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Wir verallgemeinern eine urspriinglich von Weyssenhoff vorgeschlagene Methode
und beobachten das Verhalten von relativistischen fliissigen Tropfen bei Geschwindig-
keiten, die derjenigen des Lichtes gleich sind (oder nahe kommen). Es folgt daraus,
dass fiir v = ¢ neue qualitative Eigentiimlichkeiten auftauchen und dass Tensor- Grossen
durch Pseudotensoren, im Sinne Weyssenhofls ersetzt werden. Als Beispiel geben wir
die vollkommene, aus Tropfchen bestehende Fliissigkeit mit einer nicht nennenswerten
Restmasse und zeigen dass, wenn wir sie mit einer einfachen Verbindung zusammen-
bringen, die daraus entstehende Fliissigkeit genau der vor kurzem von Lee und Yang
vorgeschlagenen, zweikomponenten Neutrinotheorie entspricht.

Introduction

In two recent papers the general theory of relativistic fluid masses was treated
from two different points of view. In the first, Bohm! and one of us (J.-P. V.) have
established directly the physical signification of the well-known Weyssenhoff equa-
tions of motion for such bodies. With the help of the new concept of center of matter
density (which corresponds to the classical notion of geometrical body center in non
relativistic mechanics) it can be shown that these equations represent the relative
behaviour of this new center with respect to the usual center of mass. In the second
paper? we gave (in collaboration with F. Halbwachs) a Lagrangian formulation of these
equations with the help of a set of kinematical variables describing the rotational
orientation of the element of the fluid which we call Einstein-Kramers variables. The
utilization of these variables is valuable for various reasons which we have exposed
elsewhere.?

1 D. Bohm and J.-P. Vigier, Phys. Rev., 109, 1882, (1958).

2 P. Hillion, F. Halbwachs and J.-P. Vigier, Lagrangian formalism in relativistic hydrodynamics
of rotating fluid masses published in Nuovo Cimento, 10, 817 (1958).

3 See ref. 2 and also F. Halbwachs, Thesis (Paris) to be Published at Gautier-Villars, (1959) under
the title ,, Recherches sur la dynamique du corpuscule tournant rclativiste et I'hydrodynamique des
fluides 4 spin®.
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In this paper, however, we want to study a special case of the latter formalism,
namely the physical behaviour of rotating fluid masses for velocities approaching the
velocity of light.

This problem is interesting for three main reasons. In the first place, the study of
the classical behaviour of extended bodies at such velocities might give useful indica-
tions on the behaviour of matter in the high energy domain: in particular for temper-
atures corresponding to such velocities. This should eventually be applied to the
theory of collective excitation in high energy plasmas, and to the so-called cosmic
“Jets”.

Secondly, it might pave the way for a quantization of classical extended bodies.
when v = ¢.

Lastly, as we shall seé, a perfect continuous fluid of a special type of relativistic
fluid droplets with vanishing rest mass connected by simple tensions satisfies exactly
the laws of motion of a two component neutrino field.

We wish to stress, however, that independently of these applications the question
of the behaviour of particles extended in space for velocities approaching the velocity
of light is interesting as such. So far as we know it has never been treated except in
a qualitative way.* This is only natural as long as one remains attached to the basis
idea that particles are point-like and devoid of internal structure.

Evidently in that case all that is needed classically is the description of the particle
world-lines. On the contrary if the particles can be described by an energy momentum
density 7,,, and current density j, enclosed within a time-like tube it is clear that they will
be modified by external motion. For example, the particles shape flattens perpendic-
ularly to the velocity as a consequence of the Lorentz contraction and, at the limit
v = ¢, is reduced to a plane section. For high acceleration its various points contract

at different rates thus modifying the internal distribution of matter and energy.

In this paper, we shall show that the kinematical variables introduced by Ein-
stein and Kramers (which we have used to describe the internal states of the relati-
vistic fluid masses) provide a convenient way to treat this problem mathematically.
In section 1 we shall give a brief summary of the Lagrangian formalism in terms of the
E. K. variables. In section 2 we shall see what happens to these variables when the
velocity is increased up to the velocity of light. In section 3 finally, according to the
preceding discussion, we shall study a particular case of relativistic fluid droplets
which when accelerated up to the velocity of light and coupled in a simple way, be-
have like neutrinos satisfying the two component spinor theory recently proposed by
Lee and Yang.®

4 With the exception of an attempt by Weyssenhoff, Acta phys. Polon., 9, 7 (1947).
5 T. D. Lee and C. N. Yang, Phys. Rev., 105, 1671, (1957).

A. Salam, Nuovo Cimento, 5, 299 (1957).

L. Landau, Nuclear Physics, 3, 127 (1957).
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§ 1.

As is well known the study of extended relativistic fluid droplets rests on the
idea that one can introduce integral quantities which correspond to average or global
properties of the body. In this way the study of the internal complex motions can be
left aside and replaced in the first approximation, by the laws of motion which govern
these global quantities.

We thus start® from the basic assumption that the particle is comparable to

a fluid mass with conserved energy momentum density 7

w and current density j,

which vanish outside of a time-like tube defining the physical limit of the droplet.
One then defines immediately six physically important global quantities, namely:
— The total energy momentum vector

1
G!, 55 'isz”4di)

z
(where dv denotes a three dimensional volume element of a plane section )

which determines the inertial Lorentz frame I, (in which G; = 0).
— The centers X and Y of mass and matter density defined in /7, by the relations

X3 ([ TS dugy = [ 49 TS do;
pN pN

and
0 0 00 7 0.
Y, {fh dv’} = kah di®;
2 2o
the latter moving along a world-line with the unitary tangent four velocity v,. The
index o denotes the fact that the quantities are evaluated in the frame IT,.
— The angular momentum M, with respect to the center of matter density

1 . }
M =~ f [(xw — Yy) Ty, — (5o — Yo) Ty, ] dv
5,

Now, if we denote by A the derivation of a quantity 4 along the world-line fol-
lowed by the center of matter density (4 = v, d; A) we can establish the fundamental
laws of motion

G,=0
M, =G,v,—G,v (1)

v Vu

8 See references (1). From now on we shall use the same notations. Greek indices ¢ vary from
one to four and denote the usual tensor indices — latin indices vary from one to three and denote space —
like components -— indices repeated twice are summed over all possible values — We work in Minkow-
ski’s space time.
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which combined with a Weyssenhoff-like condition (such as M, v, = 0) determine
completely the behaviour of the global quantities attached to the droplet. If instead
of a single droplet one considers a perfect macroscopic fluid” made of such droplets
one can define, instead of the preceding tensors, density relations obtained by multi-
plying (1) by the scalar density ¢ and adding to them the relation

0=23,(0v)=0

As was pointed out elsewhere, this procedure has the advantage of introducing
into the formalism the mathematical methods of field theory and involves no disad-
vantage since the droplets are assumed not to interact.

The passage to Lagrangian formalism rests on the introduction of the Einstein-
Kramers variables. They consist of an orthogonal set of four unitary vectors al
{The index & varies also from one to four though it does not mean a vector index)
one of which a{¥ is identical to v,. This frame is attached to the center of matter density
of each droplet which constitutes the macroscopic fluid, and its rotation represents the
instantaneous rotation of the droplet through the relations

@, = 4 (60 — a? a9)

which determine the angular four velocity.

We are now in a position to demonstrate the following general theorem®. If
in the first approximation M, is a general function of the o and not of their deriv-
atives, the equations of motion (1) are just the conservation equations associated
with the Lagrangian

H s 4 5
=1%p M 0,5 + 0my ¢t +icga,d, S+ 4, (a,ff) a® — 0,)

The physical signification of each term is clear. the first term § oM z,4 cor-
responds to the rotation energy, the second - m ¢? to the rest mass energy, the third
to the conservation of current and the last to the orthogonolity and unitary condi-
tions of the al(f) variables.
The demonstration of this theorem is simple. It has been established by Belin-

fante and Rosenfeld that the canonical energy momentum tensor deduced from

a lagrangian L of variables ¢, namely: ¢, = _ oL 94 Gy — 6 L
(9 qs)
is conserved as a consequence of the field equations, namely
d,t,=0 )

If we can write ¢ M,; as m,; where m,, (a,(f)) is the average angular momentum
of the droplets which constitute the macroscopic fluid at a given point (so that the

7 In hydrodynamics this means a fluid without sources or sinks made of such elements without
interaction; the center of matter density of each droplet following a given line of flow.
8 Which generalizes the results of reference (2).
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total Lagrangian is just the Lagrangian of the individual droplets § M, w,,+ mgc? +
+3,, @® a — 4,) multiplied by ¢ plus the Lagrange conservatlon condition
zcgaff) 9, S we get by variation with respect to ¢ and using a® o = §,,:

L=0.
As a consequence the energy momentum tensor ¢,, becomes:
t,uv = gy Uy

with g, =0@,S+4m,ald,af) = 06, and the corresponding conservation
relation 9, ¢,, = 0 can be written:

8, =0 )

In the case of density quantities, the dot implies, as it is well-known, the derivative
along the local current line, that is: g, = 9, (v, g,)
The next step is to write the second Rosenfeld-Belinfante conservation relation:

9}. 77 B % (t,tw - tv,u) (4)

where

rs oL ‘
Suonn = Sum 50Grq) ¢

€ representing the infinitesimal Lorentz transform on the variables o that is
8 _
Sh =3 (04, 05, — 04, 05,)

This gives immediately as a consequence of our assumptions

fmll - m,uv 05.4)
and relation (4) becomes
¢ M/w = rhm =8uU — &V, (5)
(with v, = ica®, h2 = |M, apl and @ M,z = m,5). This demonstrates our theorem

since relations (2) and (3) are evidently identical with. equations (1).

We notice further that any given form of mgg will then correspond to a particular
type of internal motion. For example one could start from a Lagrangian satisfying
Weyssenhoff’s condition

L =g myc?+ ico a3, S + ico hy aPaPd,ad + o Ay (@Pal) — d,)  (6)

which we shall utilize later. In this Lagrangian:

@_ . @_ 1
@ = Vpjics  Gu 26(}7 10 Euvap Uy Mgp (7)
1 3 4 2). 2) __ 3 4 1
o = £00aP@ P a®;  a® = — £,.,aD P P
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§ 2

According to our program the next step is to see what happens to this formalism
for velocities approaching the velocity of light. This could be attempted in various
ways. The first and most straight forward is just to accelerate the particle in a given
direction and apply the usual corresponding Lorentz formulas to all tensor quantities.
We have attempted that but it leads to very complex calculations which finally give
the same results as the more simple and powerful method which we shall now de-
velop; so we shall not discuss it in this paper.

This other method rests on a very simple remark made by Weyssenhoff. If one
follows the world-line of any given particle (in our case the motion of the center of
matter density), the most natural parameter is the propertime v on that line (—c2dt2? =
= dx, dx,). Now, if that line becomes tangent to. the light cone dr = 0 and 7 loses
all physical significance. This shows that relations (1) which depend on 7 must be
transformed for v = ¢ and that 7 is not a suitable parameter for such velocities.
Accordingly Weyssenhoff proposed to drop 7 as parameter and to replace it by another
parameter p on the world-line, such that p will still flow even when it becomes tangent
to the light cone. The only restriction on p is to impose upon it the restriction

, dt

T = Eﬁ > 0
so that the condition 7" — 0 implies d7 = 0 which means the particle moves with
the velocity ¢. One can then define the world-line followed by the center of matter
density not by the unit vector:

ica® = _dx,
“ dr’
but by another vector:
_dx,
= 2
dp
so that:
— o1 4@
w, = ic7 a,
and
— 2 /2
wyw, = — 1
If 7 —> 0 we then get
w, w, = 0

and the world-line becomes tangent to the light cone. In order to avoid confusion it is
necessary to stress the fact that w, is not an ordinary four vector but a four vector
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depending on the parametrization; its four components transform like components
of a four vector when the coordinates are transformed without change of parametri-
zation, but they are all multiplied by a common factor dp/dp when the parametrization
is changed from p to p.

As Weyssenhoff remarked it is even possible in a given frame to take as para-
meter the ordinary time ¢ = x,/c. In this case we change the parametrization for every
change of coordinate system in such a way that p remains equal to ¢ in the coordinate
system of interest. Then w, becomes u, = x, [dt with the components® (u, ic). It is
then evident that the four quantities u, do not form a four vector neither in the ordi-
nary sense, nor a four vector depending on the parametrization (this would only be the-
case if p was a scalar parameter) but form instead a new geometrical object which we
can call “pseudo-vector”. The components of such a pseudo-vector transform like the
components of vector but with an additional multiplication factor dt/dt = dx*/dx,

when we pass from the frame 2’ to a frame 2. The magnitudes of a pseudo-vector
(41,)", or any scalar product such as (G,u,)" behave like “pseudo-scalars” and are
also multiplied by dt/d: in the case of a Lorentz transformation. As a consequence,
the pseudo-vector u, has, in all possible frames, the ordinary velocity » as space com-
ponents and ¢ as time-component. In the limit » = ¢ one gets evidently:

u, u, = 0.

Weyssenhoff’s method for the passage to velocities approaching the velocity of
light is now clear. In any equation one replaces derivatives with respect to the proper
time T by the expression:

d dt d

dc~ dv dt
and pass to the limit by pushing 7’ to zero. More generally one can write laws of
motion in terms of any parameter p, satisfying the condition v = dz/dp > 0 and
pass to the limit v = 0.
To illustrate this general method, let us treat briefly the problem of the limit of
Weyssenhoft’s equations for a particle moving with the velocity of light.

. . dr
Let us choose as parameter the ordinary time ¢ 7" = —- ] and denote by f” the

dt

time derivative of a given quantity f so that:

d
f= Zif‘;:a‘lf_’_ wdpf (=1, 2, 3)
If we now take for example the relation

G, =0

u

® The u designs a three vector.
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it can be written@—— G, = i, G,=0

4
dvdt " 7 dt

When 7'~ 0 this implies
G, =0.

Applying the same reasoning to the other equations (1) one obtains the follow-
ing laws of motion:

G —0
Jl;ﬂ = Gyug~ Gpu,
]Wa';3 ug = 0

1 .
If we start instead from G,=m,v, + —5 M, v and multiply both members by
=

7'% we get:
! 7 1 ’
G.72=mqu, 7 —%——CEM,,,u,.
The left hand side goes to zero with 7' and multiplying by the matter density ¢
we find for v—>¢

Ho Uy + Zé Myy Uy = 0

with
r _ ’
/lo—zég,‘u,,—gmo'c.

This implies that we introduce a density uy of proper mass which goes to zero
with 7’ since it would take an infinite energy to push a non zero rest mass particle
to the velocity of light.

As a consequence the equations of motion for a fluid of Weyssenhoff particles
can be written:

’ ’ ’
o =0 & =0 M, = g,U, — 8 U,

m,, u, =0 gMu”=0 mm,u:,zO.
Of course, these relations are not independent and reduce to the set:
G,=0 (8a) M,, = G,u,— G,u, (8d)
G,u, =0 (8b) M,u,=0 (8e)
=0 (8 8
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However, this. procedure of Weyssenhoff is rather cumbersome since it implies
going to the limit of every equation of motion separately and in more complex cases,
generalizing his simple model?, it proves often very difficult.

In order to avoid any trouble we therefore propose to generalize Weyssenhoff's
idea in the following way:

If we utilize a Lagrangian formalism in terms of the E. K. variables the behaviour
of particles for v 54 ¢ is clearly determined by the corresponding Euler equations.
As a consequence if we can determine the limit of these variables we can determine
the corresponding limit of L for v — ¢ and deduce therefrom the corresponding
laws of motion, which are just the limit of Euler’s equations.

This reduces our problem to two steps:

a. Determine the limit of the E. K. variables for v — ¢;
b. Write the corresponding Lagrangian.

The determination of the limit of the E. K. variables can be worked out with the
help of Weyssenhoff’s pseudo-vectors when p = t. If we recall the definitions (7)
we can write instead of ag*) the vector oz/(f) = u,fic that is

@ . o 4D
@, =T a,
so that af? &Y = 0 for an isotropic world-line (v = 0).
This relation can be written:

P o =aPa®+aPa®=0 (k=123 ©

Let us now put p = ¢ and work out the limit in that case.
We have u, = {u,ic} o =1 and we can replace a by b = {{, 1}
with the relation (¥ ¥ = — 1

. i
In the same way, instead of a@® =

" ZCQ ho tw’aﬂ v, m’uﬂ

we can write:

@ _r
C 29 cho nraf

u, Mg
that is:
@) _ 4 43 4 (3) (37
al = 7' a) with &}’ &) = 0. 10)
As we have:
3) 4@ _
a,’ a, =0
we can also write:

a® a® = 0. 11

10 Considered for example in ref. 2 and 3.
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The three relations (9) (10) (11) evidently imply that
o = 1 o 12)

where 1 is a constant.
This results immediately from the fact that

o = VZ @®)2, iaP = VZ (ajga))z
: 7

and

_ acff) “ff) — V Z (“54))2 V 2 (algs))z _ “24) “23) 50
: J

which results immediately from Schwartz’ inequality. As one knows the equality sign
is only possible when relation (12) is satisfied.

As we shall see later this relation implies that the spin is either parallel or
antiparallel to the velocity, when v —> c.

Let us now consider the limit of ocil) and ocff). These limits, which we shall call
b and bP satisfy evidently the relations

bO 5P =0 B p® =1 (13)
D 5P = 0 bP b =1 (14)
pD B =0 bO B — 0. (15)

Let us denote by 3 (r=1,2,4) (k=1,2, 3) the space components of the
quantities oc,("). The relations (13), (14), (15) become for v—> ¢

ﬁ(l) ﬁ(4) b(l) b(4) — b(l)

/3(2) /3(4) b(2) b(4) b(2)

Ig(l\ 5(2) b(l) b(2) (16)
ﬂil) /3%1) =1— (bil))z

BP AP =1 — (6P

where the first member is the three dimensional scalar product. These five relations
are equivalent to four independent relations. We still need four relations to determine
b and b(P completely. To get them let us pass to the limit for v = ¢ of the definition

of a(a) We have:

3) — @) (1) ,(2)
@, = €uap Qy By AF -

The time cOmpOnent Of a‘fl) beC()meS:
3) _ (4 (1
a(4 ) = 84 ij k ) ) )

Multiplying both membere by 7’ and taking the hmlt we get
Y = oy, B0 B0 D

BY = B0 - (B A )



Fasc. 2

Vol. XIX (1960)

ACTA PHYSICA POLONICA

Relativistic Hydrodynamics of Rotating Fluid Masses 255

where the symbol A denotes the usual three dimensional vector productll. As
b = 2 b with A = constant.
Then:

3= (B 1 B) (17
The space components of a® become
B = b = £, b b bP + 4, 6P bP bP - £, b b b
— 59 GO 1 P GONFD + 59 GO AT

Multiplying these relations by 7’ and going to the limit we get the vector relation
(where b are numbers):

FD = b® (FONFD) 1 bD (FD NBD) + 6D (FD N f#)
replacing f® by 4f® and noting AP — 1, we find:
AB® = FONFD 4 f@ A (pD FO _ pD fa),
If we calculate now the product A (B A§®) we find
A(BDNABD) = BOABD LD 4 BOA[FD A D O — b F2Y)]
taking into account the well-known vector relation
ANBAC=A-COB—(4-B)C
the preceding relation becomes
AETNFD) = (BO - g2y fO _ (FO . gy g 4
+ 6P (B - B) — b (B - fO)] B —
— (B - BD) (6P FD — b fy,
Taking into account relations (16) this equation can be written
(B NF®) = P b B — O — ()2 B2 + (B + ()2 b —

— (69)2 BD] BP — bD (5P FD — bD ) ABD A D) = — B 4 p@ FW
so that
bP BO = f — 4 (O N B) (1
If we eliminate ¥ between (17) and (15) we get

bP 2= [ — 2.(B A FO] (B N B®)

as

BD . (FD A BV = 0

11 The dot denotes the three dimensional scalar product.
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then
bP = — (B9 N\ fD) - (BD A D),
Utilizing :
A-BANCO=C-(ANB
we gei ‘
b — — D (B A D A FV) =0
and a similar calculation gives 5P = 0.

This essential result shows that for v — ¢ the vectors go to system of 3 pseudo-
vectors in the sense of Weyssenhoff. The relations

aff) a® = 0, &m=1,2, 34
afl”) a/(f’ = §" ur=20,1, 2 3
valid for v %= ¢ become for v — 12;
bg') b](-') =0, rs=1, 2, 4
b b = o Lj=1,2,3
and the system af) tends towards the pseudo-vector system:
a/(;l) - bff‘ _ (13'24), 1)
a® —> 2P ) (19
aP - bP = (B, 0)
a® —> b® = (82, 0).
The next step before we determine the limit of L is to replace the fluid density o
which is equal to the ordinary density in the local rest frame of the fluid at a given

point by a new quantity for the velocity of light. The new quantity must evidently
also satisfy the limiting form of the conservation relations

9,1(a)=0 (20)

as

1
@ __ - @
a4 = T’ a,
this becomes

4
O (-,;_ “134)) =0

12 These relations are similar to the equations which define & unitary orthogonal system of ordinary
vectors in three dimensions; but here they apply to pseudo-vectors at the velocity of light which we can
now treat as ordinary vector variables in our Lagrangian formalism.
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and if 7/ — 0 we can assume that g/7" = Sy 7% 0 so that the limit form of (20) is just
9,(Sp bl = Sy =0 (1)

As S, depends of ¢ = x,/ic the relation (21) must be a consequence of the equa-
tions of motion and cannot be assumed a priori as in the usual case with v # c. As
we shall see this follows from our treatment where there will be no Lagrange supple-
mentary condition implying the conservation of S,.

As an example of step b. we are now in a position to pass to the limit of Weyssen-
hoff’s Lagrangian (6). We define this limit as the sum of the limit of various terms
of the initial Lagrangian and shall justify this procedure by showing that we get cor-
rectly the relations (8) which describe Weyssenhoff particles moving with the velocity
of light.

Starting from (6)

L=omyc®+icpa®d, S+ icohyal®a’d, a® + 4, (@?a —46,,)
for v ¢, we have (with my = 0):
0> S,
o o - b®
o > B 22)
a® > b®

4 & 5
a® o — 8, > b b0 — o,

i

and, as here, according to a preceding remark concerning S, we do not need the
Lagrange parameter 9, S the equation (6) becomes at the limit v —c.

L = ic Sy hy b2 b} 3, b7 + 2y; (b] b — 8;). (23)

The deduction of relations (8) from the Lagrange function (23) is very simple.
The canonical energy momentum tensor associated to L is just:

: oL
=90, b b;

= ic ho So b® b 9, b
— g” u

9,07 — 8, L

with:
8. = Sy (ic hy bgl) d, b§2>).

The conservation equation d,¢,, = 0 is then just (5)

g =0
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Remarking now that Euler’s equation with respect to the variable Sy is ?L[dSy = O
we find
g, u, =0
that is precisely (5).
The relation Sy = 0 results immediately from a simple combination of Euler’s

equations, derived from the preceding Lagrangian.
Variation of (23) with respect to b gives:

ho ¢ So b + 24,8} = 0 (a)
Variation of (23) with respect to b{® gives:
hoc b0, (Sy ) + hg e So b — 24, b = 0 (b)
So if we multiply (a) by b, (b) by b§® and add the result we find:
22, (b1 B — BEBY) + By c Sy (b B + b b)Y - hy e bP bD 3, (S, b)) = 0

that is:
9, (Sp b)) = 05

since the first and second term vanish because b{? b = bV b = 0 and Ay is
a symetric tensor.

The last two relations m,, b} = 0 and m;“, = g,v, — & U, will be obtained from
the Belinfante-Rosenfeld tensor f,,,.

Indeed utilizing definition (4) we find:

S = i€ i Sy (6D 6P — KD bD) bP = m,, b
with
m,, = ihg Sq (B 6P — b2 bP);
so that relations
D Sa = by — by
give
M, = g, b% — g, b

The last condition m,, b5 = O results immediately from the orthogonality rela-
tions f#; f; = 0, deduced from the variation of the Ajs.

To finish this section we would like to make two remarks.

The first is that as a result of the Lorentz contraction Weyssenhoff particles
moving with the velocity of light flatten into disc shaped forms in the plane orthogonal
to the velocity. The ‘spin is then either parallel or antiparallel to the velocity. Taking
into account the fact that 8! - 82 = 0 one sees immediately that the Lagrangian takes
the simple form

— _ M2 Ok _
L= 2 2 dt

ho So [,y dbP @ db§’
b dt b =g

J + 245 (6 B — 85)-
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If we remark that the first term in the Lagrangian 5 b{* 9, b{? is just the scalar
product of the angular velocity @ on the four velocity bff) we see that the equations
of motion imply that this term vanishes so that the particle is reduced to a flat dise
which does not rotate around its axis.

§ 3.

According to our program, the last section will include the comparison of the
preceding perfect fluid constituted with Weyssenhoff particles with the hydrodynam-
ical representation of the two component spinor theory of the neutrino®!® (recently
proposed by Lee and Yang). As we shall see, this comparison shows that the two are
identical when we introduce a simple type of tensions between those particles. We can
thus demonstrate the following theorem:

Theorem

A perfect continuous fluid of Weyssenhoff particles with negligible rest mass
which move with the velocity of light satisfies with suitable tensions the two component
neutrino equation: the two component spinor density defining all tensor densities
needed to characterize the fluids behaviour. To prove this result let us recall briefly
certain mathematical elements!* concerning two component spinors.

The first step is to establish a representation of 2 component spinors by tensor
quantities. If one starts from a right handed coordinate frame a right handed neutrino
field is represented by a right handed 2 component spinor ¢? (in all that follows
spinors are considered as ¢ numbers). Such a spinor transforms under a proper
Lorentz transformation

~

xp = a’;w Xy (1)3
by
¢ > o7 = A% ¢’ s
where A9 is a 2 X 2 matrix defined by the relation
(Ad)+ Uy Ad = a/w o, (3)3
where
o, = {0} 04} ()3

18 Cf. Takabayasi, Comptes-Rendus, 246, 1010 (1958).

14 The transformation properties of the 2 component spinor and its associated bilinear quantities
were developed in: Takabayasi, Nucl. Physics, 7. 237 (1958) The general mathematical techniques
to represent a two component spinor by tensor quantities is included in Takabayasi, Prog. Th. Physics,
14, 283 (1955) and Takabayasi and Vigier, Prog. Th. Physics, 18, 573 (1957) (especially in the
Appendix).
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o, are just the Pauli matrices and o, = io, is the so-called time Pauli matrix with

(10
% =10 1

indices * + T have here the usual signification and denote complex conjugation,
hermitian conjugation and transposition.
In the case of the neutrino we know that ¢ obeys the wave equation:

Jo ‘Pd + 0,9, ‘Pd =0 )3

0,9, 9°=0.
The complex conjugate of (5) is:
9# ‘pd+ Oy == 0. (6);

Similarly, a left-handed neutrino field @F is represented by a different 2 compo-
nent spinor (left-handed spinor) ¢f which transforms, under the proper Lorentz
transformation (1), Like

§ > = 5 g @,
where
At o, Af = a,, o,
with
O';: {_Uk’ad} = _GI
A¢# is related with A? by:
A = (A7)} 8)s
The wave equation satisfied by ¢f is:
o9 — 0,9, =0 9)s
i. e,
0,9, 9, =0. (10);

If we consider a transformation

¢? > ¢ =TI ¢” (11),

where I is a 2-by-2 matrix defined by

I''=_-T, I*I'=1; ¢of=~Itqrl (12),
(note that (p#)+ = ¢TI

then we can show that ¢?' is a left-handed spinor. So we call the transformation (11)
a chirality-conjugation.
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Now, the only possible non-vanishing bilinear covariants formed with ¢¢ are
the following (in so far as we do not use derivatives):

Si=9" 0,9 (13);
and
E,= (") 0,9 = ¢TI+ g, ¢° (14)3
S,‘f is a real 4-vector, while &, describe 3 independent compoanents of a self-dual tensor.
In other words, writing real and imaginary parts of &, as:

K=o 6+ £

1
D W
2 = o (6~ £ (1),
we see that A and A(® constitute the space and time components of a real anti-
symmetric tensor &,,; i. e.,

A= §ij
iR =&y  GH~Q 23 (16)

Note that each of S¢, AP and A( transforms as a 3-dimensional vector for
pure space rotation.

We can now prove that S7 and £, satisfy the following identical relations:

S5 =0 A7),
&6 =0 (18)g
£ S§ =0. (19)s

It can immediately be shown?® that the spinor ¢ is equivalently represented by
the set of quantities

{Si &
restricted by the conditions (17) — (19). Relations (17) — (19) are proved by using
the formula concerning the components of Pauli matrices:
(O0as OWap = 20ap Ouwp — Sap Sap

(see ref. (4)), and also the properties of I’ matrice (12).
In terms of ALY and AP, in place of &,, equations (18) and (19) mean that 4{,
A and S¢ are mutally orthogonal. Relation (17) can be rewritten as

(SH2=(S)? (5= Sili >0)

18 See reference (14).
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Furthermore, we can prove that:

(A2 = ()2 = (Sp?

with
PICREPICIPTY
A A = (S (20)5
st S5
If we therefore introduce unit vectors 5§’ by
R I et 2D,

b (r =1, 2, 3) span a 3-dimensional right-handed orthogonal axes; thus:
b;e b;e = 6rs b: b; = aik . (22)3
This completes the first step of our demonstration: the original spinor ¢ is now
equivalently represented by the set of variables:
a9 (=12 3) (23)5
i. e, by
{S b} (24)
and it is now clear that any expression of ¢? must be representable explicitly in terms

of (24). For instance bilinear quantities including 1-st order derivatives are represented
as follows:

(pd"' d, (pd -2, (p‘“’ (pd= ng b}e d, b: (26)5
and:

i
¢ 0,9, 97— 8, 0™ 0, 9% = — 5 ST ey 0] 9,1, (27)s

The second step is to show how the equation of motion (5); is representable in
terms of our variables (24);. First, we multiply (5); by ¢?* from the left and multi-
ply (6); by ¢ from the right, then add or substract the resulting equations, then
we obtain:

9o (9 ¢ + 2, (¢** o, ¢) =0 (30);
and
@ 009" — g™ ¢) + (¢t 0,9, 0" — 9 gt a9 =0 @l
Equation (30) is nothing but
9,8 =0

uu

9o S+ 9, (S 6% = 0. (32),
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On the other hand, equation (31) is expressed by means of the reduction formulae
(26) and (27), as

b 9o b + § 4 07 9,83 = 0 (33)s
We then proceed in the following way: first we multiply (5) by o; to obtain
0;9 9" + 9,97 + i (049; ¢! — 0; ¢ =0 (34)s
Then we multiply (34) by ¢?" from the left, obtaining
@'t 0,909 + 9"t 0,07 + i (97 0,997 — 97 ;0,9 =0 (34),
then add or substract (34’) with its complex conjugate. The results are:
9o (¢ 0,9 +0; (9" ) + i {(¢*" 0, 9,0 — 3,07 0, 9%) — [i,]]} =0 (35)s
and

(@0, 90 97— 90 9% 0, 0N + (¢ 9, 97— 3, " ) + i {9, (9" 0, 9Y) — (L)} =0
(36)3

where the symbol (j, k) denotes the preceding term after permutation of the indices.
By means of the reduction formulae (26);, (27);, these are re-written as

d; S"o + 2, (Sﬁ bf’) + ij b§'> 2, bﬁ') =0 (37)5
and
(1) (2) 1 (r) (r) ! d 1,3
by’ 9, by — L bj do by’ + El ik 9,' (S5b») =0 (38);

The 6 real equations (37), and (38), are not all independent of (32); and (33);. The
relations, which are contained in (37); and (38); which are independent of (32); and
(33), are only the following:

9, (S3b}) = S2b3 9, b} (39)s
and
8, (STbY) = 5250 9, b, (40),

For instance, relation (37); results from (39); and (40);, by the procedure
(39); x BP + (40); x bV,

In this way we have obtained 4 independent real equations:
{(82)3, (33)5, (39)5, (40)5} (41)

which are equivalent to the original spinor equation (5); (which also contains 4 real
equations).
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The last part of our demonstration is just to remark that our equations of motion
(41), (together with the constraints (22),) result from the following Lagrangian density:

he 1
-5 S3(bx 30 b% + 5 Exg Y 9,080 + 2,,(b5 b, — 6,) (42);

L= 5

From this L, we can derive the energy-momentum tensor and intrinsic angular
momentum tensor of the field by the normal Belinfante-Rosenfeld procedure.
In the spinor formalism, the Lagrangian is:

fic
L=— 9 (9% 6,24 9 — 9 ¢t 0, ¢9). (43)

Using the reduction formulas (26)3 and (27)g, (43); is rewritten, then we get just
the first term in the right-hand side of (42). Adding 2,,(b}, b} — 4,,), we could thus at
once reach the form (42);. From this form the equations of motion (41); can be im-
mediately derived by variation.

The same procedure can be applied, of course, to the ¢f field?.

The physical interpretation of the Lagrangian (42); is clear if we take into account
the vector identity:

b} b3 9 b7 + i b3 91 b = % £ 039, B,
which results immediately from the orthogonality conditions on the &]. This relation
implies that if we denote by Ly, and L, the Lagrangians (10—2) and (42-3), we have:
Ly = Ly -+ ho S§ e b3 9, b,
= Ly + Qkk

If we denote by @,, the tensor O@,, = hy S &, b3 9, b} that is the contribution of
the O, term to the canonical energy momentum tensor.

We see immediately that such a term can be interpreted as a tension term binding
together the Weyssenhoff droplets (moving with v = c), constituting the neutrino
fluid. Indeed @, satisfies the well-known property of ordinary tensions namely

0,50 =0

The physical meaning of these tensions can be understood if we remark that the
divergence &, of the term

_gn 9L _
fw’l = g!" ) (9}. q,-) qs

(namely the Belinfante-Rosenfeld angular momentum density) is zero.

16 We want to remark here that it is not at all astonishing to find that our particles are described
by a two component spinor with a definite chirality. As we have seen only two possibilities arise for the
velocity of light: the spin is either parallel or antiparallel to the velocity corresponding to opposite chira-
lities. This was also pointed out by Wigner, Rev. Mod. Phys., (1957).
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Calling f,,; the term corresponding to Ly, we have then:

% SO m,uv = alf,uvl = % SO Suvzﬂ Qa bg = % (t/w - tm) (44)3

which is a known consequence of the neutrino equation.

Physically this means that the tension angular momentum is zero so that the
orbital angular momentum (x, t,; — «, ¢,;) is just equal to the variation of the partic-
les’ angular momentum. Noting that t,, = g, b3 + ©,, this can also be written:

7;1’;41: = g/.l bs — & bz + % (va - @vu)

which means that the variation of the total angular momentum (orbital plus spin) is
just equal to the torque exerted on any given droplet by the tensions of the neigh-
bouring fluid. We do not propose to discuss here any specific physical model which
would lead to such an interaction but remark, however, that it is certainly one of the
simplest possible types. Any other type resulting from a general @, (function of the
9, b5 would in general contribute to the f,,, and 9, f,,, introducing supplementary
angular momentum.

As we said before, this result can be interpreted in the following way: Consider
a continuous distribution of a two component spinor satisfying the neutrino’s equa-
tion (5)3. With the help of this spinor you can determine variables by the relations (13),
to (15); which satisfy (42); and therefore characterize completely a continuous fluid
made of Weyssenhoff particles with negligible rest mass moving with the velocity of
light. The lines of flow tangent to S3 are followed by the center of matter density of
the corresponding droplet and the three frame b} which varies along that path de-
termines completely the evolution of all physical properties (angular momentum, etc.),
which characterize Weyssenhoff’s motion for such velocities.

In other words, in this last section we have used a new set of parameters (¢9)
instead of the E. K. variables to describe the droplet’s behaviour. A similar idea had
already been proposed by two of us (T. T. and J.-P. V.) to describe the motion of
Weyssenhoff’s particles at ordinary velocities!?. Only in that case one uses 4 component
normalized Dirac spinors y and Dirac’s matrices y,. The correspondence with the E. K.
variables a is given by af = y* y,; a3 = pT y, y; v and a}, + ia2 = p* y,p. This
has also been proposed by Giirseyl8,

Conclusion

As we propose to discuss in detail in another paper some of the physical conse-
quences of the preceding results we will limit here the discussion to a few remarks.
As we said before the first two solutions give a general method to treat the be-
haviour of any continuous energy-momentum and current distribution enclosed

17 T, Takabayasi (unpublished). Unal and J. P. Vigier. Comptes-Rendus. 245, 1787,
1891 (1957).
18 Giirsey. Nuovo Cimento 5, 784 (1957).
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within a time like tube by using E. K. variables. This can be applied to many physical
problems and an attempt to utilize this in the case of the beams of high energy acceler-
ators is under progress at the Institute Henri Poincaré.

The second remark is that we have obtained in sections 2 and 3 a concrete com-
pletely clear relativistic model of the hydrodynamical representation of the neutrino
equation. It includes a simple “quantum coupling” corresponding to “quantum poten-
tial” terms in the hydrodynamical representations of the other quantum equations.
It shows that the neutrino equation can be interpreted 1) as governing the evolution
of a probability distribution of neutrinos (with density S9) as in the usual interpreta-
tion of quantum mechanics or 2) as describing a real perfect continuous fluid of Weys-
senhoff with zero rest mass moving with the velocity of light connected by the ten-
sions 0, 3) as giving a real physical model of the behaviour of the real physical
wave u associated with the neutrino in the causal interpretation of quantum mechanics
proposed by de Broglie, Bohm and one of us (J.-P. Vigier)!®.

The third and last remark is that such an hydrodynamical representation of the
neutrino equation paves the way to many interesting developments. For example in
a subsequent paper we shall demonstrate that a mixture of two such perfect fluids
with a spin-spin interaction leads to hydrodynamical equations which when expressed
in spinor variables correspond exactly to the non-linear equation recently proposed
by Heisenberg and Iwanenko?.

We wish to express our gratitude to Professors L. de Broglie, D. Bohm and to
Dr. F. Halbwachs for the interest shown in this work and for various valuable sug-
gestions. Professor Bohm in particular has greatly contributed to the clarification of
our model.

Appendix

To demonstrate that at the velocity of light the set of E. K. variables a,i transform
into the three orthogonal pseudo-vectors b}, we can proceed in the following way:
we have the following relations:

4 Uu 3 4 1 2) (3) (4
af =T AP = gt 5 a =@ B Q)
c 0
and
4
»@® aﬁ af = 0, aﬁ a; = & (v, &, n~1,2,3,4) 2)

we defined the parameter b’

, db v?
b =d—t=]/1_c_2 3)

19 See for example: De Broglie ,,Une Interpretation Causale et non-linéaire de la Mécanique®.
David Bohm, Phys. Rev. David Bohm and J.-P. Vigier, Phys. Rev. The theory is also summarized
in Halbwachs, see ref. 3.

2 Thatis 9,9, ¥ —y {F¥—(Wty,P)y;} ¥=0.
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if we take:
w, = by, aP and o become b’ a, b’ al¥
80:
(" a®) (b aP) = (b ) (V' af’) = b2 4)
now if we define:
P =1limd o, PP =limd af? 5)
b0 b-0
and we have:
8 =8 =0 ©
‘8(3) (4) (7)
it results immediately from Schwarz mequahty that:
BY = 12D ®
where A is a real scalar.
Let us choose:
P =1 b =ip? (h~123) ©

b® is like a two dimensional unitary vector and
4) (4
P b = 1 (10
Let us prove that 4 = 4 1. For this, let us start with the relation:

@ & __ 3 (2)._ @ 4
a;’ a; a, Euvap Vg Op

which multiplied by b’ and going to the limit (taking into account the relation (8))
2o (DA 2) g4 9
iA (@B — al BiF) = &, B

the space components taken out of this expression are:

160 B — o B0) = e B )

and, as we have: a{’ =ia{" B = — ibf-‘” Y =1
A (@@ Ab®) = o b® — g® (11)

where the symbol — denotes a three dimensional vector.
From (11), we have:

22 (3D NED) (3D NBW) = (o) 5O — GOV) (@ 5D — D)

A2 (@ 3®) (59 b®) _ (3D . 5@z = oD oD H . 5O L GO . GO _ 260 GO . j®
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taking into account relation (2):

-

a0 .G =1 4 o g AP GD =1 4 o o@

G . 5@ = o a® . 5D = o

and relation (10):
it comes for the preceding expression: A% =1
and finally:

B = £ ipu®

Now to obtain the limits for ¢’ and a{’ let us suppose b’ sufficiently weak to
enable us to write:

ba® = if® + 5260 4 0, (b'Y (12)
blap = P + 16260 + Op (b'3) (13)

where 8 and 6 are space-like vectors, O, (6'2) and O,(b'?) are negligible quantities.
For b' £ 0, b'al®, and b'al? are not isotropic vectors and their norm must be
positive; of course, they are always orthogonal so we have

ifP 6P >0 (14)
ipP 6P >0 (15)
ifP (8% — o) =0 (16)

Moreover &Y =0 as Y =1 and:

pap— 2

we conclude: 5260 or 6 =0
let us apply (12) and (13) to the relation:

3 1,2 4
b a,f‘) = Euap afz) ag) ' a)

we obtain:
P 4+ b2 0P = €,,4p al’ a@ (B + ib' o)
or:
IBE = .5 0 aP B (17)
6@ = 18008 ald af,,z) oW (18)
The relation (18) gives:
— 8 = 3 - (GV A G®) (19)

5D = — o (G AGD), — a@ (6P AGD), — a @D N 6D), (20)
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Now, let us start with the relation:
Ha® = by a o ap
The same calculation brings to:
— 6 = 6D . (gD A G@) (21)
O® = — 6@ (@® A a®), — o (5(3) A a®); — aP (@® A 3(3)),. (22)
As 8P = 0 the equation (21) has two solutions:
8® = 23® 4 1 G® (23)
=0 24)

Let us consider the first solution. Let us multiply (20), by a® and by a® taking into
account relation (19); we have:

8950 = g0 5B 5. GO = @ 5O (25)

Because the orthogonality conditions, when we put (23) into (25) we obtain the
system:

A+ i@+ u qﬁ,l) a = afP 6P
3al) 0+ i+ af® ofp = afp 5 26)
The solution is:
A=l p=a® 8P =1+ @)+ @) @)
Now, with 5@ it is possible to calcutate 5@, Tt's sufficient to multiply successively
(22) by a® and a®, this gives:
FIO I I (R O B

ot -
0@ = »(a® A\ a®) (28)
If we bring (28) into (19):
— 0 = » (@D Aa®) - @V AG®) = v [(a® - a®) (@? - a®) — (@ - GP)?] =
= v [1 + (af")? + (a®)? = »68

This implies: vy = — 1
and:

5@ = — @D A a®) (29)
But the relation (14) writes:

b1 5% > 0 (30)
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and the relation (17) gives:
be- (@D AG®) =1 (31)
We see that (29), (30), and (31) are not compatible.

Now we have the second solution 5(3) =0
From (22):

8B = — & (@Y A 3@y, (32)

which implies (16), moreover (14), (15), (31) are verified if 6§ << 0. But bringing (12)
and (13) into the expression:

D @ 2) (1 3 4
(afl) a® — af‘) a®) b2 = Eurap (b'a; ) (b'af‘, )
a direct calculation gives:
ADAGD = 5@ 4 5D _ (5D + 6@) 5D = — 6@ @D AG® + 5®)

let us multiply this result by 5(4), taking into account the relation (31) and b5 — 1
we have:

§ = — 265,3) or 683) =—1
that is what we intend. Besides putting (32) into (19), we find:
@EDAGD) (@D ATD) = 1
which implies
(agl))z + (‘182))2 =0
or
afd = af¥ =0

this is the resulte which we wanted to prove.



