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Modulo the scale of spontaneous breaking of Peccei–Quinn symmetry,
the axion mass ma(T ) is given by the QCD topological susceptibility χ(T )
at all temperatures T . From an approach tying the UA(1) and chiral sym-
metry breaking and getting good T -dependence of η and η′ mesons, we
get χ(T ) for an effective Dyson–Schwinger model of nonperturbative QCD.
Comparison with lattice results for χ(T ), and thus also for ma(T ), shows
good agreement for temperatures ranging from zero up to the double of the
chiral restoration temperature Tc.
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1. Introduction

The fundamental theory of strong interactions, QCD, has the so-called
Strong CP problem. Namely, there is no experimental evidence of any CP-
symmetry violation in strong interactions, although there is in principle no
reason why the QCD Lagrangian should not include the so-called Θ-term
LΘ, where gluon fields F bµν(x) comprise the CP-violating combination Q(x)

LΘ(x) = Θ
g2

64π2
εµνρσ F bµν(x)F bρσ(x) ≡ ΘQ(x) . (1)

Admittedly, LΘ can be rewritten as a total divergence, but, unlike in QED,
this does not enable discarding it in spite of the gluon fields vanishing suffi-
ciently fast as |x| → ∞. This is because of nontrivial topological structures
in QCD, such as instantons, which are important for, e.g. solving of the
UA(1) problem and yielding the anomalously large mass of the η′ meson.
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Thus, there is no reason why the coefficient Θ of this term should be of
a very different magnitude from the coefficients of the other, CP-symmetric
terms comprising the usual CP-symmetric QCD Lagrangian. Nevertheless,
the experimental bound on the coefficient of the term is extremely low,
|Θ| < 10−10 [1], and consistent with zero. This is the mystery of the missing
strong CP violation: why is Θ so small?

Various proposed theoretical solutions stood the test of time with varying
success. A long-surviving solution, which is actually the preferred solution
nowadays, is a new particle beyond the Standard Model — the axion. Impor-
tant is also that axions turned out to be very interesting also for cosmology,
as promising candidates for dark matter. (See, e.g., [2, 3].)

2. Axion mass from the non-Abelian axial anomaly

Peccei and Quinn introduced [4, 5] a new axial global symmetry U(1)PQ

which is broken spontaneously at some scale fa. This presumably huge [6]
but otherwise presently unknown scale is the key free parameter of axion
theories, which determines the absolute value of the axion mass ma. How-
ever, this constant cancels from combinations such as ma(T )/ma(0). Hence,
useful insights and applications are possible in spite of fa being not known.

We have often, including applications at T > 0 [7–11], employed a chi-
rally well-behaved relativistic bound-state approach to modeling nonpertur-
bative QCD through Dyson–Schwinger equations (DSE) for Green’s func-
tions of the theory. (For reviews, see [12–14] for example.) Such calculations
can yield model predictions on the QCD topological susceptibility, including
its temperature dependence χ(T ), which are correctly related to the QCD
dynamical chiral symmetry breaking (DChSB) and restoration. It turns out
that χ(T ) is precisely that factor in the axion mass ma(T ), which carries
the nontrivial T -dependence.

2.1. Axions as quasi-Goldstone bosons

The pseudoscalar axion field a(x) arises as the (would-be massless) Gold-
stone boson of the spontaneous breaking of the Peccei–Quinn symmetry
[15, 16]. The axion contributes to the total Lagrangian its kinetic term and
its interaction with the Standard-Model fermions. However, what is im-
portant for the resolution of the strong CP problem, is that the axion also
couples to the topological charge density operator Q(x) in Eq. (1). Then,
the Θ-term in the QCD Lagrangian gets modified to

LΘ+
axion = LΘ +

a(x)

fa
Q(x) =

(
Θ +

a

fa

)
g2

64π2
εµνρσF bµν F

b
ρσ . (2)
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Through this coupling of the axion to gluons, the U(1)PQ symmetry is also
broken explicitly by the UA(1) non-Abelian, gluon axial anomaly, so that
the axion has a nonvanishing mass, ma 6= 0 [15, 16].

Gluons generate an effective axion potential, and its minimization leads
to the axion expectation value 〈a〉 such that the modified coefficient, multi-
plying the topological charge density Q(x), should vanish

Θ +
〈a〉
fa

= 0 . (3)

The strong CP problem is thereby solved, irrespective of the initial value
of Θ. Relaxation from any Θ-value in the early Universe towards the min-
imum at Eq. (3) is known as misalignment production, and the resulting
axion oscillation energy is a cold dark matter candidate (e.g., see [2, 3]).

2.2. Axion mass from anomalous UA(1) breaking driven by DChSB

A direct measure of the UA(1) symmetry breaking is the topological
susceptibility χ, given by the convolution of the time-ordered product T of
the topological charge densities Q(x) defined by Eq. (1) [or Eq. (2)]

χ =

∫
d4x 〈0| T Q(x)Q(0) |0〉 . (4)

The expansion of the effective axion potential reveals in its quadratic term
that the axion mass squared (times f2

a ) is equal1 to the QCD topological
susceptibility. This holds for all temperatures T

m2
a(T ) f2

a = χ(T ) . (5)

On the other hand, in our study [11] of the T -dependence of the η and η′
masses and the influence of the anomalous UA(1) breaking and restoration,
we used the light-quark-sector result [17–19]

χ(T ) =
− 1

1
mu〈ūu (T )〉 + 1

md〈d̄d (T )〉 + 1
ms〈s̄s (T )〉

+ Cm , (6)

where Cm is a very small correction term of higher orders in the small cur-
rent quark masses mq (q = u, d, s), and in the present context, we do not
consider it further. Thus, the overwhelming part, namely the leading term
of χ, is given by the quark condensates 〈q̄q〉 (q = u, d, s), which arise as or-
der parameters of DChSB. Their temperature dependence determines that

1 To a high level of accuracy, since corrections to Eq. (5) are of the order of M2
π/f

2
a

[20], where the pion mass Mπ is negligible.
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of χ(T ), which in turn determines the T -dependence of the anomalous part
of the pseudoscalar meson masses in the η–η′ complex. This is the mecha-
nism of Ref. [11], how DChSB and chiral restoration drive, respectively, the
anomalous breaking and restoration of the UA(1) symmetry of QCD.

Now, Eqs. (5) and (6) show that this mechanism determines also the
T -dependence of the axion mass.

To describe η′ and η mesons, it is essential to include UA(1) symmetry
breaking at least at the level of the masses. This could be done simply [23–25],
by adding the anomalous contribution to isoscalar meson masses as a pertur-
bation, thanks to the fact that the UA(1) anomaly is suppressed in the limit
of large number of QCD colors Nc [26, 27]. Concretely, Ref. [25] adopted
Shore’s equations [28], where the UA(1)-anomalous contribution to the light
pseudoscalar masses is expressed through the condensates of light quarks
with nonvanishing current masses. They are thus used also in χ(T ) (6),
since this approach has recently been extended [11] to T > 0. This gave us
our results for χ(T ) depicted in Fig. 1.
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Fig. 1. The relative temperature T/Tc dependence of (the leading term of) χ(T )

from our oft-adopted [7–11] chirally well-behaved DSE model (solid curve), and
from lattice: dash-dotted curve extracted from Petreczky et al. [21] and dashed
curve extracted from Borsany et al. [22].

Indeed, the now established smooth, crossover behavior around the pseu-
docritical temperature Tc for the chiral transition, is obtained for the DChSB
condensates of realistically massive light quarks — i.e., the quarks with real-
istic explicit chiral symmetry breaking [11]. In contrast, using in Eq. (6) the
massless quark condensate 〈q̄q〉0 (which drops sharply to zero at Tc) instead
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of the “massive” ones, would dictate a sharp transition of the second order
at Tc [10, 11] also for χ(T ). Obviously, this would imply that axions are
massless for T > Tc.

In Fig. 1, we present (the leading term of) our model-calculated [11]
χ(T )1/4, depicted as the solid curve. Due to Eq. (5), this is our model
prediction for

√
ma(T ) fa. For temperatures up to T ≈ 2.3Tc, we compare

it to the lattice results of Petreczky et al. [21] and of Borsany et al. [22],
rescaled to the relative temperature T/Tc.

3. Summary

The axion mass and its temperature dependence ma(T ) can be calcu-
lated in an effective model of nonperturbative QCD (up to the constant
scale parameter fa) as the square root of the topological susceptibility χ(T ).
We obtained it from the condensates of u-, d- and s-quarks and antiquarks
calculated in the SDE approach using a simplified nonperturbative model
interaction [11]. Our prediction on ma(T ) is thus supported by the fact
that our topological susceptibility also yields the T -dependence of the UA(1)
anomaly-influenced masses of η′ and η mesons which is consistent with ex-
perimental evidence [11].

Our result on χ(T ) and the related axion mass is qualitatively similar
to the one obtained in the framework of the NJL model [29]. Our topologi-
cal susceptibility is also qualitatively similar to the pertinent lattice results
[21, 22], except that our dynamical model could so far access only much
smaller range of temperatures, T < 2.4Tc. On the other hand, the lattice
supports the smooth crossover transition of χ(T ), which is, in our approach,
the natural consequence of employing the massive-quark condensates ex-
hibiting crossover around the chiral restoration temperature Tc. Hence, the
(partial) UA(1) restoration observed in Ref. [11] must also be a crossover,
which in the present work, as well as in its longer counterpart [30] containing
a detailed analysis of the model parameter dependence, translates into the
corresponding smooth T -dependence of the axion mass.
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