
Vol. 13 (2020) Acta Physica Polonica B Proceedings Supplement No 4
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V.I. Arnold suggested that an elliptic Weierstrass function cannot be
reduced to an elementary one. We prove this conjecture by demonstration
that the Weierstrass ℘-function cannot be homeomorphically transformed
to any elementary function. This implies the general observation that the
physical world cannot be described only by elementary functions up to
appropriate coordinate transformations.
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1. Introduction

One of the Arnold’s problem [7, Problem 2003-8, pp. 168–170] concerns
relations between elliptic and elementary functions. Before its precise state-
ment and solution, we want to explain its role in modern science following
Arnold’s talks and discussions. We address to a function arisen as a solution
of the physical problem, for instance, to a function satisfying an ordinary dif-
ferential equation. It is known that not all of these solutions are considered
as elementary functions. The question consists in the principal possibility of
the scale transformation of its argument x ∈ Rn and values f(x) to a new
function which becomes elementary in the transformed coordinates. Hence,
the question may be stated as follows. Whether the world is described
in terms of elementary functions up to coordinate transformations? In the
present paper, we give the negative answer by demonstration that an elliptic
Weierstrass function cannot be reduced to an elementary one.

∗ Presented at the 45th Congress of Polish Physicists, Kraków, September 13–18, 2019.
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One can hear first from the secondary school that it is impossible to
express roots of the algebraic equations of degree 5 or higher in terms of the
coefficients using only arithmetic operations and radicals. This assertion
were proved by Ruffini in 1799 with minor gaps (see historical notes [3]) and
it is known in our days as the Abel–Ruffini theorem.

In 1963, Vladimir Igorevich Arnold gave special course Abel’s theorem
for pupils of the College of the Moscow State University. Later, Alekseev
prepared the book [2] according to this course. In 1963–1964, Arnold proved
that equation x5 + ax + 1 = 0 cannot be solved in a wider sense, namely
the roots of this equation cannot be presented as a topologically elementary
function x(a). In 1963, Arnold stated the following question whether the
elliptic integral and the Weierstrass ℘-function are topologically elementary
or not? (see the definition of the topologically elementary function below
in Introduction, cf. Definition 2.1 in Sec. 2). Arnold conjectured that the
answer to this question is negative and proposed a plan of the long proof of
this conjecture which has not been realized yet. One can find a discussion
devoted to this question in the book [7, Problem 2003-8, pp. 168–170] and
other interesting facts addressed to this question in [2–6].

For brevity, we denote the set of rational functions by Q[x]. In real anal-
ysis, the basic elementary functions are the following functions Q ∈ Q[x],
exp, log, sin, cos, tan, cot, arcsin, arccos, arctan, arccot. Functions which
can be built from basic elementary functions by using a finite number of
composition and four arithmetic operations are called real elementary com-
positions. This collection is surely excessive. Thus e.g. usually the radical xα
is referred to the basic elementary functions. However, it can be expressed
through the above functions: xα = exp(α log x).

Conception of complex elementary functions is due to Liouville (see e.g.
[8]). All complex elementary functions can be built by the basic functions
Q, exp, log (below, this class is denoted by E[Q, exp, log]), since all other
basic in the real case functions are expressed through these functions by the
formulas

sin z =
1

2i

(
eiz − e−iz

)
, cos z =

1

2

(
eiz + e−iz

)
,

arcsin z = −i log
[
iz +

√
1− z2

]
,

arctan z =
i

2
[log(1− iz)− log(1 + iz)] . (1)

Similar to (1), one can also easily express tan, cot, arccos, arccot through
Q, exp, log. In what follows, elementary functions of complex variable
are those which can be obtained from the basic elementary functions Q,
exp, log by using a finite number of arithmetic operations and compositions
(E[Q, exp, log]).
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Let us introduce now a subclass of elementary complex functions contin-
uous in C except a discreet set of isolated in C points, where a function can
be equal to infinity. For shortness, we call this class elementary continuous
complex functions. It is worth noting that the function log is discontinuous,
where log is defined as a fixed branch of the complex logarithm [11]. The
discontinuity set of log is the negative half-axis, i.e., it is not a set of isolated
points.

In paper [10], we have proved that the Weierstrass ℘-function cannot
be homeomorphically transformed to any elementary complex function from
E[Q, exp]. We took in [10] this class of elementary functions, since the
Weierstrass function is continuous except a discreet set of points. Arnold
noted that the logarithm has to be added to our class of elementary functions
and made other remarks concerning [10]. Our proof from [10] for the class
E[Q, exp] can be extended to the continuous functions of E[Q, exp, log].
This enables us to give the complete modified proof of Arnold’s conjecture
presented in the next section.

Before the proof, we recall that the elliptic integral is defined as fol-
lows [1]:

u(w) =

∞∫
w

dt√
4t3 − g2t− g3

, (2)

where g2 and g3 are given constants. The Weierstrass ℘-function with the
periods ω1, ω2 (Im ω2/ω1 > 0) can be defined as the series

℘(z) =
1

z2
+

∑
m2+n2 6=0

(
1

(z −mω1 − nω2)2
− 1

(mω1 + nω2)2

)
. (3)

It satisfies the differential equation

dz = − d℘(z)√
4[℘(z)]3 − g2℘(z)− g3

, (4)

where g2 and g3 are related to the periods ω1 and ω2. Comparing (2) and
(4), one can see that the elliptic integral u(w) is the inverse function to ℘(z).

2. Main result

Let Cj (j = 1, 2, 3, 4) be four copies of the complex plane C.

Definition 2.1. A function f̃ : C3 → C4 is called the topologically elemen-
tary if there exists an elementary function f(z) and homeomorphisms h, k
of the complex plane such that the following diagram is commutative:
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f
C1 −→ C2

h ↓ ↓ k
f̃

C3 −→ C4

(5)

We say that diagram (5) is commutative and the functions f and f̃ are
topologically conjugated, if k ◦ f = f̃ ◦ h.

Using the results and designation presented in Introduction, we state
Arnold’s problem about the Weierstrass function in the form of the following
theorem.

Theorem 2.1. The Weierstrass ℘-function is not topologically elementary,
i.e., it is not topologically conjugated to any continuous function from
E[Q, exp, log].

Before the proof, we introduce the following definition.

Definition 2.2. Let a continuous curve γ be defined by the parametrization
x 7→ g(x), where 0 ≤ x < ∞, g(x) ∈ C. One says that γ goes by infinity if
for any R > 0 there exist points of γ which do not lie in the disk |z| < R.

One says that a continuous curve γ goes to infinity if the following re-
lation holds limx→+∞ g(x) = ∞. Here, the second infinity belongs to the
extended complex plane.

The first part of definition is equivalent to the standard definition of
unbounded sets. This definition is introduced for shortness to describe
a curve γ near infinity.

Proof. The proof is based on the assertion that for any function f ∈
E[Q, exp, log] and any homeomorphisms h, k of the complex plane, there
exists such a curve γ1 ⊂ C1 that the restriction of diagram (5) to γ1 cannot
be commutative.

Let us consider functions from E[Q, exp, log] which are continuous in C
except a discreet set of isolated points in C. We denote this set by S. One can
see that these functions are single-valued analytic in C\S. It is worth noting
that despite it is not forbidden for log to participate in a combination, the
resulting function has only isolated singularities. According to the general
classification of the isolated singularities (see e.g. [11, pp. 210–211]), an
isolated singularity cannot be logarithmic. Hence, actually, we arrive at the
class of elementary functions discussed in [10], i.e. the class E[Q, exp] does
not contain any function having at least one logarithmic singularity.
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There are unbounded domains which contain curves going by infinity
along which the functions exp and polynomials tends to ∞. It is true also
for compositions, sums, differences and products of these functions. Thus, we
will consider all those functions f ∈ E[Q, exp]mapping every neighbourhood
of infinity |z| > r to a neighbourhood of infinity. Analogous consideration
is valid also for (transcendental) meromorphic functions and for rational
functions P

Q , deg P > deg Q. In the case of rational functions P
Q , deg P ≤

deg Q, we have uniformly lim|z|→∞
P (z)
Q(z) = a ∈ C. The discussion of this

case is presented at the end of the paper.
We assume that diagram (5) is commutative. It is possible to find the

curves γj ∈ Cj (j = 1, 2, 3, 4) having the following properties. The curve γ4
goes to infinity, its end-points z0 and ∞ lay on the extended complex plane
Ĉ4. This behaviour of γ4 will lead to a contradiction with the following
properties of the corresponding curves γj on other complex planes. The
curve γ2 = k−1(γ4) goes by infinity on C2 since k is a homeomorphism.
The curve γ1 = f−1(γ2) goes by infinity on C1 again due to the Fragmen–
Lindelöf theorem. Here, f−1(γ2) means the full pre-image of γ2. The curve
γ3 = h(γ1) goes by infinity on C3 because k is a homeomorphism. The
mapping k ◦ f = ℘ ◦ h : γ1 → γ4 homeomorphically transforms the curve γ1
onto the curve γ4 := k ◦ f(γ1) ⊂ C4.

Consider a doubly periodic family,Π(l1,l2), (l1, l2) ∈ Z2, of parallelograms
on C3 such that the Weierstrass ℘-function is univalent in the interior of
each parallelogram. It follows from the properties of ℘-function that such
a family exists, cover the whole complex plane and on one of four sides of
any parallelogram, there is a pole of ℘-function (see [1]). One of such a
parallelogram with sides Γ1, Γ2, Γ3 and Γ4 is displayed in Fig. 1. Let for
definiteness the vertices of this parallelogram be the points −1

2(ω1 + ω2),
−1

2ω2, 1
2ω2 and 1

2(−ω1 + ω2). Let us consider the second parallelogram
adjusted to the first one along Γ2 (the red parallelogram in Fig. 1 in on-line
version of the paper). These two parallelograms form the periodicity cell of
℘(ζ) denoted by P. Due to periodicity of the Weierstrass function, one can
note that its values on the boundaries ∂P + l1ω1 + l2ω2, are connected to
each other in such a way that the sets

L := ℘(∂P + l1ω1 + l2ω2) (6)

do not depend on l1, l2. Moreover, L is a bounded set on the complex
plane C4.



750 V. Mityushev, S. Rogosin

Let us examine the behaviour of the curve γ3 and its image ℘(γ3). Let
us take an infinite sequence {Pm}∞m=1 of the family of parallelograms P +
l1ω1+l2ω2, for which γ3 intersects their sides. Choosing at least one crossing
point ζm on γ3 ∩ ∂Pm, we order them in accordance with the orientation
on γ3. The obtained sequence (ζmp)

∞
p=1 tends to infinity.

Γ4

Γ3

Γ2

Γ1

γ3

Fig. 1. (Colour on-line) Complex plane C3. Univalent parallelogram of the ℘-
function with sides Γ1, Γ2, Γ3, Γ4. The side Γ2 contains the pole of the ℘-
function. Two univalent parallelograms generate a periodicity parallelogram of
the ℘-function.

The curve γ4 ≡ ℘(γ3) goes to infinity. At the same time, the points
℘(ζmp) belong to the bounded set L. This contradiction completes the proof
when γ2 goes by infinity.

In the remaining case of rational functions f = P
Q , deg P ≤ deg Q, we

have
lim

t→∞,t∈γ1
f(t) = a ∈ C

for any unbounded curve γ1, hence, limt→∞,t∈γ1(k◦f)(t) = b ∈ C. The same
argument as before shows that the function ℘ ◦h cannot satisfy the relation

lim
t→∞,t∈γ1

(℘ ◦ h) (t) = b .

Therefore, diagram (5) cannot be commutative in this case too.

The proof of Theorem is completed.
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Before Professor Vladimir Igorevich Arnold passed away, we had oppor-
tunity to discuss with him the content of the paper. He made some remarks
concerning the class E[Q, exp, log]. We highly appreciate his advices and
took them into account in the present version.
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