, lowers the energy of the Fermi
level with increasing absolute value of the β2 quantity. As a consequence,
EF ≈ −3.5 MeV for LEMAS with β2 ∼ −4.0 in this nucleus and thus this
state is particle bound.

The triaxiality plays a critical role in the demise of ellipsoidal shapes and
the emergence of toroidal shapes as a major player in hyperheavy nuclei.
This is because the impact of triaxiality on fission barriers gets much more
pronounced in the nuclei with ground-state oblate shapes and it generally
increases with the rise of their oblate deformation [10, 11]. Not only the
fission through the γ-plane gets more energetically favored, but also the
fission path through γ-plane becomes much shorter than the one through
the γ = 0◦ axis. These features are illustrated in Fig. 4 on few Z = 134
nuclei distributed equidistantly in neutron number along the isotopic chain.
Let us consider the 392134 nucleus as an example. In axial RHB calculations,
its ground state and excited (at excitation energy of 2.69 MeV) minima are
located at β2 = −0.79 and β2 = −0.23, respectively. The fission barriers
for these two minima are 10.24 and 7.55 MeV, respectively. The inclusion
of the triaxiality reduces these fission barriers down to 0.56 and 2.08 MeV
making ellipsoidal shapes unstable with respect of fission. Similar effects are
also seen in the 352134, 372134, 412134 (see Fig. 4) and 432134 (see Ref. [10])
nuclei. Note that similar trend of substantial reduction of fission barriers
for ellipsoidal shapes in hyperheavy nuclei due to triaxiality is seen also in
microscopic+macroscopic and Skyrme DFT calculations [20].

The investigation of potential stability of toroidal nuclei with respect of
different types of distortions is one of important aspects of their studies. The
results of systematic axial RHB calculations of Refs. [10, 11] clearly indicate
that toroidal nuclei are stable with respect of breathing deformation3. Note
that breathing deformation preserves the azimuthal symmetry of the torus
and it is defined by the radius of torus and the radius of its tube [15]. An-
other type of the distortions of toroidal shapes is with respect of so-called
sausage deformations; they make a torus thicker in one section(s) and thin-
ner in another section(s) [15]. Such a distortion, corresponding to sausage
deformation of the order of λ = 2, is exemplified in Fig. 5 as the transition
from the density distribution shown in panel (a) to that shown in panel (b).
The study of such deformations requires triaxial RHB or RMF+BCS com-

3 Similar results have also been obtained in the HFB calculations with the Gogny force
but only for two nuclei [21].
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Fig. 4. (Color online) Potential energy surfaces (PES) of indicated nuclei obtained
in the RHB calculations. The energy difference between two neighboring equipo-
tential lines is equal to 0.5 MeV. The solid red lines show static fission paths from
respective minima. Open white circles show the global (and local) minimum(a).
Black crosses indicate the saddle points on these fission paths. The colormap shows
the excitation energies (in MeV) with respect to the energy of the deformation point
with largest binding energy. The panel with the results for 392134 nucleus is taken
from Ref. [10].

puter codes and could be potentially performed only for toroidal shapes in
the Z ∼ 134, N ∼ 210 region, which are characterized by small radius of
torus and large radius of its tube, because of enormous requirements on the
basis size (see Sect. III in Ref. [11]). Even then such calculations are ex-
tremely time-consuming. As a result, the stability of toroidal hyperheavy
nuclei with respect of non-axial distortions related to sausage deformations
of the order of λ = 2 has been studied so far for only two nuclei, namely,
354134 and 348138 in Refs. [10, 11]. The saddle points of their fission barriers
with respect of such distortions are located at 4.4 and 8.54 MeV, respectively;
this is indicative of their potential stability.
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Fig. 5. (Color online) Neutron density distributions of the lowest stable toroidal
configuration with β4 ∼ 1.5 in the 354134 nucleus corresponding to its minimum
with β2 ∼ 2.3, γ = 60◦ (left panel) and the saddle with β2 ∼ 2.0, γ ≈ 35◦ (right
panel). The density colormap starts at ρn = 0.005 fm−3 and shows the densities
in fm−3.

The situation with odd order sausage deformations with λ = 1 and 3 is
even more complicated because its resolution requires the use of spatial sym-
metry unrestricted computer codes. However, numerical calculations with
basis sizes following from the analysis of Sect. III of Ref. [11] are impossible
nowadays in such computer codes.

3. Extension of nuclear landscape by means
of rotational excitations

Two new mechanisms active in rotating nuclei located in the vicinity
of neutron drip line have been discovered by us in Ref. [12]. This investi-
gation has been performed in the cranked relativistic mean field (CRMF)
approach [22, 23] without pairing; the neglect of pairing is a reasonable ap-
proximation for high spins of interests (see Ref. [12] for details). The strong
Coriolis interaction acting on high-j orbitals transforms particle-unbound
(resonance) nucleonic configurations into particle-bound ones with increas-
ing angular momentum. The point of the transition manifests the birth of
particle-bound rotational bands. This mechanism is best illustrated on the
example of the [3,0]4 configuration in the 46Mg neutron routhian diagram
which is shown in Fig. 6.

The 3/2[431](r = −i) orbital is the highest in energy occupied positive
parity intruder orbital in this configuration. In each (proton or neutron)
subsystem, the energy of the highest occupied orbital corresponds to the

4 This configuration contains 3 neutrons in the intruder N = 4 orbitals and no protons
in the intruder N = 3 orbitals; see Ref. [12] for more details.
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energy of the Fermi level in the calculations without pairing [24]. Thus,
the nucleonic configuration, the energy of the last occupied neutron orbital
of which is negative, is expected to be particle bound. At rotational fre-
quency Ωx < 1.03 MeV, the 3/2[431](r = −i) orbital is particle unbound
since its single-particle energy is positive (see Fig. 6). Thus, at low spin (up
to I ∼ 16~ corresponding to Ωx = 1.03 MeV), the rotational band built on
this configuration can exist only as a band embedded in particle continuum
(see Refs. [25, 26]) (further ‘resonance band’). Above this frequency, its en-
ergy becomes negative and this orbital dives (because of its high-j content
leading to strong Coriolis force) deeper into nucleonic potential with increas-
ing rotational frequency. As a consequence, the [3,0] configuration becomes
particle bound. Thus, respective rotational band changes its character from
particle-unbound resonance band (at I < 16~) to particle-bound rotational
band (at I > 16~) with discrete rotational states of extremely narrow width.
Alternative possibility of the transition from particle-bound to resonance ro-
tational band (the death of particle-bound rotational bands 5) with increasing
spin also exists but it is less frequent in the calculations.

The birth of particle-bound rotational bands provides a mechanism for
the extension of nuclear landscape to neutron numbers which are larger than
those of the neutron drip line in non-rotating nuclei (Ref. [12]). For example,
at spin zero, 46Mg is the last bound even–even nucleus [3]. However, neutron
bound rotational states are predicted at non-zero spins also in 48,50Mg which
are unbound at spin zero (see Figs. 6 (i) and (j) in Ref. [12]). Thus, rotational
excitations allow to extend the nuclear landscape for the Mg isotopes by four
neutrons.

On-going investigation [29] reveals that similar mechanisms are active
also in the nuclei in the vicinity of proton drip line. However, in this case,
the birth of particle (proton) bound rotational bands and the extension of
nuclear landscape beyond spin-zero proton drip line6 emerge from proton
intruder orbitals initially located at positive energies which, with increasing
rotational frequency, dive into negative energy domain because of high-j an-
gular momentum content leading to a large Coriolis force. However, due to
the presence of the Coulomb barrier, the part of the rotational band with

5 The stability of aligned states in the 40Ca, 66Ge, 122Xe and 150Gd nuclei with in-
creasing spin has been studied in Ref. [27]; above some spin value, such states be-
come particle unstable. Despite some similarities of our results and those of Ref. [27],
there are important differences. We consider collective rotation of the nuclei, while
the regime of nuclear motion in aligned states of Ref. [27] corresponds to a so-called
“non-collective rotation” (see Refs. [24, 28]). These aligned states in many cases
represent non-collective terminating states of rotational bands (or highest spin state
within a rotational band) [28].

6 See Refs. [2, 3, 7] for the state-of-the-art predictions of the position of proton drip
line.



356 A.V. Afanasjev, S.E. Agbemava, A. Taninah

0.00 0.40 0.80 1.20 1.60 2.00 2.40
Rotational  frequency Ωx (MeV)

-6.0

-4.0

-2.0

0.0

2.0

si
ng

le
 p

ar
tic

le
 e

ne
rg

ie
s 

 ε
i (

M
eV

)

-6.0

-4.0

-2.0

0.0

2.0

si
ng

le
 p

ar
tic

le
 e

ne
rg

ie
s 

 ε
i (

M
eV

)

-6.0

-4.0

-2.0

0.0

2.0

si
ng

le
 p

ar
tic

le
 e

ne
rg

ie
s 

 ε
i (

M
eV

)

-6.0

-4.0

-2.0

0.0

2.0

si
ng

le
 p

ar
tic

le
 e

ne
rg

ie
s 

 ε
i (

M
eV

)

3/2 [202]

1/2 [440]

3/2 [431]

1/2 [431]

1/2 [321]

5/2 [312]

1/2 [310]

3/2 [301]

1/2 [301]

3/2 [312]

7/2 [303]

46
Mg

Fig. 6. (Color online) Neutron single-particle energies (routhians) in the self-
consistent rotating potential of 46Mg as a function of rotational frequency Ωx.
They are given along the deformation path of the [3,0] configuration. Long-dashed
red, solid black, dot-dashed green, and dotted blue lines indicate (π = +, r = +i),
(π = +, r = −i), (π = −, r = +i), and (π = −, r = −i) orbitals, respectively. At
Ωx = 0.0 MeV, the single-particle orbitals are labeled by the asymptotic quantum
numbers Ω[NnzΛ] (Nilsson quantum numbers) of the dominant component of the
wave function. Solid circles indicate occupied orbitals in resonance and particle-
bound parts of respective configurations. Vertical dashed orange line indicates the
frequency at which the configuration becomes particle bound.

at least one occupied proton single-particle state having positive energy will
have discrete rotational states which can decay also by proton emission. This
is contrary to the situation near neutron drip line where occupied neutron
state(s) with positive energy result in resonance part of the band with rota-
tional states having finite width. The nucleonic configuration will be proton
bound for the case of negative energy of highest occupied proton orbital.
Similar to very neutron-rich nuclei, the dive of intruder proton orbitals into
nucleonic potential can trigger the transition from proton emitting part of
rotational band at low spin to proton bound one at higher spin.

These features are illustrated in Figs. 7 and 8. The 50Ni and 48Ni are the
last proton bound and the first proton unbound Ni nuclei at spin zero [3].
At I = 0, these nuclei are spherical due to the presence of the Z = 28 and
N = 20 shell closures. However, particle–hole excitations across these gaps
lead to the development of large and extreme deformations (see Ref. [30])
as well as to the occupation of positive energy proton orbitals in excited
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configurations. As a consequence, these bands are proton emitting. How-
ever, some configurations built on intruder proton orbitals, such as [0,2] and
[2,42] in 50Ni and [0,2] in 48Ni, which are proton emitting at low and mod-
erate spins become proton bound at high spins. The underlying microscopic
mechanism is illustrated in Fig. 8. Proton 1/2[440](i = ±) intruder orbitals,
occupied in the [0,2] configuration of 48Ni, are located at positive energy at
low spins. However, both of them dive into negative energy domain with in-
creasing rotational frequency so that the [0,2] configuration become particle
bound at Ωx = 2.04 MeV (I ≈ 26~).
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Fig. 7. (Color online) Excitation energies of calculated configurations in 48,50Ni
relative to a rotating liquid drop reference AI(I + 1), with the inertia parameter
A = 0.0035. Thin and thick lines show proton emitting and proton bound parts
of rotational bands, respectively. The yrast lines (as defined from approximately
15 calculated configurations) are shown by dashed red lines. Typical deformations
of the bands are shown in the format of β2

γ . The configurations in proton-rich Ni
isotopes are labeled by the shorthand [n1,p1(p2)] labels, where n1 is the number of
neutrons in the intruder N = 4 orbitals, and p1 and p2 are the number of protons
in the N = 4 intruder and N = 5 hyperintruder orbitals. The p2 number is omitted
when respective orbitals are not occupied.
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Fig. 8. (Color online) The same as Fig. 6 but for proton routhians in the [0,2]
configuration of 48Ni.

4. Conclusions

In conclusion, it was illustrated that traditional limits of nuclear land-
scape can be substantially expanded when considering the mechanisms al-
ternative to those discussed before. In the region of hyperheavy nuclei,
the transition from ellipsoid-like nuclear shapes to toroidal ones provides
a substantial increase of nuclear landscape. Rotational excitations provide
an alternative mechanism of the extension of nuclear landscape beyond the
limits defined at spin zero. In both cases, the collective coordinates related
to nuclear shapes play an important role in extending nuclear landscape.
In hyperheavy nuclei, they drive the nuclear systems from ellipsoidal-like to
toroidal shapes. In rotating nuclei, they transform the system from spheri-
cal or normal deformed ground states to extremely elongated (super-, hyper-
and mega-deformed) shapes at high spins. This creates favorable positions
of intruder orbitals with respect of zero energy threshold which combined
with the action of collective rotation allows to extend the limits of nuclear
landscape beyond spin-zero ones.

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics under Award No.
DE-SC0013037 and the U.S. Department of Energy, National Security Ad-
ministration under Award No. DE-NA0002925.
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