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The super-weak force combines three simple extensions of the Standard
Model, one in the gauge sector, one in the fermion sector, and one in the
scalar sector. All these extensions are well motivated by their rich phe-
nomenology. Combined to a single framework, they can explain several
open questions in particle physics and cosmology: the origin of dark mat-
ter, cosmic inflation, matter-antimatter asymmetry, neutrino masses, and
vacuum stability. We discuss the effects of the model on neutrino masses
and phenomenology in the case where the heaviest sterile neutrinos have a
GeV scale mass.
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1. Introduction

The incompleteness of the Standard Model (SM) of particle physics,
when confronted with Nature, is a well-known fact. While the SM performs
suspiciously well on the description of particle interactions, the discovery of
neutrino oscillations in vacuum and matter — among other phenomena —
has made abundantly clear that the SM must be extended to include new
interactions. Even simple extensions may lead to a rich phenomenology.
These include extensions on the scalar, fermion, and gauge sectors. One
could extend the model by an extra singlet scalar boson, a heavy neutral
lepton, or by a small gauge group. All three of these possibilities are taken
into account and combined in a single framework which is called the super-
weak model [1].
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2. Super-weak model

The super-weak model includes three simple extensions of the SM: one
on the gauge sector, one on the scalar sector, and one on the fermion sec-
tor. The fields are presented in a diagram in Fig. 1, and their gauge group
representations and charges are summarized in Table 1.
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Fig. 1. Particle content of the super-weak model. The forces act on all particles
within their respective boxes.

Table 1. Gauge group representations and charges of the fermions and scalar bosons
of the super-weak model.

Field SU(2)L U(1)Y U(1)Z

QL 2 1
6

1
6

uR 1 2
3

7
6

dR 1 − 1
3 − 5

6

LL 2 − 1
2 − 1

2

`R 1 −1 − 3
2

φ 2 1
2 1

NR 1 0 1
2

χ 1 0 −1



Super-weakly Coupled U(1)z and GeV Neutrinos 2-A16.3

2.1. Gauge extension

The gauge group of the super-weak model is

SU(3)c ⊗ SU(2)L ⊗U(1)Y ⊗U(1)z , (1)

that is, the SM group is extended by an extra U(1) group. The kinetic
terms of the U(1)Y⊗U(1)z sector of the group can be described with the
Lagrangian density

LU(1) = −1

4
FµνFµν −

1

4
F ′µνF ′µν −

ε

2
FµνF ′µν , (2)

where Fµν and F ′µν correspond to the field strength tensors of U(1)Y and
U(1)z. The model exhibits kinetic mixing, driven by a small real dimension-
less coupling ε. The covariant derivative acting on the fermion field f can
be written as

DU(1)
µ = ∂µ − i

(
yfgyBµ + zfgzB

′
µ

)
, (3)

when we suppress the non-Abelian contribution. The yf and zf are the
hypercharge and U(1)z charge of f . Equivalently, we may choose a basis
where the kinetic mixing is absent. Then, the covariant derivative can be
written as

DU(1)
µ = ∂µ − i(y, z)

(
gy −ηg′z
0 g′z

)(
cos ε′ sin ε′

− sin ε′ cos ε′

)(
B̂µ

B̂′µ

)
, (4)

where we have denoted η = εgy/gz and g′z = gz/
√

1− ε2. The rotation angle
ε′ is not physical, since it can be absorbed to re-defined gauge fields. The
mass eigenstates (Aµ, Zµ, Z ′µ) are related to these fields via a rotation B̂µ

W 3
µ

B̂′µ

 =

cos θW − cos θZ sin θW − sin θZ sin θW
sin θW cos θZ cos θW cos θW sin θZ

0 − sin θZ cos θZ

AµZµ
Z ′µ

 , (5)

where θW is the weak mixing angle and θZ is the Z–Z ′ mixing angle. The
interactions of a neutral vector boson V = Z or Z ′ with fermion f can be
written as a chiral decomposition

ΓµV ff = −ieγµ
(
CR
V ffPR + CL

V ffPL

)
, PL,R = 1

2(1∓ γ5) . (6)

The coefficients corresponding to the coupling of a vector boson to chiral
fermion fields can be written in a simple form of rotation

−e
(
CL,R
Zff

CL,R
Z′ff

)
=

(
cos θZ sin θZ
− sin θZ cos θZ

)(
T f3 +Qf sin2 θW

−
(
yfg′y + zfg′z

)) . (7)
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The eigenvalues yf , zf , T f3 , andQ
f can be read from Table 2. Clearly, the co-

efficient corresponding to Z ′ interaction can be obtained from Z interaction
by simply transforming (sin θZ , cos θZ) 7→ (cos θZ ,− sin θZ). The factors T f3
and Qf are the eigenvalues of the third SU(2) operator and electric charge
in units of elementary charge.

Table 2. Eigenvalues of the U(1) charge operators, third SU(2)L generator and
electric charge operator corresponding to chiral fermions of the super-weak model.

f y z T3 Q

uL − 1
6

1
6 − 1

2
2
3

uR − 2
3

7
6 0 2

3

dL − 1
6

1
6

1
2 − 1

3

dR
1
3 − 5

6 0 − 1
3

νL
1
2 − 1

2 − 1
2 0

NR 0 1
2 0 0

`L
1
2 − 1

2
1
2 −1

`R 1 − 3
2 0 −1

2.2. Scalar extension

The scalar sector of the super-weak model consists of the SM Higgs SU(2)
doublet φ with charges (yφ, zφ) = (1/2, 1) and a complex singlet scalar χ
with charges (yχ, zχ) = (0,−1). The relevant Lagrangian corresponding to
them is

Lscalar = |Dµφ|2+|Dµχ|2−µ2φ|φ|2−µ2χ|χ|2−λφ|φ|4−λχ|χ|4−λ|φ|2|χ|2 , (8)

and we parametrize the fields after spontaneous symmetry breaking (SSB)
in Rξ gauge as

φ =
1√
2

(
−i
√

2σ+

v + h′ + iσφ

)
, χ =

1√
2

(
w + s′ + iσχ

)
, (9)

where v ' 246.22 GeV and w are the vacuum expectation values and the
fields h′, s′, σχ, and σφ are real. The fields σφ and σχ correspond to the
Goldstone bosons. To obtain physical fields, we perform standard field ro-
tations (

h

s

)
= ZS(θS)

(
h′

s′

)
,

(
σZ
σZ′

)
= ZG(θG)

(
σφ
σχ

)
,

ZX =

(
cos θX sin θX
− sin θX cos θX

)
, (10)
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where θS and θG are the scalar and Goldstone mixing angles, given by the
relations

sin θS = − λvw

λφv2 − λχw2
, tan θG =

MZ′

MZ
tan θZ . (11)

2.3. Fermion extension

The fermion sector of the super-weak model is extended with three sterile
massive Majorana neutrinos NR = (ν4, ν5, ν6). We denote the active SM
neutrinos as νL = (νe, νµ, ντ ) in the flavor basis and (ν1, ν2, ν3) in the mass
basis. The Majorana mass term corresponding to NR cannot be directly
included in the Lagrangian, since NR has a nonzero U(1)z charge. Instead,
such a mass term is generated dynamically by SSB. The gauge-invariant
Yukawa interactions of the neutrinos are given by the Lagrangian density

LνY = −N̄RYνεαβLLαφβ − 1
2N̄RYN(NR)cχ+ h.c. , (12)

where α and β are SU(2)L indices and εαβ =

(
0 1
−1 0

)
. After SSB, the

neutrino mass terms and neutrino-scalar interaction terms are generated.
Defining the 3× 3 Dirac and Majorana mass matrices

MD =
v√
2
Yν , MN =

w√
2
YN , (13)

the neutrino mass terms can be collected in a form of

Lνm = −1
2 (νL, (NR)c)C

(
0 MT

D
MD MN

)(
νL

(NR)c

)
, (14)

which has the exact form of type-I seesaw mechanism. The light neu-
trino mass matrix ML = −MDM

−1
N M †D + h.c. can be obtained by block-

diagnonalizing the full 6×6 neutrino mass matrixM via a unitary matrix U

UTMU = UT
(

0 MT
D

MD MN

)
U = Mdiag = diag(m1, . . . ,m6) , (15)

where the masses m1, . . . ,m6 correspond to neutrinos ν1, . . . , ν6. Writing
the diagonalizing matrix as

U =

(
UL

U∗R

)
, (16)

where UL and UR are semiunitary 3 × 6 matrices, it is straightforward to
derive the conditions

ULU
†
L = URU

†
R = 13 , U †U = U †LUL + UTRU

∗
R = 16 (17)

for them.
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3. Neutrino physics in super-weak model

3.1. Radiative corrections to neutrino masses

The loop-induced corrections to light neutrino masses receive additional
contributions in the super-weak model compared to the standard seesaw
scenario, see relevant Feynman diagrams in Fig. 2. A priori it is not known
whether the mass scales which are phenomenologically viable are consistent
with small corrections to ML. In Ref. [2], we have calculated the one-loop
corrections to light neutrino mass matrix

δML =
1

16π2

∑
k=1,2

(
3(ZG)k1

MVk

v2
F
(
M2
Vk

)
+ (ZS)k1

MSk

v2
F
(
M2
Sk

))
. (18)

Here, we have denoted (V1, V2) = (Z,Z ′) and (S1, S2) = (h, s). The 3 × 3
matrix valued function F is defined as

Fij ≡ Fij
(
M2;UL, {ma}6a=1

)
=

6∑
a=1

(U∗L)ia

(
U †L

)
aj
ma

(ma

M

)2 ln m2
a

M2

m2
a

M2 − 1
.

(19)
In the super-weak model, the mass scales of the new particles ν4, ν5, ν6, s and
Z ′ are chosen as in Table 3. We estimate the elements of δML on these mass
scales, and then the eigenvalues of the full neutrino mass matrix ML + δML

can be calculated. We find that the corrections to tree-level masses in the
super-weak region of the parameter space are at most O(0.1)%.
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Fig. 2. Relevant one-loop Feynman diagrams contributing to the neutrino self-
energy. Clockwise from top left: Goldstone boson, scalar boson, charged gauge
boson, and neutral gauge boson contributions in the super-weak model. The dia-
gram containing W boson does not contribute to the matrix δML.
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Table 3. The relevant mass scales for the new particles in the super-weak model.
The sterile neutrino ν4 fulfills two possible dark matter scenarios corresponding
to two distinct mass scales. Bounds for Z ′ mass can be given by dark matter
scenario [3]. Masses of the quasi-mass-degenerate neutrinos ν5 and ν6 are chosen
to combine the sensitivity of them to near-future experiments and the resonant
leptogenesis mechanism. Mass of the scalar s is constrained by vacuum stability [4].

Particle Freeze-in DM Freeze-out DM

ν4 O(10) keV O(10) MeV
ν5, ν6 O(1) GeV
s O(100) GeV
Z ′ O(10) MeV

3.2. Active-sterile mixing

We use the Casas–Ibarra parameterization to write the Yukawa matrix
Yν in terms of the neutrino mixing matrix elements UPMNS

ij and neutrino
masses m1, . . . ,m6 as

Yν =

√
2

v
UPMNS,*

√
Mdiag

L

(
−iRT

)√
MN . (20)

The 3× 3 active-sterile mixing matrix can the be written as

Uas =

Ue4 Ue5 Ue6
Uµ4 Uµ5 Uµ6
Uτ4 Uτ5 Uτ6

 = m∗Dm
−1†
R = UPMNS

√
Mdiag

L iRT
√
M−1R . (21)

The matrix R is an arbitrary complex orthogonal matrix. Here, we
assume that R is real, hence it can be parametrized as

R =

c12 −s12 0
s12 c12 0
0 0 1

×
 c13 0 s13

0 1 0
−s13 0 c13

×
1 0 0

0 c23 −s23
0 s23 c23

 , (22)

where cij =
√

1− s2ij and sij ∈ [0, 1]. The usual choice is R = 13, cor-
responding to the expected mixing from the seesaw mechanism. However,
this mixing may be enhanced when the matrix R is allowed to vary. This
enables us to generate several orders of magnitude larger mixing. To il-
lustrate the expected enhancement by our parametrization, we performed
a random scan over s12, s13, s23 ∈ [0, 1], m4 ∈ [10, 50] keV and m5 ∈
[1.5, 5] GeV, and calculated the weight of electron flavour in sterile states,
U2
e ≡ |Ue4|2 + |Ue5|2 + |Ue6|2. We repeated the scan also in the case where

s12 = s23 = 0. The result is in Fig. 3.
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Fig. 3. Scatter plot of the weight of electron flavour of sterile neutrinos in the case
where R matrix is free (red dots) and where only s13 is nonzero (blue dots). The
grayed-out area is excluded by current experiments and the coloured lines corre-
spond to expected sensitivities of the future experiment. The BBN line corresponds
to the requirement that the sterile neutrinos ν5 and ν6 have a lifetime less than 1
s. Default case R = 13 corresponds to the red line.

3.3. Nonstandard interactions

Consider the tree-level active neutrino-charged fermion scattering pro-
cess

ν` + f → Z ′∗ → ν` + f , f = e, u, d .

These processes are manifestations of the super-weak force. For the purpose
of analyzing neutrino scattering, the virtual Z ′ can be integrated out as long
as its mass is at least about 10 MeV, which is the case in our model. The
resulting operators have the well-known form of neutral current nonstandard
neutrino interactions (NSI). They are a set of effective nonrenormalizable
dimension-6 operators of (V −A)(V ±A) form

LNSI = −2
√

2GFε
f,C
``′ (ν̄`γ

µPLν`)
(
f̄γµPCf

)
. (23)

Here, GF is the Fermi coupling, `, `′ = e, µ, τ , C = L,R, and PC are the
chiral projection operators. The NSI parameters εf,C``′ are dimensionless and
in general complex. In the super-weak model, they are real

εf,C`` =
v2

2M2
Z′

(
eCL

Z′νν

) (
eCXZ′ff

)
, (24)
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with chiral couplings given in Eq. (7). We define εf`` = εf,L`` + εf,R`` . The
NSI in the super-weak model are flavour-universal: εfee = εfµµ = εfττ ≡ εf .
Summing over the contributions of NSI on neutrino propagation in matter
and assuming neutrality of matter, the electron and proton contribution to
NSI vanishes due to suitable U(1)z charge assignments. The resulting NSI
is simply [5]

εm = − v2

8M2
Z′

Nn

Ne

(
g′y cos θZ −

gL
cos θW

sin θZ

)
(25)

×
((
g′y − g′z

)
cos θZ −

gL
cos θW

sin θZ

)
. (26)

The NSI effect is further suppressed in neutrino oscillation experiments due
to the active-sterile mixing, but unsuppressed in neutrino scattering experi-
ments. The region defined by |εm| < O(0.1) is consistent with experimental
limits. This region corresponds to |θZ | < O(10−3) and excludes low values
of VEV of singlet scalar χ [5].

4. Conclusions

We have demonstrated the experimental feasibility of detecting the ef-
fects of the neutrino sector in the super-weak model. Neutrino masses are
generated — after spontaneous symmetry breaking of an extra scalar field s
— by type-I seesaw mechanism. We have checked that the one-loop cor-
rection to active neutrino masses induced by gauge, scalar, and Goldstone
bosons are tiny. The active-sterile mixing may be enhanced by several orders
of magnitude compared to the usual choice of R = 13, allowing the near-
future experiments to access a significant region in the parameter space of
the model. The neutral current NSI effects may be large, which allows their
detection via neutrino scattering experiments. Thus, the super-weak model
may be probed independently from multiple different sectors.

We are grateful to Sho Iwamoto for fruitful discussions and to Josu
Hernández-García for careful reading of the manuscript. This work was
supported by the National Research, Development and Innovation Office —
NKFIH K 125105.
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