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It is shown on an example of a one-dimensional linear integro-differential
equation how to obtain a differential description of non-local systems. In Section 2 the
equivalence of integro-differential and pure differential equations of the same order
is proved under certain conditions about the kernel. In Sections 3 and 5 the discussion
of the coefficients of the differential equation is carried out. Section 4 is devoted to the
canonical quantization of the system. Finally, in Section 6, another direct approach to the
considered problem is given.

1. Introduction

In the mathematical deseription of elementary particles non-local theories play
an important role. The structure of these theories, however, is not yet fully clarified.
This concerns particularly the question to what extent canonical formulation and
quantization are possible.

The first to rise this question was Pauli (1953). He considers a particular type
of non-local field theory and by use of the method of successive approximations
constructs canonical field quantities in the first order approximation in the coupling
constant.

We shall approach this problem from a different point of view which allows to
develop the canonical formalism in a closed form, at least for the case of linear non-
local theories. The basic idea of this approach is the equivalence of the integro-differen-
tial equations corresponding to non-local theories with pure differential equations
of the same order.

In the present paper the most simple example is treated in some detail, namely
the integro-differential equation

G +x2q(t) = A f K (¢, t')dt'q(t’) 1.1)

Here g(t) is the unknown function, ¢ the independent variable, %% and 2 are positive
constants, dotts denote differentiations with respect to time. K{(t,t') is the kernel
of the equation; it describes interaction with external systems. Assuming

(135)
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Kttt =D @) G(t—1), 1.2)

one has a complete analogy of the one-dimensional equation (1,1) with the four-
dimensional partial integro-differential equation describing non-local interaction of
a charged scalar field g(x,y z t) with an external potential @(x, y, z, t). (1,1) may
be also considered as an equation for the non-local oscillator.

The ideas developed here for the sake of simplicity for the particular case of
equation (1.1) apply also to the general case of an arbitrary ordinary integro-differen-
tial equation. For general linear problems the procedure of the present paper may
be directly applied. Generalization of the procedure to partial integro-differential
equations (non-local field theory) and to non-linear problems (interacting systems)
shall be given in a forthcoming paper.

2. Equivalence between integro-differential and differential equations

To relate an integro-differential equation of type (1,1) with a pure differential
equation, it is necessary to know the manifold of solutions of the original equation. It
may be shown that, with certain assumptions about A and K{(t, ¢’), the manifold of
solutions of (1.1) contains two arbitrary parameters. For this purpose let us introduce
the function

A7 (8) = 77(2) —} sinx ¢, y"(t) = {é: i z } 2.1

Multiplying (1.1) by A"(x — ¢) and integrating with respect to ¢ over the interval (a,b)
one obtains the integral equation

b
g(0) = %) + 4 f N(r.t)deq), 22)
where
1, .
Q) = ” g(a) sin %(t — a) + g(a) cos =(t — a), 2.3)
b
N(r,8) — j A7 (x — ¢)de K(t', 2). (2.4)

a

Obviously, each solution of (1.1) is a solution of (2.2) and vice versa.

Let us assume that K(r, t) is bounded in the domain a<z<(b, a<{r<{b. Then
N(z, t) is also bounded. If 4 is not an eigenvalue of the kernel N (z, ), the integral
equation (2.2) possesses, according to well known theorems, one unique solution
corresponding to each particular ¢%t). Since the functions ¢%(z) form a two-para-
metric manifold with the arbitrary initial values g (a) and g (a) as parameters, the
solutions of (2.2) and, therefore, also of (1.1) form a two-parametric manifold. Accord-
ing to another well-known theorem, this manifold satisfies a second order differential
equation which may be obtained by elimination of the parameters.
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As stated in the introduction, the above theorems have general validity not
restricted to the special type of equation considered in this paper (cf. Krzywicki,
Rzewuski, Zamorski, and Zieba 1954).

For the linear case (1.1) it is easy to write down the explicit form of the differential
equation equivalent to (1.1). For this purpose the solution of the integral equation
(2.2) has to be written down by means of the resolving kernel

b

q() =q*@@) + 4 j R (v, dt ¢° (1) 2.5)
where :
b
Rz ,t) = N(r,t) + 4 f N(z, t")dt’ R(¢t', t). (2.6)
Introducing (2.3) into (2,5), one gets
g (a) ri(t) + g(a) rot) —q(t) =0 @7

where
b

1 1
rt) = —sin x(t —a) + 4 f R (¢, ¢y dt’ — sinx (¢’ — a)
® P
: 4 2.8)
ra(t) =cos x (t —a) + 2 f R (z,t)dt’ cos % (t" — a).

Elimination of the arbitrary parameters ¢(a) and g(a) from (2.7) and from its first
and second derivative yields

n s q
F F, gl=0 (2.9)
51 Fo g
This is a second order linear differential equation of the form
ayq +a;9 +a,9 =0 (2.10)
with variable coefficients '
_ Fq To __|nr _|nr 211
% i Ty » A Bofy |’ Fy Ty @11
We notice the relation
ay = -—a,. (2.12)

Equation (2.10) is equivalent to (1,1) in the sense that (with the above assumptions
about 4 and K(z, t)) each solution of (1.1) satisfies (2.10) and vice versa.
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The quantization of this equation may be carried out by conventional methods.
We shall come back to this question in Section 4.

As stated in the introduction, the above construction of a differential equation
which is equivalent to a given integro-differential equation may be carried over with-
out essential difficulties to the general case of linear integro-differential equations of
arbitrary order with variable coefficients containing derivatives also under the integral
sign (cf. Krzywicki, Rzewuski, Zamorski, and Zieba 1954). In the important case
of systems of non-linear integro-differential equations an approximate method must
be used. We shall come back to this question in a forthcoming paper.

3. Discussion of the coefficients

For the consideration to follow it is important to carry out a detailed discussion
of the coefficients in equation (2,10). Their explicit form is

a, =-—x%1 +¢p), ag = — (1 + ¢,) 3.1

with

-

b
. 1 . 1
C, =12 /R(c, t) — sin x (t — t')dt’ — ZfR(t, t') -, cos x (t —¢')dt’

b
1 .
+ A2 [[R(z, t') —5sin = (¢ —¢'")R(e, t")dt'dt"”
X

3.2)
b ) b
Cy=—12 [R(L, t')—sin x (¢t —t')dt’ + lfR(t, t') cos % (t — ¢")dt’
) %
b
t 1
— ).2ij($, ') —sin x (t' —t"") R(t, t'")dt'dt"’
%
(Dotts denote always differentiation with respect to the first argument).
With help of the notation (3.1), equation (2.10) may be written
(1 4+ cp) §— g + %% (1 + cp)g = 0. 3.3)

From (3.2) it is easily seen that for sufficiently small 4, 1 + ¢, >0 in the interval

{(a, b) and we may write (3.3) in the form

é2 q + %2(62 _ CO)q (3.4)
1 + ¢,

§+xtq =

Another form, not restricted by the condition of smallness for A, is

g+ x2q =—cy§ + &y q— %% ceq. (3.5)
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In both (3.4) and (3.5) the right hand sides are proportional to 4 and vanish as 2 — 0,
which corresponds to the case of no external forces.
The transition to a local theory is desribed by
G(t) » 4(t) (3.6)

(6 (¢) — Dirac’s symbol). In this case, on account of (1.2), the right hand side of
the original equation (1.1) goes over into 4 @ ¢. The same must hold for the right-
hand side of (3.4) and (3.5). To verify that this is indeed the case, let us calculate the
coefficients ¢, and %2 (¢, — ¢p). From (3.2) one finds

b
%% (e — ) = )lfM (¢, ¢") cos 2 (t —t') dt’

14
* 1
~12ﬂ M(t,t')ysinw (¢ —¢"") R (¢, t'")de’ds’”’
: g (3.7

b
1
& = -1fM & ¢) ;—sin % (1) dt

]
y 1
+ lzij(z, t)sinx (¢ — ¢') = R (¢, ¢") dt'ds"”
4

where
b

M, tYy=R@, ) - 2R (t.t') = K, t') ~ Zj}\’(z, £y dt” R, ),  (3.8)

the last equation stemming from the properties of the function A” (¢). In the limiting
case (3.6)
M@, t) D) [0, —1t) + AR, )] 3.9
and (after some calculations)
#*(eg-=c) > AP (1) (1 + cp)
¢y =0 (3.10)

Finally from the last equation (3.10) the bahaviour of ¢, may be deduced. In fact, we

may write
T

ey (1) =féz (t) de,
(3.11)

a

since ¢, (@) = 0, as follows from the properties of the function A" (¢) (cf.(2.1), (2.4),
(2.6), and 3.2)). In the limiting case (3.6) ¢, -> 0 and, therefore,)

¢y (£) - 0 (3.12)
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4. Canonical quantization

For the purpose of canonical quantization it is sufficient to reduce equation (3.3)
to an equation of the Sturm-Liouville type. If 1 is sufficiently small (1 + ¢; = 0)
this may be achieved by division of (3,3) by (1 + ¢,)% One obtains in this way

o 2
(e mlra @)
de, \1 + cq (1 + ¢y)?

The corresponding Lagrangian and Hamiltonian are

1{ 1 . xg(l +CO) 2} 4.9
E=y 15 Are) 217 (4-2)
1 1+ ¢ }
H= —1(1 2 4o — g% (. 4.2
R LR @2
where
q
= 4.
p 1 +cy (43)

is the canonical momentum conjugate to q.
The quantization may be performed in the usual way. The commutation rules
or the can onical coordinates and momenta taken at equal times are

[g®,q®] =[p@®,p)] =0, [qg@).p )] =ih. (4.4)

For different times one may obtain simple commutation rules by going over from the
Heisenberg picture, in which we are working, to a picture in which the equations of
motion may be solved explicitly. In this new picture a perturbation procedure may
be developed. It must, of course, give the same results as the perturbation method
applied directly to the original equation (1.1). We shall verify this statement in the
next section.

Heisenberg’s and Schroedinger’s equations may be written down

- Lp H] + oF
=[5 > (4.5)
.0 , ¢
Hy (g, t) = ih wfa(;z) (4.6)

with H given by (4.2), F being an arbitrary operator which may explcitly depend
.on the time variable, and v (g, ¢) being the state vector of the system. These equa-
tions determine completely the behaviour of the system at each instant of time.
Thus a differential desription of the motion (both quantum-theoretical and classi-
cal) is possible for the non-local system described by the integro-differential equation

Q.
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5. Perturbation method

One mav apply the quantum-theoretical perturbation method directly to the
original equation (1.1) (integral quantization) as well as to the equivalent equations
(3.4) and (3.5). The results will be identical. This follows immediately from the fact
that each solution of (1.1) satisfies also (3.4) and (3.5) and, therefore,

b

. M 9 s
Ca q +1% (C2 Co)q =+ (‘,‘2’? g2 g = }-fK(t, t/) q (t/)dt'. (51)
—Cy

a

Equations (5.1) are operator identities in the space of the solutions of (1.1). They
relate the values of g(t') distributed by means of the kernel K{(¢, t") over the whole
interval (a, b) to the values of g(t) and g(t) (and possibly also §(z)) at an arbitrary
point in (a, b). The knowledge of a differential operator which is equivalent to a given
integral operator in the space of the solutions of a given integro-differential equation
enables us to convert all non-local quantities corresponding to the problem in question
into local quantities depending only on one time moment, lying between a and b.
It is instructive to verify the identity (5.1)-in the first two approximations in the
constant A. The mechanism of the transition from non-local to local quantities becomes
then more apparent, ’
Expansion of the coefficients of the left-hand side of (5.1) yields up to the second

order in A

b b
2 —_
# (e — ) = _fK(t, tYdt' cosx (t' —1t) + 22ﬂfK(t, dyde' [ (¢ —¢'")
1l +e

1
. ."r(l vt’”)] :_ sin » (t, ——‘t”,) dt/n K(t”', z/1) dl” COS % (t” . t)

+ o (5.2)

b b
¢ 1
@ _; [K(t, t')dt' ——sin x (t' —1t) + lzf[fK(t, ¢y de' [ (¢',—t'")
L+te . % .

1 1 .
— (=t = sin (¢ — ¢y dt" K (@, ") dt" — sinx (¢ —1)
x X

+ ...

"The expansion of g(t) in terms of ¢°(t) is given by (2.5) and (2.6)
b

qg@t) =¢°(t) + ﬂ.fN (¢, t)de ¢ (t") + ... (5.3)

a
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To obtain the left-hand side of (5.1) in the first approximation in 2, one needs
only to consider the first terms in the expansions (5.2) and (5.3)

b

&od 22 1

Coq + i’ ‘{(f‘z —c) q =2 [K (¢, ")y dt’ [_,, sinx (' —1) q-o () +cos x (¢ t)qo(t)] L
C2 . %

b
= A [K(t, ydt ¢ (¢') + ... (5.4)

1
It is seen that the basic solutions cos # (' — t) and — sin #(t" —t) of the problem in
N ) P

lowest approximation (4 = 0) play the role of operators which introduce ¢(¢’) under
the integral sign.

Similarly, in the next approximation one obtains (after some calculations) due
to the properties of the basic solutions
5 b
ZfK(t, t)dt' {q, (t') + /'.fN(t, tydt @0’y + ...} (5.5)

a a

¢yq + %% (cy—cy)q _
1 +ec

in agreement with (5.1).

6. A direct method

The considerations of the preceding section open an interesting possibility to
solve the problem of converting integro-differential equations into pure differential
equations in a direct way. Whenever integral operators occur in an equation, we
shall try to find differential operators which are equivalent in the space of solutions
of the given equation. If the problem is soluble, we obtain the desired differential
equation simply by replacing the integral operators by equivalent differential oper-
ators, For the case of the linear integro-differential equation (1.1), the problem
reduces to the solution of an infinite set of Jinear equations with an infinite number
of unknowns,

Anticipating the results, we may look for a differential operator equivalent to

the right-hand side of (1.1) in the form Aq + Bg, and try to determine 4 and B in
such a way that the identity

b

Aq ~ Bgq =fK (. Y dt' g (¢) 6.1)
is satisfied in the space of solutions of (1.1). In course of derivation it will become

obvious that there is no necessity to introduce higher derivatives on the left-hand
side of (6.1) if the original equation contains second order derivatives outside the
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integral and no derivatives under the integral sign. Expanding 4 and B in powers of 4

A = i AmA™ | B = i amB™ (6.2)

using relations (2.5) and (2.6), and equating coefficients in (6.1), one gets an infinite
set of equations

b b
> {
Z (A"") f{- - B("") [...fN(t, tY) det N (1, 12) de2 ... N ("~ L, g7™) g (£"~™)

t

A (6.3)
=ffK t,7)drt N(r, ey det ... N@* L, " ¢ (). (n =0, 1,...).

Here ¢°(t") may be expressed by its initial values and the initial values of its first deriv-
ative at an arbitrary time ¢ = t° (cf. (2.3)). For convenience we introduce the notation
1 :
—sinxt=A (), cosxt =N (2. (6.4)

#
With this notation (2.3) becomes
PE) = A ¢ —1) @) + A (€ —1) ¢ (). ©5)
Putting further

b b
f...fDl (& Y dAD, (¢, t3)de? ... D, ("Lt ={D,.D,... D} (t. 1%, (6.6)

we may write equations (6.3) in the simple form

n

d .
) (A("" o B('")> V"= A} (619 ¢° (%) + {N"™" A} (2, 1) ¢° (2))

~{KN"A}(t, 19 @ (1) + {KN* A}t 19 ¢ (), (n=0,1,...).  (6.7)

(6.7) are identities in the space of solutions of (1.1), hence they must be satisfied for
an arbitrary choice of the parameters ¢%(t?) and ¢°(°). The infinite set (6.7) splits
therefore into two infinite sets of equations

n

Z (A(m) d - B(”‘)) {N"=™ A} (2, 1% = {KN" A} (t,1% l

e (6.8)

n

Z (A(m) gt + B(m)) {Nn—m A}(t, %) = {KN" A}(t, t% |

m=o0
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Their explicit form is

AP +BYA ={KA}
ADA +B@A ={KA}
AD{NA} +BO{NA} +AYA  +BYA - ={KNA}
AQNAY +BUNAY +4APA  +BYA ={KNA}

AD{NNAY} +BO{N2A} + AV{NA} + BY{NA} + AP A +BPA = {KN2A}
AP {NNA} +B(°){N2A} + AVINA} +BY{NA} + AP A +B(2)A = {KNZA}
A<"){NN""1A} + B(") {N"A} -+ A“”NN"”"’A} + BM (N1 A} +. A<")A + B(")A

={KN"A}
AP {NN""TA}+ BO{N*"A}+ AV{NN"2A Y+ BVN A Y+ AP A +BWA

= {KN"A}
From (6.8) or (6.9) 4™ and B™ may be calculated. The calculation is facilitated by
the fact that the characteristic determinant equals unity on account of (6.4). The results
are just (5.2) in the first two approximations. Calculation of the n-th approximation
and introduction into (6.2) yield for 4 and B the closed expressions (3.7) divided
by 1 + c,.

KPATKOE COJEPKAHUE

SA. XKesyckni, Juppepenyuansnas cmpyxkpypa Heroxanusupyemux meopuil 1.

ITokazaHo Ha IpHMepe JMHEAHOIO MHTerpaabHO-AUG(EPEHINAIbHOIO YPAaBHeHMA
B OIHOM M3MepeHMM, KaK MOay4dnTh AuddpepeHuNanLHoe ONyCaHNe HeJOKAIM3UPYEMbIX
crcreM. B § 2 nokasana 9KBMBANEHTHOCTL MHTErpanbHo-AuddepeHianbabix u and-
tepeHIIMaNBEHBIX YPAaBHEHMII TOTO XKe ITOPAAKA NPy ONPERe/eHHLIX YCIOBMAX OTHO-
camuxcea K Kepuemno. B §§ 3 u 5§ nposegeHa puckycensa KosdpdwauenTto mrdpdeper-
LMaJbHOTO YpaBHEHUA. § 4 mMoCBAILEH KaBOHUYECKOM KBAHTH3ALMM cHMCTeMbl. B § 6 no-
Ka3aH APyIoil HemoCpeNCTBEHHLIH IIOAX0A K paccMaTpuEaeMoit npobieme.
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