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This paper contains the radiation theory for the atom in a crystalline medium.
In the first part we obtain equations for that class of problems using the formalism of
quantum electrodynamics. An apparent mass of the photon appears in that formatism.
In the second part we define (with certain simplifying assumptions) the formula for
the apparent mass of the photon and solve the equations of the radiation field in a crystal.
The solution obtained is consistent with Ewald’s classical result. In the third part we
give an estimate of the emission probability in crystals.

1. Introduction

We shall consider an atom interacting with radiation in a crystalline medium,

i. e. a system composed of a radiating atom, the field of radiation 4, (x) and the field
of electrons ¢ (x) forming the medium. We assume that the electrons move in a given
(non quantized) periodic field 4%*(x). The electrons can be bound to nuclei or not.

The equations of motion of the considered system have in the Heisenberg picture

the following form

1. .
8) O A (x) = —— (ju () + (),
H ¢ H H
o ie ie
b = A% (x = ‘ 1
) [7# (Qx,, fch" (”)) + "]3 (*) Fc H fgu (%) }/;(x)v ®
c) the equations of motion of the atom perturbed by the fields A ,(x) and A5(x)
H H
A, (x)
. 0¥ " _
d) ihe B () 0, ox, Yy =0,

of the

where j,(x) = iec :;y“w(x): and j{ (x) are respectively currents of electrons
H H H H

medium (we take the antisymmetrized current) and of the atom. Operators A4, (x),t
H

(93)
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p(x) have here the common commutation or anticommutation properties. The sym-

bol : (...) : denotes an ordered product where all annihilation operators are on the
rlght of the creation operators [chk 1950]. We use a notation in which x = (x,) =

(x7 ict), ('}’y I'ﬂa” B) ( ) = v*(x) B.

By means of the unitary transformation:

009 < SIA0( Sl Vol = ST ¥,
where
ihe goio) = L (9 4, () S o], ST o0] = 1.
we get a new picture, in which the equations of motion take the form
1.
a) 04, () = “";lu(x)a
b) _‘_9_ o i‘i Ae.x(, ) _ le 4 (2)
Ya 9%, he * X))+ |yl = Pyl (@) Y (),
c) the eqations of motion of the atom perturbed only by the field A:(x),
0¥ [c 1. X
d) ihe (30‘([ )] Y ]/7 (x) Au(%) (o], u( ) Y(o] (x on a),

where j (%) = iec: ;p-y”w(x):. Of course this is not an interaction picture.

We shall solve equations (2) using a unitary transformation leading to
the picture, for which the forms of the electron and electromagnetic operators are
known.

The interaction picture has such properties but it is adapted to the case of photons
in vacum. We shall use here instead a new picture, better fitted for the description of
photons in a material medium. It can be expected that in a material medium photons
acquire (from a macroscopic point of view) an apparent mass depending on their
direction, frequency, and on the structure of the medium. We shall determine this
mass later. Now we introduce it formally, using the following unitary transformation.

0°(x) =Uf 0(x) U ] Yol ] = U[ 1ylo), )
where
ihe gg%ﬂ _ H°() Ulo], Uj—o] = 1 @
and

Ho@) = — (i A A3) + A0 47,9
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Jou) = iec:i_p°y,‘1p°(x):. {t i3 here a c-number equal to the apparent mass multiplied

by ¢|h. The equations of motion in the new picture have the form

a) (O—p?) A% () =0,

b) [w(-éz—ﬂ -7 A"‘ (a)) + %] °(x) =0,

¢} the equations of motion of the atom perturbed by the field AfF(x),

6?;(95)0 ] :—[“ UL @) + 2 ) A0+ w2 A5 ) AM] ¥°[a].

The operator A, (x) satisfies here the following commutation rules:

[Aa(x), Ay ()] = ihed,, A (x —x'), (6)
where A (x —x ) is an ordinary Jordan-Pauli function for mass u. Our new picture
becomes the interaction picture for u = 0. Note that, independently of the value of s,

the operator °(x) is allways identical with the electron operator in the interaction
picture.

©)

d) ihc

The relation between the electromagnetic tensor and vector does not change after
the unitary transformations given by our operators S (jo] and U [¢]. Therefore we have

o =A,, —AS . Thus we can gauge A; in different manners, especially so that
J po vy 174 gaug b P y

= 0. We obtain it by replacing 4, by A, —y,,, where x,, = A3 We are enti-
tled to do so because the first equation (5) does not change when (] — u?) x=0
(if the initial condition for 7y is appropriate).
It follows from (3) and (4) [cf. Dyson 1949, Wick 1950] that
©0 +o0
O Ul ! iy day ... dx,T(0°(x) H°( H(xyn)). (7
x) = [ ]ZO—J - 2 +ee A% %) ... Ho(x)). (D)
n= )
Here the symbol T'(...) is the chronological product as defined by Wick. Further
calculations consist in splitting the chronological product T'(...) into ordered products
with suitable contractions which lead to the Feynman [1949] functions: S%(x,x") and
A (x —«") [Wieck 1950]: ,
Vo (0) wa(x) = STplx, x ), A, (x) A7 (x") =hed,, D, (x —2')
(the dot over operators repeated twice denotes coniraction of both operators). These
functions satisfy the following equations:

9 2 X ex ’ . ’

(O—ud) A (x —x) =id(x —x).
Assuming the potential to be independent of time A (x) = Ae"("v), we have:

Z Wra(x) "prﬂ(x) (t >t)
—Z— wra (x) 'l;rﬂ (x’) (t < t/)’

and

S, x) =
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where y,(x) = ur(;c) exp (— iE,t/h) are eigensolutions of Dirac equations with poten-
tial A%(x). The sums X'* extend over states of positive and negative energy respectively.

Inserting O°(x) = A, (x) in (7), we would obtain the perturbation solution for
A (x) if we knew p. That would be true, e.g., if we used the interaction picture (u = 0).
When u is not known, we shall proceed in a way which will enable us to find it.

Let us assume that 421is of the second order in the coupling constant. This asump-
tion will be shown further to be consistent with the results. Inserting O°(x) = ];(x)
in (7) and using Wick’s method we have

“+o0
o2
i) = U1[] {fﬁ(x) L f & [5° (07T 5) 1w ) -+

—00

PP ST %)y ()t (7 ST (6 &) 9 ST (O, ] A () + } .o
Further terms in {} brackets are of higher order in the coupling constant.

Operator U[o] given by (4) describes processes in the medium (independent of
rhe considered atom) resulting from interaction between electrons of the medium and
the radiation field. Let us assume that in the medium processes of the first order do
not occur. Then, for all states ¥{o], we have

Ul=o] Wlo] = ¥]o]

(for terms up to the first order). After this assumption formula (9) takes the form

400
o e —
@) =) — 5 f dx’ [:9°() 7 ST ') o v° () -+ B0y ST 2) 7,9°(0) -
-} 00
—tr (3, 5% (5, ) 70 ST ()] A4 () (10)

where we have taken into account terms up to the second order only.

If we put (10) in the first equation (2), and insert afterwards the thus obtained
A, (x)in the fourth equation (2), the latter will describe processes following from inter-
action between the atom and the radiation field in the medium.

In order to find, e.g., the probability of one-quantum (spontaneous) emission we
consider the transition from the initial state ¥; = ¥Y[—oo] without photons in the
field, to the state ¥, with one photon. Assuming an adiabatic switching on of interac-
tion at the initial moment ¢ = -— o0 and switching it off by the measurement at the

final moment ¢, we obtain
w, = wiwler, = W ef ey,
where @4, YR ¥ are state vectors of the atom, radiation field, and electrons of the
medium respectively. Then the probability amplitude of one-quantum emission inthe
ime interval (—oo,¢) will be equal to:
i 5
CHPlo]> = oo [ CHF 70 WD QPR LA P, (11

—0C
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where
<Ay (0> = (P AW P, (12)
We assume also that the electrons of the medium are in equilibrium with the radiation
field, i.e. that
y lel — 1]);1‘

When the first and fourth equations (2) are solved the term ];(x) in
formula (10) gives the interaction of the electrons of the medium with the atom.
In the first step of the method of successive approximation this term leads to diagram
a. in Fig. 1. Using a suitable unitary transformation, we can eliminate this interaction
from the equations of the radiation field, inserting it simultaneously in the Hamilto-
nian of the atom. The eigenstates of the atom will then be only slightly modified.
There appears namely (according to Bethe and others) a splitting of the energy levels
depending on crystal structure and resulting from electrostatic interaction (a kind
of Stark effect). References relating to that subject are given by Rubinowicz [1949].
We will not take into account the above modification of the states when comparing
probabilities of emission in crystals and in vacuum.

B z el .
7/ el
A af A " o/ A o/ A
a b d

Fig. 1

Three remaining terms in formula (10) give additional terms to the probabilities
of transitions, e.g. to the probability of one-quantum transition. In the first step of the
successive approximation method (formula(11)) they lead for that emission to diagrams
c., d., e. of Fig. 1. Diagram e. describes the self-mass of the emitted photon in the
medium. Besides, diagram b. will also appear.

From the first equation (2) and formula (10) we get the following equation descrlb-
ing in the considered approximation the radiation field in the given medium

+o00

04, (x) = f dx' K, (x,x") Ay(x"), (13)
where )
’ ie? T o ex ’ ’ Y ex (., o
K (3, 2) = 3= (9" (1) v S5 (2, 27) 7 p(&) 2 - 1 9° (&) 9, S5 (0'0) 7 9°(2) )
We dropped here terms leading to diagrams a. and e. in Fig. 1. (14)

2. Fwald’s solution

Let us assume that the electrons of the medium interacting with radiation are.
assembled in the vertices of a crystal lattice and that the latters can be considered as
points compared to the radiation wave lengths. This assumption is used with good
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results in classical crystal optics (as well as in X — ray optics — Ewald 1912, 1918).
We shall solve equation (13) with that assumption and find 4 at the same time.
The solution obtained will correspond with Ewald’s solution in clasical crystal optics.

Inserting in the right hand of (13) a plane wave satisfving the first equation (5)

AF () = A, (x) T (k% +u ‘:—2) (15)
and using formula (12), we obtain
+oo
O Ay () = j A" K v, 47) DA () e T (16)

where
CKp(2)> = CPIK (x, 2) 8]
We will take into consideration the one-particle model for the electrons of the
medium. Then the wave-function of electrons in the position representation

ve ceapy s eees Ay) = @y Ay N | DY
is a product of one-electron wave-functions,
g/el Lan (g5 -r %y) = lple, (%q) - 1_[/:1 (xn)
(., +..s g — spinor labels of N electrons). It can be proved then that
Fiya () po () PP = NPL)PE () an

N — number of medium electrons in state ¥%), where

J i€ ex = e
[+ (25 =i 4200) 0] w00 -

We expand the configuration one-electron wave function (in state ¥#) in eigensolutions

p(x) = u,(;) exp (—E,t/h) of the -Dirac equation with potential AZ"(;):
Fi) = Y o) (18)

r
The coefficients ¢, give the initial distribution of electrons in the medium. With
our former assumption of equilibrium this distribution is preserved constantly in the
medium.
Using succesively (17), (18) and (8), we find after some calculations (cf. Rzewuski
1952), that formula (16) takes the form

OCAE®)> = [dyr’ KE@ % 50) A (E)e T, (19)

where

aﬁm=fNZRFW%m@W@WMW+

h w, —w w
T)r' T re j:
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* > — * -

(147 () ety (%))* (ur (") totar(x))*

+ , (20)
Wy — Wy T W

here (2,) = (a, i), E, =ho,, and P, = |c,|? is the distribution function of electrons

of the medium in state ¥ over rstates. The operator A (x)) has been averaged above

over the initial states (phases) of the electrons, using the assumption of a random

distribution:

¢ = [Cr|2érr"

Moreover, in the above calculations, we have excluded succesive transitions through
intermediate states r of the medium electron. These transitions are characterized by
the energy conservation law in the intermediate states: w, —w,, = @ = 0. In reality
these transitions do appear for resonance frequencies. In that case the Weisskopf-

Wigner method must be used for calculations. In order to exclude from our consider-

*
rr

ations the case of resonance frequencies, we shall assume that the radiating atom
differs from the medium atoms.
In formula (15) operator A:‘i (x) has the form

he?

Al (x) = T eetitia, @1)

w? - -
where K2+ = — el = 1 (k) = (ki),(e,) = (exe0)), ¥ = L* is the volume
2m + -

of the normalization cube (Rek = f ™, m — vector with integral numbers as com-

+

ponents), and a* are photon absorption and emission operators respectively. The

normalization factor appears in consequence of the commuiation relation

[A; (x, 1), L M] — ihe 8, O(x — ).

PR
We can now put equation (19) into the form
:E nd jnd e
O<Ar (0> = (@ (% 0), 4,5 (), (22)
where
£ 4 o - N -
(12 (x, k) :fd?, x'eTikx K,it,, (x, % 3 )e TR (23)

describes microscopically in the considered approximation the apparent mass of the
photon (without self-mass) in the given crystalline medium. Averaging over a crystal
of volume G, we obtain

£ 1 £ L.
(@ 0w = & [ dax' (02, £)) o (24
G
The coefficient u in formulae (5) is now so adjusted that A; (%) represents ,,mac-
roscopically” the plane wave propagating in the given medium, i. e. that

+ o
04, () = (#%(k)),, 4, ().
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Inserting here formulae (15) and (21), we obtain the expression for the macroscopic

+
apparent mass of the photon p (without self-mass)
+ +

. Au'z = ep (Iu'2 (l"))yv ()v'
Let us notice that we can write

w2 *

+
ne
k :'l/ ?——‘uz = —

where w is a real number, £ a complex number und

¢? &

:l—.2 - c2 i -
nt =1t o1 — () e (25)

Formula (25) determines in the considered approximation the macroscopic (complex)

refractive index. For all directions of propagation & and polarization e, there exists

a certain value of the refractive index : (Z, E), which depends besides on the magnitude »
Rek = 2n|A (double refraction and dispersion).

We remind that we can without loss of generality gauge A(x) so that A4,(x) = 0.
Then ¢, = 0, thus ¢ =1 and from the Lorentz condition ek — 0.

In further calculations we shall assume (for simplicity) that the lattice is cubic.
Generalizations do not lead to any essential difficulties. We shall denote by a the edge
length of an elementary cell.

We shall now use the assumption that electrons in the medium are assembled

in vertices of the crystal lattice. From that assumption it follows that function Kfﬁ,(;,;’ »30)
given by formula (20) has near the lattice-points a= ;za(r_r;, — vector with integers as com-
ponents) the character of 0 (-;c — ;) and ¢ (;' — c:), and in other points it is equal to zero:
Ko #50) F5ED Z Yo ) o — et B [ dy f dx' K2 (x, % 30),
7 @ a7 A2
where the integrals expand over regions A7 and A7 of atoms in the lattice-points ;1:
and a'.
From formula (23) we obtain
+ L. . o
(1® (x, k), = }: Z 6 (x — a)eFHa=a) [ dyx f dyx’ KE (v, 25 0). (23)
a @ 47 A

a

£ .
We can see that (12 (x, k)),, is a periodic function with period of the lattice (we assume
here that the crystal has infinite extention and all atoms in the lattice-points are identi-
cal). From (24) and (23’) we obtain further

+ o 1 > - ' - -
(/’(2 (k))ll’ = .é_ ZZ e:sz(a—a) fdaxj dsxr K;E, (x, x,;(l)). (24,)
-t; t? AT

i~
a a4z
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Now summing over a a extends to all lattice- -points of the domain G, over @' to all lattlce-
points of the whole medium.

To solve equation (22) we seek a solution of the form
+

CAE @D = A ()™, A @) =f* () /__-._e ik (kz?cﬁ,e#l),(%)

where f i(x) is a periodic function with period of the lattice, i.e.

L a 2@
FE@ =Y rE@e. g ="m 27)
7
(m — vector with integers as components). From (22) and (26) we obtain

- 2 - >
(A £2ikv =% —kz) £ @ = ew @WER)w e at. (28)

We shall solve equation (28) by applying Green’s theorem (cf. Born 1933) to the domain
g of the elementary cell of the crystal

d
fd3x (eAv—vAu) =fd20' (u 59717,) — ,,—Z) )
9
f

€
substituting there u = exp (7,qu) v = fE(x ) We obtain then (in consequernce of

be fact that the surface integral vanishes due to the periodicits of the function f* (x))

- 1 1 - .
fEg) = T h e f dsxe,,(,zz (%)) wen ate=ia%, (29)

g

where £° = wfc, g = a3 We can replace the integral (1/g) f dyx in formula (29) by
(1/6) fdaT where G is a domain of the crystal containing an integral number of ele-
mentary cells (this is allowed, because the function under the integral sign is periodic).

+ - - . : - - .
From the fact that function u? (x.k),, has the character of § (x — a) near the

lattice-points @ = ma and vanishes elsewhere in obtain
1 £ L -1 - o
’6 d3xeﬂ (1”’2 (xa k)),lweve TigE = 'G“' Z e 4 d3xeu(lu2(x’ k))l“’e”
e P

1 S oo * w? )
=g doreit s B = e B = T 0,

wo 2o~ - e e
for ga = 2 mam! = 2:mzm and exp (—iga) = 1. Finally from (26,) (27), and (29)
a

we get
& +

- he wz cig - w nw
+ L tkx o _ —
A,,(x)]/sz 1)2-1( 02 kczeikai(k _c’k c)'
q k) (30)
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This solution corresponds with Ewald’s solution (1912) from classical crystal optics.

The function
E : it i -~ 2m -
- otikx .
(G = T — kR ’(q ZZ"L) (31)
q

can be represented (Ewald 1912) as a superposition of spherical waves outgoing from
the lattice-points
g ¥ 1%—a]

4‘75 4 !;_al e:i:tka '(CL — am g = a3) (315)

To obtain the convergence of these series (in points x5 a) we must assume (the medium
is infinite) that Im &k° >lIm k|, and after summing up we must find the limit for
Im k°— 0, as k° = wc is a real number.

3. The emission in a crystal

We shall now investigate the probability of (spontaneous) one-quantum emission
in a crystal.
The electrons of the radiating atom will be treated configurationally. We have
z

X _‘_ HAL - _ .iHAt B - - d
]f (x) = e# jf (x)e % ) ]f (x) = ec Z @, 0 (x — x;) (32)
i=1
(H“ is here the Hamiltonian of the radiating atom, Z — the number of electrons in the
atom interacting with radiation).
Next we gauge Aﬂ(x) so that Ay(x) = 0. Then ¢, = 0, and from (30) we get
A, (x) =0.
From (11), (32) and (26) we obtain (for a flat hypersurface o)

- e - e(“’B"“’A+“’)‘ #1

<IPO> = 5 <B| Z 4 A () | A>T

where 2-; (x) is obtained from A- (x) defined by formula (30) by dropping the emis-
sion operator a”,and |[4> = ¥4 |B> = W# are the initial and final states of the
radiating atom with energies £, =hw, and Ez = hwyg respectively.

The probability per unit time and unit solid angle of photon emission (in the
transition 4 = B) in the direction (-9, ¢) and with the polarization e is given by the
well known formula

w (9, ¢, 3 = ; " ( (w)KB\Za,_ () A)]) ) (33)

i=1
d(Re ) _ V(Rek)? d(Rek)

in which ¢(w) = o (Rek) (2m)3 dw
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and k =—= —ud o= ,u, n = n. Here the apparent mass of the photon

p2=e, (1) ,e, depends slightly onw, because we have excluded from our considerations
the resonance frequencies w = jo,— w,| (cf. (20)). Therefore we have approximately:

dkldw = w/c*k = 1/nc, and
(Ren)d Vot

0 (w) = T @ (34
From (33), (34) and (30) we obtain
o (3, ¢, -é)
A-B
_ [(Ren)®w . __eaBn 4
=g (B Z aie 2 O n2 1) Z — | > (35)
(@—h2—=5
m=mA—wB
where a = e2|4nhc is the fine-structure constant and k£ = :ch .

If the radiating atom is placed in one of the lattice-points of the crystal, e.g.

in the point a = 0, then in equation (35) we must replace function (31) (which is
equal to (31°) with the lower signs) by the function

g eikl%—a] car
SN o eike 36

of the radiation field externally interacting with the atom. This function is equal to

e LRx g p it Byx
Zm ”mf KA TR (36)
q

2m

in the integral ¢ changes continuously, in the series ¢ = —— m). In the above inte-
a

gral the path of integratiorn in the complex plane passes over the pole —k° and under
the pole k°.

Let us observe that this integral does not depend on k. Thus the divergence of
this 1ntegra1 at the point % =0is compensated by the divergence of the series at the

point = 0 independently of the value of k. We chall use this fact when estimating
the probability of emission.

If the wave length 2 = 2a/Re k is greater than the double edge length of the
crystal cell a, then in functions (31) or (36’) the term with m = 0 is much greater than
the following ones and we can approximate these functions by the expression

etikx

wt
—& (*—1)
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Equation (35) takes now form

zZ
. (Re n) -*.g o - ’-C: »
w (9.9 = a( B{Zjla, i IA>IZ) ey, @9

2"5\71

Formula (35°) differs from the corresponding emission formula in vacuum only by
the fact that in (35°) the refractive index n appears in the coefficient and in the exponent.
The difference in the exponent will not appear for electric dipole radiation (where we

put exp (— zkx) = 1) but only for magneu(: dipole and electric quadripole radiation
(where we put exp (*zkx) =1 zkx) The probability of emission for electric dipole
radiation will be multiplied in comparison to the probability in vacum by the factor
(Re n)3|n|%, for magnetic dipole and electric quadripole radiation — by the factor
(Re n)3.

If the wave length A is smaller than the double edge length of the elementary
cell (but greater according to our assumption than the domain of the lattice where elec-
trons interacting with radiation are asqembled) then besides the term with m = 0,

then terms for which the value of ¢ is near to F 2k (and 1 = 2a |m|) will play an

27 -
important part. For 51mp11c1ty let us assume that Re’k has the form = mvo(m0 —a ve-
a

ctor with inte~ers as components). Then, using only terms with m =0 and m =
T 2m,, we approximate the function (31) or (36’) by

64 th + eukx

?2‘ ()l2 — 1)

Formula (35) will then take the form

w (9, @, g) —a (({{6{1)\?(0 B Z “e(e ’k"z 4 e:kx‘) 4>I2) (35”)

A-B 27'[]/'1"2 1 w=wp—w4
! i—=

where Rek = — m;. Thus we can see that for electric dipole radiation the proba-
P .

. . . = T .
bility of emission of a photon with the wave vector Re £ = — m, distinctly increa-
a

ses in comparison with vacuum (4(Re n)? /In]2 times in our estimation), whereas for
magnetic dipole and alectric quadripole radiation the probability of emission
stro_{lgly decreases (it is equal to zero in our estimation). For other wave vectors
Re k the approximate value of the emission probabilty is contained between the values

(35") and (357).
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4. Final Remarks

The considerations contained in this paper can be transposed to the case of
a radiating nucleus in the crystalline medium, if only the wave lengths of the y -ra-
diation are greater than the dimensions of the nuclei of the medium, for only then
the nuclei can be treated as points. But then we must neglect the interaction between
-radiation and electrons of the medium, because the clouds of electrons diffuse the
points of the crystal lattice.

This paper arose from the initiative of Professor A. Soltan, who was
interested im the question of the influence of the crystalline medium on
emission probability.

The author is also indebted to Professors W. Rubinowicz and L.
Infeld, and to Dr M. Giinther for valuable discussions and their kind in-
terest in his work.

KPATKOE COJIEPKAHUE

Kpyauxkosckuil, Teopua usaytenus g kpucmaie

Hacrosimaa pabora COJAEPIKUT TCOPUIO M3AYHEHMA aTOMa IIOIDYZKEHHOro B KpuU-
CTanaMdeckoil cpege. B mepBoil wacTuM aBTOP BLIBOAUT YDABHEHMs DaccMaTpMBaeMOro
KJacca npobiem 113 (popManm3Ma KBAHTOBOM SaeKTPOAUHAMMKHY. TIOABNAETCA NpU 9TOM
B dopMamu3Me Kaxkyujasca macca ¢oToHa. Bo BTOPOM wacTM aBTOp DacCMaTpuUBAeET,
[IPM HEKOTOPLIX YIIPOLIAIOUMKX I[IPEATIONOYXKEHMAX, OlIpefieeHne KaskyIeica Maccen!
¢oToHa M pellleHne YPaBHEHMII IIOJA U3JNyYeHUA B Kpucrajure. ITojgyyeHHoe DpeIlCHHMe
COrJlacyerca € KJACCUYECKMM pPe3yabTaToM DBajbja. TpeTbsa 4YacTb COUEPIKUT OLICHKY
BEPOATHOCTM 9SMUCCHMM M3JAYHeHMsa B Kpuctanne. Jaa piauu BOJHBI BUIA 7\=2a[rﬁ[
(a — gnuaa pebpa 3JeMeHTapHO! A4YEHKH, m — BEKTOP, KOTOPOTO KOMIIOHEHTBI — I~
Jble 4YMCJa) BO3PACTAET BEPOATHOCTH BMMUCCUM AJA AMUIIONLHOIO SJEKTPUICCKOTO U3NIY-
YeHMd, 4 YMEHbIIAeTcAa — g AUMIOJIBHOTO MarHMTHOTO M KBaAPYHOJBHOTO 3JIEKTPU-
J@CKOTO.
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