AZIMUTHAL ANISOTROPY IN HEAVY-ION COLLISIONS WITH THE ATLAS DETECTOR AT THE LHC*

Klaudia Maj
AGH University of Science and Technology Mickiewicza 30, 30-059 Kraków, Poland
klaudia.maj@cern.ch

(Received April 16, 2020)
The high-statistics experimental data collected by the ATLAS experiment during the $2015 \mathrm{~Pb}+\mathrm{Pb}$ and $2017 \mathrm{Xe}+\mathrm{Xe}$ LHC runs are used to measure charged particle azimuthal anisotropy. ATLAS measurements of differential and global Fourier harmonics of charged particles $\left(\nu_{n}\right)$ in 5.02 TeV $\mathrm{Pb}+\mathrm{Pb}$ and 5.44 TeV collisions in a wide range of transverse momenta (up to 60 GeV), pseudorapidity ($|\eta|<2.5$) and collision centrality ($0-80 \%$) are presented. The higher order harmonics, sensitive to fluctuations in the initial state, are measured up to $n=7$ using the two-particle correlation, cumulant and scalar-product methods. The dynamic properties of the QGP are studied using a modified Pearson's correlation coefficient, $\rho\left(\nu_{n}, p_{\mathrm{T}}\right)$, between the eventwise mean transverse momentum and the magnitude of the flow vector in $5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. The flow results allow to improve the understanding of initial conditions of nuclear collisions, hydrodynamical behaviour of Quark-Gluon Plasma and parton energy loss.

DOI:10.5506/APhysPolBSupp.13.687

1. Introduction

The ATLAS detector [1] at the Large Hadron Collider (LHC) at CERN in Switzerland is an excellent tool for studying the Quark-Gluon Plasma (QGP). The QGP is a strongly-interacting nuclear matter formed in ultrarelativistic heavy-ion collisions. It exhibits hydrodynamical properties of a nearly perfect fluid with very low viscosity. The initial interaction region, where the QGP developed, is non-isotropic due to initial geometry of a collision. Extreme conditions inside the collision zone lead to plasma expansion. Thus, the initial spatial anisotropy is translated into the final spatial anisotropy observed in the momentum space. As a result, particles

[^0]produced in a collision exhibit anisotropic particle distribution. This feature is commonly studied using the azimuthal angles of produced particles: $\frac{\mathrm{d} N}{\mathrm{~d} \phi} \propto 1+\sum_{n} 2 \nu_{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right][2]$, where ϕ is an azimuthal angle of particle, Ψ is a reaction plane angle and n is the number of harmonic. The ν_{n} coefficients are known as flow harmonics of $n^{\text {th }}$ order. The $2^{\text {nd }}$ flow harmonic (elliptic flow) provides the information about the initial shape of the interaction region, while higher order ν_{n} describe initial state fluctuations.

This report presents the ATLAS measurements of ν_{n} harmonics obtained using $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{Xe}+\mathrm{Xe}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}[3]$ and $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV [4], respectively. Furthermore, the correlations of flow harmonics and mean event p_{T} in $5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions are discussed using the modified Pearson's correlation coefficient [5].

2. Azimuthal anisotropy measurements in heavy-ion collisions

The ν_{n} results shown in the report are obtained using the scalar-product (SP) [6] and two-particle correlations (2PC) [2] measurement techniques. The SP and 2PC methods are based on correlations of two particles taken from the same event but with different pseudorapidity or transverse momentum range, and measure the same quantity, which is $\sqrt{\left\langle\nu_{n}^{2}\right\rangle}$ [7]. In both methods, any non-flow correlations are suppressed by requiring large separation in pseudorapidity, $\Delta \eta$, between correlating particles. In 2 PC , the $\Delta \eta$ is usually chosen to be $|\Delta \eta|>2$, while it is even higher for the SP method and is within $|\Delta \eta|>3.2$.

Figure 1 shows ν_{n} harmonics obtained with the SP method as a function of p_{T} up to $p_{\mathrm{T}}=60 \mathrm{GeV}$ in two collision centrality intervals: $0-0.1 \%$ and $30-$ 40% corresponding to the ultra-central and mid-central $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ $\mathrm{Pb}+\mathrm{Pb}$ collisions, respectively. Results are integrated over $|\eta|<2.5$ range. All measured harmonics $\left(\nu_{2}-\nu_{7}\right)$ exhibit similar trend over different centralities: at low p_{T}, the ν_{n} increase almost linearly with p_{T} reaching its maximum at $p_{\mathrm{T}}=2-4 \mathrm{GeV}$, then the gradual fall of ν_{n} value is observed. The ν_{2} is a dominant anisotropy in mid-central collisions as the geometrical shape of the collision region is elliptical. The magnitudes of higher order flow coefficients significantly decrease indicating the harmonics ordering of $\nu_{n}>\nu_{n+1}$. In the ultra-central $\mathrm{Pb}+\mathrm{Pb}$ collisions, the interaction region is almost spherical, which reflects in small value of elliptic flow. Thus, higher order ν_{n} harmonics are more pronounced and the ν_{n} ordering is changed to $\nu_{3}>\nu_{4}>\nu_{5} \approx \nu_{2}$ for $p_{\mathrm{T}}=3-5 \mathrm{GeV}$ implying that in these collisions the azimuthal anisotropy arises from the initial state fluctuations. The flow coefficients are measured up to $7^{\text {th }}$ harmonic, which is found to be non-zero for centrality range of $0-50 \%$, and is most prominent in the central and mid-central collisions at $p_{\mathrm{T}}=2-4 \mathrm{GeV}$.

Fig. 1. The ν_{n} harmonics as a function of $p_{\text {T }}$ integrated over $|\eta|<2.5$ obtained using SP method in ultra-central (left) and mid-central (right) $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ [3].

Analogous ν_{n} measurements are performed for $\sqrt{s_{\mathrm{NN}}}=5.44 \mathrm{TeV} \mathrm{Xe}+\mathrm{Xe}$ collisions and are discussed in Ref. [4]. The differential $\nu_{n}\{\mathrm{Xe}+\mathrm{Xe}\}\left(p_{\mathrm{T}}\right)$ results resemble the trends observed in $\mathrm{Pb}+\mathrm{Pb}$ collisions. However, there are differences between flow magnitudes when comparing $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{Xe}+\mathrm{Xe}$ quantitatively. Left panels in figure 2 show the ν_{2} and ν_{3} harmonics ob-

Fig. 2. The ν_{2} (top left) and ν_{3} (bottom left) harmonics as a function of centrality obtained with 2 PC method in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ and $\mathrm{Xe}+\mathrm{Xe}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.44 \mathrm{TeV}$ integrated over $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ [4]. The ratios of the $\mathrm{Xe}+\mathrm{Xe} \nu_{n}\{2 \mathrm{PC}\}$ to the $\mathrm{Pb}+\mathrm{Pb} \nu_{n}\{2 \mathrm{PC}\}$ (right panels). The ratios are compared with theoretical calculations for $p_{\mathrm{T}}=0.3-5 \mathrm{GeV}$ [8].
tained with the 2 PC method and integrated over $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ as a function of collision centrality in $\mathrm{Pb}+\mathrm{Pb}$ and $\mathrm{Xe}+\mathrm{Xe}$ collisions. The ratios of $\nu_{n}\{\mathrm{Xe}+\mathrm{Xe}\}$ over $\nu_{n}\{\mathrm{~Pb}+\mathrm{Pb}\}$ are presented in right panels of figure 2. The $\mathrm{Xe}+\mathrm{Xe} \nu_{2}$ and ν_{3} values are significantly larger than those obtained in $\mathrm{Pb}+\mathrm{Pb}$ collisions in the most central events i.e. collision centrality within $0-15(40) \%$ interval for $\nu_{2}\left(\nu_{3}\right)$. This reflects the fact that Xe ion is twice smaller than Pb ion. The smaller $\mathrm{Xe}+\mathrm{Xe}$ initial interaction region results in larger fluctuations in the initial nucleons positions, affecting the initial collision geometry, and thus, enhancing ν_{n} values. On the other hand, in the mid-central and peripheral collisions, the $\nu_{n}\{\mathrm{Xe}+\mathrm{Xe}\}$ are reduced in comparison to $\mathrm{Pb}+\mathrm{Pb}$. This is expected from hydrodynamical predictions as the viscous effects are larger for the lighter collision system. The ratios are consistent with the theoretical calculations obtained by Giacalone et al. [8].

3. Flow harmonics and mean p_{T} correlations

The dynamics within QGP medium lead to the variation in the mean event p_{T} on the event-by-event basis. As a consequence, it is expected that event-by-event azimuthal flow harmonics should be correlated with the mean $p_{\mathrm{T}},\left[p_{\mathrm{T}}\right]$, of the event [9]. Recently, ATLAS performed a $\nu_{n}-\left[p_{\mathrm{T}}\right]$ correlation measurement [5] that is based on the new method proposed by Bożek in Ref. [10]. In the standard technique, the strength of the $\nu_{n}-\left[p_{\mathrm{T}}\right]$ correlations is studied using a Pearson correlation coefficient, which is dependent on the covariance and variances of the ν_{n}^{2} and $\left[p_{\mathrm{T}}\right]$ distributions. However, the finite charged-particle tracks multiplicity in the event introduce statistical fluctuations and as a consequence broadening of the ν_{n}^{2} and $\left[p_{\mathrm{T}}\right]$ distributions. It was proposed to modify the Pearson correlation coefficient to be less sensitive to the event track multiplicity and thus, it is defined as

$$
\begin{equation*}
\rho=\frac{\operatorname{cov}\left(\nu_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)}{\sqrt{\operatorname{Var}\left(\nu_{n}\{2\}^{2}\right)_{\mathrm{dyn}} \sqrt{c_{k}}}} \tag{1}
\end{equation*}
$$

where the $\nu_{n}\{2\}$ is the $n^{\text {th }}$ order flow harmonic obtained using 2PC method, the $\operatorname{cov}\left(\nu_{n}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ is the covariance between $\nu_{n}\{2\}^{2}$ and $\left[p_{\mathrm{T}}\right], \operatorname{Var}\left(\nu_{n}\{2\}^{2}\right)$ and c_{k} are the dynamical variance of the $\nu_{n}\{2\}$ and dynamical p_{T} fluctuation magnitude, respectively. The $\nu_{n}-\left[p_{\mathrm{T}}\right]$ correlations measurements performed using the modified Pearson's coefficient are detector-independent allowing for the direct comparisons between different results and with theoretical calculations.

Figure 3 shows the ρ coefficient obtained for ν_{2} and ν_{3} harmonics in three p_{T} intervals as a function of the collision centrality expressed in the number of nucleons participating in the collision, $N_{\text {part }}$. The $\rho\left(\nu_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$
increases with $N_{\text {part }}$, starting from negative values in the peripheral collisions, then it changes the sign at $N_{\text {part }} \approx 40$, gradually rises to the maximum around $N_{\text {part }} \approx 380$ and rapidly decreases in the most central collisions. The $\rho\left(\nu_{3}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ shows much weaker $N_{\text {part }}$ dependence and also the magnitude of the ρ correlation is lower than for ν_{2}.

Fig. 3. The modified Pearson's coefficient, ρ, as a function of $N_{\text {part }}$ integrated over three p_{T} intervals obtained for ν_{2} (left) and ν_{3} (right) harmonics in 5.02 TeV $\mathrm{Pb}+\mathrm{Pb}$ collisions [5]. Results are compared with theoretical predictions.

The results of $\rho\left(\nu_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ obtained at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV} p+\mathrm{Pb}$ collisions for three p_{T} intervals as a function of charged-particle multiplicity, N_{ch}, which is another estimation of the collision centrality, are shown in figure 4. The ρ coefficient exhibits negative values for the whole range of N_{ch} and is constant within uncertainties.

Fig. 4. The charged-particle multiplicity dependence on the $\rho\left(\nu_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ obtained in $p+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ for three p_{T} intervals [5].

Figure 5 shows the $\rho\left(\nu_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ correlation as a function of N_{ch} and integrated over $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ obtained at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. The ρ correlation is negative for both, peripheral $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions. However, the N_{ch} dependence is different for the two collision systems. In $\mathrm{Pb}+\mathrm{Pb}$, the ρ increases with N_{ch}, while in $p+\mathrm{Pb}$, the ρ is constant.

Fig. 5. The $\rho\left(\nu_{2}\{2\}^{2},\left[p_{\mathrm{T}}\right]\right)$ for the range of $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ as a function of N_{ch} obtained for $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ [5].

4. Summary

One of the QGP properties is azimuthal anisotropy, which is thoroughly studied using data collected in heavy-ion collisions at the ATLAS experiment. The elliptic flow and higher order flow harmonics, $\nu_{2}-\nu_{7}$, are measured using several methods up to very high p_{T} up to 60 GeV , pseudorapidity within detector acceptance $|\eta|<2.5$, and throughout collision centrality from the ultra-central to the most peripheral $5.02 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ and 5.44 TeV $\mathrm{Xe}+\mathrm{Xe}$ collisions.

ATLAS obtained quantitative estimate of correlation strength between ν_{n} and $\left[p_{\mathrm{T}}\right]$ in $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ using the modified Pearsons coefficient ρ. The ρ values are found to be positive for harmonics ν_{2} and ν_{3} in the mid-central and central $\mathrm{Pb}+\mathrm{Pb}$ collisions. In the peripheral $\mathrm{Pb}+\mathrm{Pb}$ events and $p+\mathrm{Pb}$ collisions, the ν_{2} magnitude is negative. The ρ correlation is dominant and centrality-dependent, while the ν_{3} harmonic shows much weaker and non-monotonic $N_{\text {part }}$ dependence. The hydrodynamic model can qualitatively predict that behaviour. The ρ results provide a quantitative and experimentally unbiased measure of a connection between anisotropic and radial flows.

REFERENCES

[1] ATLAS Collaboration, JINST 3, S08003 (2008).
[2] S.A. Voloshin, A.M. Poskanzer, R. Snellings, Landolt-Börnstein 23, 293 (2010).
[3] ATLAS Collaboration (M. Aaboud et al.), Eur. Phys. J. C 78, 997 (2018).
[4] ATLAS Collaboration, Technical Report ATLAS-CONF-2018-011, 2018.
[5] ATLAS Collaboration (G. Aad et al.), Eur. Phys. J. C 79, 985 (2019).
[6] C. Adler et al., Phys. Rev. C 66, 034904 (2002).
[7] M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 87, 044907 (2013).
[8] G. Giacalone, J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 97, 034904 (2018).
[9] U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[10] P. Bożek, Phys. Rev. C 93, 044908 (2016).

[^0]: * Presented at the $45^{\text {th }}$ Congress of Polish Physicists, Kraków, September 13-18, 2019.

