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1. Introduction

Neutrino physics is an extremely important part of the particle physics.
Four Nobel prizes were awarded for discoveries connected with neutrino. In
2015, the Nobel Prize in physics was awarded to T. Kajita and A.B. McDon-
ald “for the discovery of neutrino oscillations, which shows that neutrinos
have mass”.

In the paper, I will give a short introduction to neutrino. In the first
part, I will briefly consider the history of neutrino. Main modern problems
of neutrino physics are: neutrino nature (Dirac or Majorana?), neutrino
mass spectrum (normal or inverted?), absolute values of neutrino masses,
existence of sterile neutrinos etc. In the second part of the paper, I will
discuss these problems.

2. Neutrino history

The history of neutrino started with the famous Pauli letter addressed
to participants of the nuclear conference in Tübingen (1930). In this letter,
Pauli put forward an idea of existence of a new, neutral, spin 1/2, light (with
a mass not larger than the mass of the electron), penetrating particle (Pauli
called this particle a neutron) which is emitted in the β-decay of a nucleus
together with electron

(A,Z)→ (A,Z + 1) + e− + “n” .
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Assumption of the existence of the “neutron” was the only possible explana-
tion of the continuous β-spectrum in the framework of conservation of energy
and momentum in the β-decay.

In 1932, neutron was discovered by Chadwick [1] and neutron–proton
structure of nuclei was soon established. Pauli’s idea of a new particle was ac-
tively discussed in Rome by Fermi and his collaborators. Fermi and Amaldi
baptized the Pauli particle with the name neutrino (neutral, small).

In 1934, Fermi proposed the first theory of the β-decay [2]. The main
problem for Fermi was to understand how electron–neutrino pair was pro-
duced in the decay of nucleus, a bound state of protons and neutrons1.

Fermi, the author of famous at that time review on Quantum Electro-
dynamics, understood the β-decay of the neutron

n→ p+ e− + ν̄ (1)

by analogy with the electromagnetic process

p→ p+ γ . (2)

The Hamiltonian of process (2) has the form

HEM
I (x) = e p̄(x)γαp(x) Aα(x) . (3)

In the paper which was called Tentative Theory of Beta Rays, Fermi pro-
posed the following Hamiltonian of the β-decay of the neutron

HβI(x) = GF p̄(x)γαn(x) ē(x)γαν(x) + h.c. , (4)

where GF is the Fermi constant.
The Fermi theory was the first (very nontrivial at that time) application

of the Quantum Field Theory to the process which is different from elec-
tromagnetic processes. Let us also stress that by analogy with QED, Fermi
assumed that in the Hamiltonian of the β-decay of the neutron entered the
product of vectors.

In spite of similarity, there exists a fundamental difference between Hamil-
tonians HEM

I (x) and HβI(x). In the system ~ = c = 1, which we are using, a
fermion field has dimension M3/2 and a boson field has dimension M . Tak-
ing into account that a Hamiltonian has dimension M4, we conclude that
the charge e is dimensionless quantity and the Fermi constant has dimension
M−2. We will discuss the physical reason for this difference later.

The β-decays of nuclei are mainly allowed decays in which electron and
neutrino are emitted in the S-states. The Fermi theory could explain such
allowed decays in which electron and neutrino are produced in singlet states.

1 The idea that particles are created in quantum transitions between another particles,
which is obvious today, was not so much familiar at that time.
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In such decays, the following (Fermi) selection rules are satisfied

∆J = 0 , πi = πf , (5)

where J is a spin and π is parity of a nucleus.
It was observed, however, that allowed β-decays of nuclei which satisfy

Gamov–Teller selection rules [3]

∆J = ±1, 0 , πi = πf (0→ 0 transition is forbidden) , (6)

which correspond to emission of electron and neutrino in the triplet state.
This means that in the Hamiltonian of the β-decay, additional term

(terms) must enter and that the analogy with QED can be only partially
correct.

The most general Hamiltonian of the β-decay, in which only fields (but
not their derivatives) enter, is the sum of the products of scalar×scalar,
vector×vector, tensor×tensor, axial×axial and pseudoscalar×pseudoscalar

HβI (x) =
∑

i=S,V,T,A,P

Gi p̄(x)Oin(x) ē(x)Oiν(x) + h.c. (7)

Here

Oi → 1 (S) , γα (V ) , σαβ (T ) , γαγ5 (A), γ5 (P ) . (8)

In Hamiltonian (7) five (!) interaction constants Gi enter. There was a
general belief in the forties and fifties that not all interaction constants were
equally important and that there were “dominant” terms in Hamiltonian (7).

During many years, the situation with the Hamiltonian of the β-decay
was uncertain and contradictory: some experiments were in favor of V and A
terms, other were in favor of S and T terms. Later, it occurred that some
experiments on the study of the β-decay were wrong.

In 1957, large violation of parity in the β-decay and other weak processes
were discovered. This discovery drastically changed our understanding of the
β-decay, neutrino and weak interaction in general.

The problem started with the so-called θ–τ puzzle. Namely, it was ob-
served in the fifties that particle(s) with the same mass decayed into 2π
(θ-mode) and 3π (τ -mode) states with opposite parities. One of the possi-
ble solution of the puzzle was an assumption that in the decay of a particle
(which today is called K-meson) parity is not conserved.

Lee and Yang [4] analyzed existed data and came to the conclusion that
there was no proof that parity is conserved in the weak interaction. They
proposed different experiments which could allow to check conservation of
parity in weak processes.
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If the parity is not conserved in the weak interaction, the Hamiltonian
is the sum of scalar and pseudoscalar. The most general Hamiltonian of the
β-decay had in this case the form

HβI (x) =
∑

i=S,V,T,A,P

p̄(x)Oin(x) ē(x)Oi
(
Gi −G′iγ5

)
ν(x) + h.c. , (9)

where the constants Gi characterized the scalar part of the Hamiltonian and
the constants G′i characterized the pseudoscalar part.

In the first β-decay experiment, which was performed by Wu et al. [5]
soon after the Lee and Yang proposal, large effect of the violation of the
parity was discovered. This means that the constants G′i (or some of them)
are of the same order as the constants Gi. It was clear that some principles
must be found which could decrease the number of interaction constants and
simplify the form of the interaction Hamiltonian.

In 1957–58, two such crucial steps were done and correct effective Hamil-
tonian of the β-decay and other weak processes was obtained. The first step
was the theory of the two-component neutrino.

A bit of history. In 1928, Dirac proposed relativistic equation for spin 1/2
particle. He showed that requirement of the Lorenz invariance can be sat-
isfied if the wave function ψ(x) is a 4-component function. As a result, the
Dirac equation has solutions with positive energies as well as solutions with
negative energies which (in the framework of QFT) describe antiparticles.

In 1929, Weyl [6] obtained relativistic equations for a spin 1/2 particle
but for a two-component functions. He introduced two-component spinors

ψL,R(x) = 1
2 (1∓ γ5)ψ(x) . (10)

For a particle with a mass m from the Dirac equation, we have two coupled
equations

iγα∂α ψL(x)−m ψR(x) = 0 , iγα∂α ψR(x)−m ψL(x) = 0 . (11)

If m = 0, we obtain two decoupled Weil equations for the two-component
spinors ψL(x) and ψR(x)

iγα∂α ψL(x) = 0 , iγα∂α ψR(x) = 0 . (12)

The Weil equations, however, are not invariant under the parity transforma-
tion

ψ′R,L
(
x′
)

= η γ0ψL,R(x) , x′ =
(
x0,−~x

)
, (13)

where η is an arbitrary phase factor.
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In the thirties (and much later), there was a general belief that the con-
servation of parity is a law of nature. For these reasons, the Weil equations
were rejected2. After it was discovered that parity is not conserved in the
weak interaction, Landau [8], Lee and Yang [9] and Salam [10] proposed the
two-component neutrino theory. They had different arguments in favor of
this theory. Landau required CP invariance, Salam required γ5 invariance,
Lee and Yang applied the Weil theory to neutrino.

According to the two-component neutrino theory, the neutrino is a mass-
less particle3 and neutrino field is νL(x) or νR(x). The theory predicted:

1. G′i =±Gi. Large violation of the parity in the β-decay must be ob-
served.

2. The helicity of ν(ν̄) is equal to −1(+1) in the case of the field νL(x)
and +1(−1) in the case of the field νR(x).

The first prediction was in agreement with the Wu et al. experiment [5]. The
crucial confirmation of the two-component neutrino theory was obtained in
the classical experiment by Goldhaber et al. [11] on the measurement of the
neutrino helicity (1958). In this experiment, neutrino helicity was obtained
from the measurement of the circular polarization of γs produced in the
chain of reactions

e− +152 Eu→ ν +152 Sm∗ , 152Sm∗ →152 Sm + γ . (14)

Goldhaber et al. [11] concluded “. . . our result is compatible with 100% nega-
tive helicity of neutrino . . . ”. Thus, the two-component theory with neutrino
field νL(x) was confirmed.

The second step was universal V –A, current× current theory of the weak
interaction by Feynman and Gell-Mann [12], Marshak and Sudarshan [13]
(1958). These authors assumed that in the Hamiltonian of the weak inter-
action enter left-handed components of all fields.

Let us consider ēLO
iνL. We have

ēL(1, σαβ, γ5)νL = ē
1 + γ5

2
(1, σαβ, γ5)

1− γ5

2
ν = 0 (15)

and
ēLγαγ5νL = −ēLγανL . (16)

2 “. . . because the equation for ψL(x) (ψR(x)) is not invariant under space reflection,
it is not applicable to the physical reality” [7].

3 At the time of the discovery of the parity violation, the upper bound of the neutrino
mass was about 200 eV (much smaller than the mass of the electron).
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Thus, if we assume that left-handed components of all fields enter into the
Hamiltonian of the weak interaction, the only possible Hamiltonian of the
β-decay has the form

HβI =
GF√

2
4 p̄Lγ

αnL ēLγανL+h.c. =
GF√

2
p̄γα(1−γ5)n ēγα(1−γ5)ν+h.c. (17)

Hamiltonian (17) like Fermi Hamiltonian (5) is characterized by only one
interaction constant GF

4. Feynman and Gell-Mann, Marshak and Sudar-
shan had different arguments in favor of Hamiltonian (17). Let us stress
that simplicity could be the argument: the Hamiltonian HβI is the simplest
possible effective Hamiltonian of the β-decay which ensure large violation
of parity, Fermi and Gamov–Teller transitions, etc. It describes all existing
data.

Not only β-decay of nuclei but also µ-decay

µ± → e± + ν + ν̄ (18)
and µ-capture

µ− + (A,Z)→ ν + (A,Z − 1) (19)
were known in the fifties. Feynman and Gell-Mann, Marshak and Sudarshan
proposed universal theory of the weak interaction which included also these
processes.

The Hamiltonian of β-decay (17) has a form of the product of the nucleon
p̄Lγ

αnL and lepton ēLγανL currents. Feynman and Gell-Mann introduced
the notion of the universal weak charged current

jα = 2 (p̄Lγ
αnL + ν̄Lγ

αeL + ν̄Lγ
αµL) (20)

and assumed that the total Hamiltonian of the weak interaction has the
current× current form

HI =
GF√

2
jα j+

α (21)

with one universal interaction constant GF.
In the Feynman and Gell-Mann paper, the origin of the current× current

interaction was briefly discussed: “We have adopted the point of view that
the weak interactions arise from the interaction of a current jα with itself,
possibly via an intermediate charged vector meson of high mass”.

Thus, they suggested that there existed a heavy, charged vector W±
boson and that the Lagrangian of the weak interaction has the form

LI = − g

2
√

2
jα W

α + h.c. , (22)

where g is a dimensionless interaction constant.
4 Interesting that title of the Feynman and Gell-Mann paper was Theory of the Fermi

Interaction.
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In the second order of the perturbation theory, interaction (22) generates
the current× current effective Hamiltonian (21) which describes low-energy
processes with virtualW boson. The Fermi constant GF is given in this case
by the relation

GF√
2

=
g2

8 m2
W

, (23)

where mW is the mass of the W± boson5.
We will discuss now two important further steps in the developments

of the weak interaction theory. In the Feynman and Gell-Mann, Marshak
and Sudarshan papers, only one type of neutrino was considered. However,
from the early years of the study of the µ-decay and µ-capture, there was an
idea that there existed two types of neutrinos (electron νe which is produced
together with e+ and muon νµ which is produced together with µ+). In the
case of two types of neutrino, the charged current takes the form

jα = 2 (p̄Lγ
αnL + ν̄eLγ

αeL + ν̄µLγ
αµL) . (24)

A neutrino experiment which could check the two-neutrino hypothesis was
proposed by Pontecorvo [14] (1959). According to the universal V –A theory,
the width of the decay π+ → e+ + νe is much smaller than the width of the
decay π+ → µ+ + νµ

Γ (π+ → e+ + νe)

Γ (π+ → µ+ + νµ)
' 1.2× 10−4 . (25)

Thus, if νµ and νe are different particles, the beam of neutrinos produced in
decays of π+ is predominantly νµ beam. In this case, in a neutrino detector
µ−s, produced in the reaction

νµ +N → µ− +X, (26)

will be observed. If νµ and νe are the same particles, practically equal
number of µ−s and e−s will be observed in the neutrino detector.

The two-neutrino experiment was performed at the Brookhaven [15]
(1962). It was the first experiment with neutrino from accelerator. It was
proved that νµ 6= νe. For this discovery, in 1988, L. Lederman, M. Schwartz
and J. Steinberger were awarded the Nobel Prize (“for the neutrino beam
method and the demonstration of the doublet structure of the leptons
through the discovery of the muon neutrino”).

5 As we know today, interaction (22) is a part of the Standard Model electroweak
interaction. The modern value for the mass ofW± boson ismW =80.385±0.015 GeV.
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The strange particles were included in the V –A charged current in 1962
by Cabibbo [16]. From the investigation of semi-leptonic decays of strange
particles

K+ → µ+ + νµ , Λ→ n+ e− + ν̄e , Σ− → n+ µ− + ν̄µ , etc.

three phenomenological rules were established:

1. |∆S| = 1, ∆S = Sf − Si, Si(Sf) is strangeness of initial (final)
hadron(s).

2. ∆Q = ∆S, ∆Q = Qf −Qi.

3. The decays of strange particles are suppressed with respect to decays
of nonstrange particles.

For example, from the second rule, it followed that the decay Σ+ → n+e+ +
νe was forbidden. In fact, it was found that Γ (Σ+ → ne+νe)/Γtot < 5×10−6.

In 1964, Gell-Mann and Zweig suggested that strange and nonstrange
hadrons are bound states of u, d and s quarks. We will build the Cabibbo
current from the quark fields. Using Feynman and Gell-Mann, Marshak
and Sudarshan prescription (only left-handed fields in the current) from the
fields of u, d and s quarks, we can build only two currents which change the
charge by one

jα(∆S = 0) = 2 ūLγ
αdL , jα(∆S = 1) = 2 ūLγ

αsL . (27)

It is obvious that these currents automatically satisfy the rules 1 and 2 6. In
order to satisfy the rule 3, Cabibbo introduced the parameter, the Cabibbo
angle θC. The Cabibbo current had a form

jC
α = 2 cos θCūLγαdL + 2 sin θCūLγαsL . (28)

Cabibbo demonstrated that the experimental data could be described if we
assume that the current has a form of (28). For the parameter sin θC, it was
found the approximate value 0.2 7.

Let us notice that the Cabibbo current can be presented in the following
short form

jC
α = 2ūLγαd

mix
L , (29)

where
dmix

L = cos θCdL + sin θCsL (30)

is the Cabibbo “mixture” of the fields of d and s quarks.
6 In the sixties, this was a strong argument in favor of suggestion that fundamental
weak interaction is interaction of quarks and leptons.

7 The modern value of the parameter sin θC is sin θC = 0.2253± 0.0014.
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Soon, it occurred that there was a problem with the Cabibbo’s extension
of the charged current. Namely, this current generated a neutral current
which changed the strangeness by one. Such a current induced the decay

K+ → π+ + ν + ν̄ (31)

with a decay rate which was many orders of magnitude larger than the
existed experimental upper bound.

The solution of the problem was proposed in 1970 by Glashow, Illiopulos
and Maiani [17]. They assumed that existed a fourth “charmed” quark c with
the charge 2/3 and that there was an additional term in the weak charged
current

jGIM
α = 2 c̄Lγαs

mix
L , (32)

where
smix

L = − sin θCdL + cos θCsL (33)

is the mixture of dL and sL fields, orthogonal to the Cabibbo mixture (30).
If the c quark, a constituent of hadrons, exists, in this case, a new family

of “charmed” particles must exist. This prediction was perfectly confirmed
by experiment. In 1974, the J/Ψ particles, bound states of (c–c̄), were
discovered. In 1976, D+ = (cd̄ ), D− = (c̄d), D0 = (cū), D̄0 = (c̄u) and
other charmed particles were discovered.

After these steps in the development of the weak interaction theory, the
total charged current of quarks and leptons took the form

jCC
α = 2

(
ν̄eLγαeL + ν̄µLγαµL + ūLγαd

mix
L + c̄Lγαs

mix
L

)
, (34)

where dmix
L and smix

L are given by relations (30) and (33), respectively.
The current× current theory with the charged current, given by expres-

sion (34), could describe all existed data on the investigation of weak decays
and neutrino reactions. Thus, it was confirmed that fields of d and s quarks
enter in the charged current in the mixed form.

What about neutrinos? In the seventies, on the basis of an analogy of
the weak interaction of quarks and leptons, it was suggested [18–20] that
neutrinos had small masses and fields of neutrinos νeL and νµL entered into
the charged current in a mixed form

νeL = cos θν1L + sin θν2L , νµL = − sin θν1L + cos θν2L . (35)

Here, ν1 and ν2 are fields of neutrino with masses m1 and m2 and θ is a
neutrino mixing angle. In analogy with quarks, it was assumed that ν1,2

were Dirac fields possessing conserved lepton number.
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One of the most important consequences of mixing (35) was neutrino
oscillations. First ideas of neutrino masses, mixing and oscillations were
put forward by Pontecorvo [21,22] (1957–58) soon after the two-component
neutrino theory was proposed and confirmed by the experiment on the mea-
surement of the neutrino helicity. Pontecorvo came to an idea of neutrino
oscillations looking for analogy in the lepton world of the famous K0 � K̄0

oscillations, proposed by Gell-Mann and Pais and observed in experiments.
K0 and K̄0 are particles with the strangeness +1 and −1, correspond-

ingly. They are produced in strong interaction processes. The strangeness,
however, is not conserved in the weak interaction. Eigenstates of the total
Hamiltonian K0

1 and K0
2 particles with definite masses and decay widths,

are described by the mixed states8

∣∣K0
1

〉
=

1√
2

(∣∣K0
〉

+
∣∣K̄0

〉)
,

∣∣K0
2

〉
=

1√
2

(∣∣K0
〉
−
∣∣K̄0

〉)
. (36)

From these relations, we obviously have

∣∣K0
〉

=
1√
2

(∣∣K0
1

〉
+
∣∣K0

2

〉)
,

∣∣K̄0
〉

=
1√
2

(∣∣K0
1

〉
−
∣∣K0

2

〉)
. (37)

When Pontecorvo proposed neutrino oscillations, only left-handed neutrino
νL and right-handed antineutrino ν̄R were known. He assumed that existed
also right-handed neutrino νR and left-handed antineutrino ν̄L, particles
which did not participate in the standard weak interaction (later he called
such particles sterile neutrinos). In analogy with (37), Pontecorvo suggested
that

|ν̄R〉 =
1√
2

(|ν1R〉+ |ν2R〉) , |νR〉 =
1√
2

(|ν1R〉 − |ν2R〉) , (38)

where ν1 and ν2 are Majorana neutrinos with masses m1 and m2.
If at t = 0 reactor ν̄Rs were produced, at the time t, we had

|ν̄R〉t =
1√
2

(
e−iE1t|ν1R〉+ e−iE2t|ν1R〉

)
=

1

2

(
e−iE1t + e−iE2t

)
|ν̄R〉+

1

2

(
e−iE1t − e−iE2t

)
|νR〉 , (39)

where E1,2 =
√
p2 +m2

1,2 ' E +
m2

1,2

2E , E = p.

8 We neglected a small effect of the CP violation.
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The probability of the reactor ν̄Rs to survive at the distance L ' t was
given by the expression

P (ν̄R → ν̄R) =
1

2

(
1 + cos

∆m2L

2E

)
. (40)

Here, ∆m2 = m2
2 −m2

1.
Pontecorvo proposed to search for neutrino oscillations by detecting re-

actor antineutrinos ν̄R at different distances from reactors. He also discussed
a possibility to search for neutrino oscillations by measuring the flux of solar
neutrinos νL.

In 1962, Maki, Nakagawa and Sakata [23] on the basis of the Nagoya
model, in which baryons were considered as bound states of neutrinos and
a vector boson B+, came to an idea of neutrino masses and mixing. They
assumed “that there exists a representation which defines the true neutrinos
ν1 and ν2 through orthogonal transformation”

ν1 = cos δνe − sin δνµ , ν2 = sin δνe + cos δνµ . (41)

Neutrino oscillations were not considered in the MNS paper. From (41),
they concluded that “weak neutrinos νe and νµ are not stable due to the
occurrence of virtual transition νe � νµ”. From dimensional arguments,
MNS estimated a transition time (τ ' 1

∆m) and in connection with the
Brookhaven experiment, which was going on at that time, they noticed that
“the absence of e− (in the Brookhaven experiment) will be able not only to
verify the two-neutrino hypothesis but also to provide an upper limit of the
mass difference ∆m”.

Neutrino oscillation hypothesis was actively worked out in Dubna in the
seventies and eighties (see reviews [24, 25]). In accordance with sponta-
neously broken gauge theories, we assumed that the source of the neutrino
masses and mixing is a neutrino mass term in the total Lagrangian. We
considered all possible neutrino mass terms.

The neutrino mass term is a Lorenz-invariant product of left-handed
and right-handed components of neutrino fields. Let us make the following
remark. Any fermion field ψ(x) can be presented in the form of

ψ = ψL + ψR , (42)

where left-handed and right-handed components ψL and ψR are determined
by the relations

γ5ψL,R = ∓ψL,R , ψ̄L,Rγ5 = ±ψ̄L,R . (43)

From the second relation, we find

CγT5 C
−1Cψ̄TL,R = γ5Cψ̄

T
L,R = ±Cψ̄TL,R , (44)
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where C is the matrix of the charge conjugation, which satisfies the relations

CγTαC
−1 = −γα , CγT5 C

−1 = γ5 , CT = −C . (45)

From (44), it follows that (ψL,R)c = Cψ̄TL,R is a right-handed (left-handed)
component.

The standard leptonic charged current has the form

jCC
α (x) = 2

∑
l=e,µ,τ

νlL(x)γαlL(x) . (46)

Can the neutrino mass term include only left-handed flavor fields νlL?
For the simplest case of two flavor neutrinos, the positive answer to this

question was given by Gribov and Pontecorvo [26]. In the case of three flavor
neutrinos for the neutrino mass term, we have

LL(x) = −1
2

∑
l′,l

ν̄l′L(x)ML
l′l(νlL(x))c + h.c. = −1

2 ν̄L(x)ML (νL(x))c + h.c.

(47)
Here,

νL(x) =

 νeL(x)
νµL(x)
ντL(x)

 (48)

and ML is a 3 × 3 matrix. Taking into account that neutrino fields satisfy
the Fermi–Dirac statistics, we have

ν̄L M
L (νL)c = ν̄L M

L Cν̄TL = −ν̄L

(
ML

)T
CT ν̄TL = ν̄L

(
ML

)T
(νL)c . (49)

Thus, ML is a symmetrical matrix(
ML

)T
= ML . (50)

The matrix ML can be presented in the form of

ML = U m UT , (51)

where U †U = 1 and mik = miδik, mi > 0.
Using (51), we can bring the mass term LL to the standard diagonal

form

LL(x) = −1
2U
†νL(x)m

(
U †νL(x)

)c
+ h.c.

= −1
2 ν̄

M(x) m νM(x) = −1
2

3∑
i=1

miν̄i(x)νi(x) . (52)
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Here,

νM(x) = U †νL(x) +
(
U †νL(x)

)c
=

 ν1(x)
ν2(x)
ν3(x)

 . (53)

From (48) and (53), it follows that νi(x) is the field of neutrinos with
mass mi. It satisfies the Majorana condition

νci (x) = Cν̄Ti (x) = νi(x) (54)

which means that ν̄i ≡ νi.
It also follows from (53) that the flavor neutrino field νlL(x) is given by

the mixture of the fields of the Majorana neutrinos with definite masses

νlL(x) =
3∑
i=1

UliνiL(x) . (55)

The mass term LL is called the Majorana mass term.
If in the Lagrangian there are not only flavor left-handed neutrino fields

νlL(x) but also right-handed fields νlR(x), it will be two additional possibil-
ities for the neutrino mass term. The simplest possibility is the Dirac mass
term

LD(x) = −
∑
l′l

ν̄l′L(x)MD
l′l νlR(x) + h.c. = ν̄L(x) MD νR(x) + h.c. (56)

Here, MD is a complex, nondiagonal matrix. It can be presented in the
form of

MD = U m V † , (57)

where U † U = 1, V † V = 1, mik = miδik, mi > 0.
With the help of (57), we can present the mass term LD in the standard

diagonal form

LD(x) = −
3∑
i=1

miν̄i(x)νi(x) . (58)

Thus, νi(x) is the field of neutrino with the mass mi. For the flavor neutrino
field νlL(x), we have the mixing relation

νlL(x) =

3∑
i=1

UliνiL(x) . (59)
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The Lagrangian with mass term (58) is invariant under the following global
gauge transformation

νi(x)→ eiΛνi(x) , l(x)→ eiΛl(x) , q(x)→ q(x) , Λ = const.
(60)

Invariance under transformation (60) means that the total lepton number L
is conserved and νi(x) is the field of the Dirac neutrino

L(νi) = −L(ν̄i) = 1 .

Dirac mass term (56) can be generated by the standard Higgs mechanism.
The Dirac and Majorana mass term

LD+M(x) = LL(x) + LD(x) + LR(x) (61)

is the most general neutrino mass term [27]. Here, LL(x) and LD(x) are
given by (47) and (56), and

LR(x)=−1
2

∑
s′,s

(νs′R(x))cMR
s′s νsR(x) + h.c.=−1

2 (νR(x))cMR νR(x) + h.c. ,

(62)
where MR is a complex, symmetric matrix.

Lagrangian (62) does not conserve the total lepton number L. This means
that neutrinos with definite masses are Majorana particles. After the stan-
dard diagonalization of the mass term LD+M(x), we find

LD+M(x) = −1
2

6∑
i=1

miν̄i(x)νi(x) . (63)

Here, νci (x) = νi(x) is the field of the Majorana neutrino with the mass mi.
For the flavor fields νlL(x), we have

νlL(x) =

6∑
i=1

Uli νiL(x) , l = e, µ, τ , (64)

where U is an unitary 6 × 6 matrix. Thus, left-handed flavor fields νlL(x)
are combinations of the left-handed components of six Majorana fields with
definite masses. The left-handed components of sterile fields (νsR(x))c are
combinations of the left-handed components of the same Majorana fields

(νsR(x))c =
6∑
i=1

Usi νiL(x) , s = s1, s2, s3 . (65)

There are different possibilities in the case of the Dirac and Majorana mass
term (61):
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1. If masses of more than three Majorana particles νi are small, tran-
sitions of flavor neutrinos νl (l = e, µ, τ) into sterile states become
possible. There exist indications in favor of such transitions obtained
in different short-baseline neutrino experiments. We will discuss these
indications later.

2. If ML = 0 and MD � MR, in this case, in the mass spectrum of
the Majorana particles, there are three light neutrino masses mi (i =
1, 2, 3) and three heavy masses Ma (a = 1, 2, 3). This is a basis for the
famous seesaw mechanism of the neutrino mass generation [28] which
explains smallness of masses mi.

3. Neutrino oscillations

If there are neutrino mixing, a new quantum phenomenon, neutrino os-
cillations, become possible. We considered this phenomenon in some details
in Dubna in the seventies and eighties [24,25]. Here, we will briefly consider
the present status of neutrino oscillations (see [29]).

All existing CC neutrino interaction data are described by the SM La-
grangian

LCC
I = − g

2
√

2
jCC
α Wα + h.c. , jCC

α =
∑
l

ν̄lLγαlL , (66)

where νlL is given by the relation

νlL =
∑
i

Uli νiL . (67)

We call flavor muon neutrino νµ a particle which is produced together
with µ+, say, in the decay π+ → µ+ + νµ. Electron antineutrino ν̄e is a par-
ticle which is produced together with e− in the β-decay n→ p+e−+ ν̄e, etc.

What are the states of flavor neutrinos in the case of the neutrino mix-
ing (67)?

The standard theory of the neutrino oscillations is based on the assump-
tion that state of the flavor neutrino νl with momentum ~p is given by a co-
herent superposition of states of neutrinos with definite masses

|νl〉 =
∑
i

U∗li |νi〉 (l = e, µ, τ) . (68)

Here, |νi〉 is the state of neutrino with mass mi, momentum ~p and energy

Ei =
√
p2 +m2

i ' E +
m2

i
2E (mi � p ≡ E).
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Relation (68) is based on the Heisenberg uncertainty relation from which
it follows that it is impossible to resolve emission of neutrinos with small
mass-squared differences in weak decays9.

Small neutrino mass-squared differences can be resolved in special ex-
periments with large distances between neutrino sources and detectors. A
possibility to reveal ∆m2

ik is based on the time–energy uncertainty relation

∆E∆t ≥ 1 . (69)

Taking into account that ∆Eki = |Ei − Ek| '
|∆m2

ki|
2E and for the ultrarela-

tivistic neutrinos ∆t ' L (L is the source-detector distance) from (69), we
find the following condition to resolve |∆m2

ki|:∣∣∆m2
ki

∣∣
2E

L ≥ 1 . (70)

Let us now briefly consider neutrino oscillations in vacuum. If at t = 0 the
flavor neutrino νl is produced, the state of neutrino at the time t will be the
superposition of states with different energies (the nonstationary state)

|νl〉t = e−iH0t|νl〉 =
∑
i

e−iEitU∗li |νi〉 . (71)

Flavor neutrinos (and antineutrinos) can be detected in a neutrino detector.
From (68) and (71), we find

|νl〉t =
∑
l′

|νl′〉
∑
i

Ul′ie
−iEitU∗li . (72)

Thus, the probability of the νl → νl′ transition is given by the expression

P (νl → νl′) =
∣∣∣∑

i

Ul′ie
−iEitU∗li

∣∣∣2 . (73)

This expression will be simplified if we:

— extract in (73) a common phase factor e−iEpt, where the index p is
arbitrary,

— use the unitarity
∑

i Ul′iU
∗
li = δl′l.

9 The difference of momenta of neutrinos νi and νk is given by the relation |∆pki| '
|∆m2

ki|
2E

= 1
Lki

. On the other hand, for the quantum-mechanical uncertainty of the
momentum, we have (∆p)QM ' 1

d
(d is a microscopic size of a source). In neutrino

oscillation experiments, Lki is a large macroscopic distance (∼ 103 km in atmospheric
and accelerator experiments, ∼ 102 km in the reactor KamLAND experiment, etc.).
Thus, Lki � d and |∆pki| � (∆p)QM.
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We find
P (νl → νl′) =

∣∣∣δl′l − 2i
∑
i

Ul′iU
∗
lie
−i∆pi sin∆pi

∣∣∣2 , (74)

where

∆pi =
∆m2

piL

4E
, ∆m2

pi = m2
i −m2

p . (75)

From (74), we obtain the following general expression for the neutrino tran-
sition probability in vacuum

P
(

(−)
νl →

(−)
νl′
)

= δl′l − 4
∑
i

|Uli|2
(
δl′l − |Ul′i|2

)
sin2∆pi

+8
∑
i>k

Re (Ul′iU
∗
liU
∗
l′kUlk) cos (∆pi −∆pk) sin∆pi sin∆pk

±8
∑
i>k

Im (Ul′iU
∗
liU
∗
l′kUlk) sin (∆pi −∆pk) sin∆pi sin∆pk , (76)

where sign + (−) refers to νl → νl′ (ν̄l → ν̄l′) transition and i, k 6= p.
In the simplest case of two-neutrino oscillations, we will choose p = 1.

In this case, i = 2 and there are no i > k terms. For the neutrino transition
probability, we have

P
(

(−)
νl →

(−)
νl′
)

= δl′l − 4|Ul2|2
(
δl′l − |Ul′2|2

)
sin2∆12 . (77)

From the unitarity of the mixing matrix, we have: |Ul2|2 = sin2 θ, |Ul′2|2 =
cos2 θ, (l′ 6= l) (θ is the mixing angle). From (77), we find the following clas-
sical expressions for neutrino disappearance and appearance probabilities:

P
(

(−)
νl →

(−)
νl

)
= 1− sin2 2θ sin2 ∆m2

12L

4E
(78)

and

P
(

(−)
νl →

(−)
νl′
)

= sin2 2θ sin2 ∆m2
12L

4E
, l′ 6= l . (79)

From these expressions, it follows that neutrino oscillations are characterized
by the amplitude sin2 2θ and oscillation length

Losc = 4π
E

∆m2
12

' 2.47
E [MeV]

∆m2
12

[
eV2

]m. (80)

In the three-neutrino case, probabilities of the neutrino transition depend
on six parameters: three mixing angles θ12, θ23, θ13, CP phase δ and two
neutrino mass-squared differences. Two neutrino mass spectra are possible in



702 S.M. Bilenky

this case. Usually, neutrino masses are labeled in such a way that m2 > m1.
Possible neutrino mass spectra are determined by the mass m3. There are
two possibilities:

1. Normal ordering (NO) m3 > m2 > m1.

2. Inverted ordering (IO) m2 > m1 > m3.

We will determine (large) atmospheric mass-squared difference in the fol-
lowing way

∆m2
A = ∆m2

23 (NO) , ∆m2
A = |∆m2

13| (IO) . (81)

The (small) solar mass-squared difference for both mass spectra is deter-
mined as follows

∆m2
S = ∆m2

12 . (82)

From analysis of the neutrino oscillation data, it follows that two neutrino
oscillation parameters are small

∆m2
S

∆m2
A

' 3× 10−2 , sin2 θ13 ' 2.5× 10−2 . (83)

If we neglect contribution of these parameters to the neutrino transition
probabilities, we will obtain simple two-neutrino formulas which describe the
basic feature of the three-neutrino oscillations (the leading approximation).

Let us consider
(−)
νµ→

(−)
νµ transitions in the atmospheric range of LE (∆A'1,

∆S � 1). From (76), we find

P
(

(−)
νµ →

(−)
νµ

)
' 1− sin2 2θ23 sin2 ∆m2

AL

4E
. (84)

For ν̄e → ν̄e transition probability in the solar range of L
E (KamLAND

experiment, ∆S ' 1, ∆A � 1), we obtain the following expression

P (ν̄e → ν̄e) ' 1− sin2 2θ12 sin2 ∆m2
SL

4E
. (85)

During many years, these expressions were used for the analysis of atmo-
spheric, accelerator and reactor neutrino oscillation data. In order to analyze
data of modern neutrino oscillation experiments, the exact three-neutrino
expressions for transition probabilities must be used. In Table I, we present
the result of the global analysis of present-day data [30].
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TABLE I

Parameter Normal ordering Inverted ordering

sin2 θ12 0.304+0.013
−0.012 0.304+0.013

−0.012

sin2 θ23 0.452+0.052
−0.028 0.579+0.025

−0.037

sin2 θ13 0.0218+0.0010
−0.0010 0.0219+0.0011

−0.0010

δ (in ◦) (306+39
−70) (254+63

−62)

∆m2
S (7.50+0.19

−0.17)× 10−5 eV2 (7.50+0.19
−0.17)× 10−5 eV2

∆m2
A (2.457+0.047

−0.047)× 10−3 eV2 (2.449+0.048
−0.047)× 10−3 eV2

We see from this table that:

— neutrino oscillations parameters are known with accuracies from ∼ 3%
(∆m2

S,A) to ∼ 10% (sin2 θ23),
— the existing data do not allow to distinguish normal and inverted neu-

trino mass ordering,
— the CP phase is practically unknown.

It is expected that in the future neutrino oscillation experiments:

1. Neutrino oscillation parameters will be measured with % accuracy.
2. Neutrino mass ordering will be determined.
3. The CP phase δ will be measured.

We can hope that future neutrino oscillation and other experiments will al-
low to answer the most fundamental question: what is the origin of small
neutrino masses? What new physics was discovered with discovery of neu-
trino oscillations? In the last part of this paper, we will discuss a plausible
mechanism of a generation of small neutrino masses.

4. The most economical mechanism of neutrino mass generation

After the discovery of the Higgs boson at the LHC, the Standard Model
acquire a status of the theory of elementary particles in the electroweak range
(up to ∼ 300 GeV).

The Standard Model is based on the following principles:

— Local gauge invariance.
— Unification of the electromagnetic and weak interactions.
— Spontaneous breaking of the electroweak symmetry.

The Standard Model teaches us that in the framework of these principles,
the nature chooses the simplest, most economical possibilities (see [31]).
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In fact, the first step in the creation of the Standard Model was the the-
ory of two-component massless left-handed neutrinos. SUL(2) is the simplest
symmetry which allows to include also left-handed leptons (and quarks).
Unification of the weak and electromagnetic interactions requires to include
in the theory right-handed fields of charged fields (leptons and quarks). The
simplest group which allow to unify the weak and electromagnetic interac-
tions is SUL(2)×U(1).

Neutrinos have no electromagnetic interaction. Unification of the weak
and electromagnetic interactions does not require right-handed neutrino
fields. The most economical possibility: there are no right-handed neutrino
fields in the Standard Model Lagrangian.

Notice also that the standard electroweak interaction of fermions and
vector gauge bosons is the minimal (compatible with the local gauge invari-
ance) interaction and Higgs doublet is a minimal possibility which allows
to generate masses of W± and Z0 bosons. After the spontaneous symmetry
breaking, neutrinos remain two-component massless particles. Thus, neu-
trino masses and mixing can be generated only by a beyond the Standard
Model mechanism.

The method of the effective Lagrangian is a powerful, general method
which allows to describe effects of a beyond the Standard Model physics.
The effective Lagrangian is a nonrenormalizable Lagrangian invariant under
the transformations of SUL(2) × UY (1) group and built from the Standard
Model fields. In general, the effective Lagrangian is a sum of operators of
dimension five and more.

Let us consider the terms(
ψ̄lep
lL φ̃

)
,

(
φ̃† ψlep

lL

)
, l = e, µ, τ . (86)

Here,

ψlep
lL =

(
ν ′lL
e′L

)
, φ =

(
φ+

φ0

)
(87)

are lepton and Higgs doublets and φ̃ = iτ2φ
∗ is a conjugated doublet.

It is obvious that terms (86) are SUL(2) × UY (1) invariant and have
dimension M5/2. After spontaneous symmetry breaking, we have(

ψ̄lep
lL φ̃

)
→ v√

2
ν̄ ′lL ,

(
φ̃† ψlep

lL

)
→ v√

2
ν ′lL , (88)

where v = (
√

2GF)−1/2 ' 246 GeV is the vacuum expectation value of the
Higgs field.
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It follows from (88) that the possible effective Lagrangian which gener-
ates the neutrino mass term has the form [32]

Leff
I = − 1

Λ

∑
l1,l2

(
ψ̄lep
l1Lφ̃

)
Y ′l1l2

(
φ̃T
(
ψlep
l2L

)c )
+ h.c. , (89)

where the parameter Λ (dimension M) characterizes a scale of a beyond the
SM physics and Y ′ is 3×3 dimensionless, symmetrical matrix. Let us stress
that:

— Λ� v.

— The Lagrangian Leff
I is the only possible effective Lagrangian which

generates the neutrino mass term. It is a dimension five operator.

— The Lagrangian Leff
I does not conserve the total lepton number.

After spontaneous symmetry breaking, from (89), we come to the Majorana
mass term

LM = −1

2

v2

Λ

∑
l1,l2

ν̄l1L Yl1l2(νl2L)c + h.c. (90)

The symmetrical matrix Y can be presented in the form of

Y = Uy UT , (91)

where U †U = 1 and yik = yiδik, yi > 0. From (90) and (91), we find

LM = −1
2

3∑
i=1

miν̄iνi . (92)

Here,
νi = νci (93)

is the field of the neutrino Majorana with the mass

mi =
v2

Λ
yi =

v

Λ
(yiv) . (94)

For the field of the flavor neutrino νlL, we have the standard mixing relation

νlL =

3∑
i=1

Uli νiL . (95)

The quantity (yiv) is a “typical” Dirac fermion mass in the Standard Model.
From (94), we conclude that Majorana neutrino masses generated by the
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effective Lagrangian (89) are much less than the Dirac masses of leptons
and quarks. The suppression factor is given by

v

Λ
=

scale of SM

scale of a new physics
� 1 . (96)

In order to estimate the scale of a new physics Λ, we assume hierarchy of
neutrino masses m1 � m2 � m3. In this case, m3 '

√
∆m2

A ' 5×10−2 eV.
If we also assume that y3 ' 1, we find Λ ' 1015 GeV.

Thus, if neutrino masses are generated via beyond the Standard Model
effective Lagrangian in this case:

— Neutrino with definite masses νi are Majorana particles.

— The number of neutrinos with definite masses is equal to the number
of lepton–quark generations (three).

In conclusion, we will briefly discuss possibilities to test these predictions.
Observation of the neutrinoless double β-decay (0νββ-decay) of 76Ge,

136Xe and other even–even nuclei

(A,Z)→ (A,Z + 2) + e− + e− (97)

would be a direct proof that νi are Majorana particles (see review [33]).
The 0νββ-decay is the second order in GF process with virtual neutrino.

For the neutrino propagator, we have∑
i

U2
ei

(
1− γ5

2

)
γ p+mi

p2 −m2
i

(
1− γ5

2

)
' mββ

1

p2

(
1− γ5

2

)
. (98)

Here,

mββ =

3∑
i=1

U2
eimi (99)

is the effective Majorana mass. From (98), it follows that the matrix element
of the 0νββ-decay is proportional to mββ .

The probability of the process is given by the expression

1

T 0ν
1/2

= |mββ |2
∣∣M0ν

∣∣2 G0ν(Q,Z) . (100)

Here, T 0ν
1/2 is the half-live of the 0νββ-decay,M0ν is a nuclear matrix element

and G0ν(Q,Z) is the known phase factor.
Many experiments on the search for 0νββ-decay of different nuclei were

performed. Up to now, the 0νββ-decay was not observed. Very large lower
bounds for half-lives of the decay were obtained in different experiments.
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We will present here some recent data:

— EXO-200: T 0ν
1/2(136Xe) > 1.1× 1025 y, |mββ | < (1.9− 4.5)× 10−1 eV.

— KamLAND-Zen: T 0ν
1/2(136Xe) > 2.6 × 1025 y, |mββ | < (1.4 − 2.8) ×

10−1 eV.

— GERDA: T 0ν
1/2(76Ge) > 3.0× 1025 y, |mββ | < (2− 4)× 10−1 eV.

Half-life of 0νββ-decay strongly depends on neutrino mass ordering. If there
is the inverted ordering (and neutrinos are Majorana particles) from oscilla-
tion data, it follows that

|mββ | ' a few × 10−2 eV . (101)

If there is the normal ordering of neutrino masses, |mββ | will be smaller.
Next experiments on the search for 0νββ are planned to reach region (101).

If the number of neutrinos with definite masses is equal to three, there
are no transitions of flavor neutrinos into sterile states. Indications in favor
of such transitions were obtained in the LSND ν̄µ → ν̄e short baseline ex-
periment, in the MiniBooNE experiment in which

(−)
νµ →

(−)
νe transitions were

searched for, in the reactor ν̄e → ν̄e experiments and in the source νe → νe
experiments (see [34–36]).

Existing data can be explained by neutrino oscillations with ∆m2 '
1 eV2, much larger than ∆m2

A. There exists, however, a tension between
data: probability of

(−)
νµ →

(−)
νµ disappearance predicted from analysis of the

existing short baseline data is not compatible with direct experiments.
Many new short baseline accelerator, reactor and source experiments

on the search for transitions of flavor neutrinos into sterile states are in
preparation at the moment. There is no doubt that in a few years, the
sterile neutrino problem will be solved.

In conclusion, let us summarize the main challenges which will be solved
in future:

1. Are neutrinos νi Majorana or Dirac particles?

2. Is neutrino mass ordering normal or inverted?

3. What is the value of the CP phase δ?

4. Are there transitions of flavor neutrinos νl into sterile states?
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