LETTERS TO THE EDITOR

SPINLESS INTERACTION OF SLOW NEUTRONS WITH A PARTICULAR TYPE OF RECTANGULAR COMPLEX CAVITY

By J. K. Kowalczyński

Institute of Experimental Physics, Warsaw University

(Received July 5, 1961; revised paper received October 31, 1961)

Let us assume a radial potential V of the form

$$V = V_0 = \text{const.}$$

for radius varying from 0 to a value R_0 not exceeding the range of nuclear forces, and

$$V = V_1 (1 + \xi i) = \text{const.}$$

within the spherical layer of inner radius R_0 and outer radius R, the latter being given by the range of the nuclear forces. Quite generally, we can put $V_0 \neq V_1$ ("steps").

Writing the wave function in the form

$$\psi(r)=\frac{u(r)}{r},$$

Schroedinger's equation for the problem under consideration reduces to

$$\frac{d^2u_i}{dr^2} + k_i^2 \cdot u_i = 0 \quad i = 0, 1, 2.$$

wherein

$$\begin{split} k_0^2 &= \frac{2m}{\hbar^2} \left[E - V_0 \right] & \text{for} \quad R_0 > r \geqslant 0 \\ k_1^2 &= \frac{2m}{\hbar^2} \left[E - V_1 (1 + \xi i) \right] & \text{for} \quad R \geqslant r \geqslant R_0 \\ k_2^2 &= \frac{2m}{\hbar^2} E & \text{for} \quad r > R \end{split}$$

since, for the case of low energies considered, we can put l=0. We assume V_0 , V_1 and ξ to be independent of the energy E; moreover, in order to simplify the notation, we write $k_2=k$.

On equating the functions u_i and their derivatives in the points of potential jumps, assuming a finite value of $\psi(0)$ and applying the usual method of computing effective cross-sections, we have

$$\sigma_{\rm el} = \frac{\pi}{k^2} \left| 1 - \eta \right|^2 \tag{1}$$

$$\sigma_{\rm r} = \frac{\pi}{k^2} \left(1 - |\eta|^2 \right) \tag{2}$$

with

$$\eta = \frac{(a+bk) + (c+dk) i}{(a-bk) + (c-dk) i} \cdot e^{-2ikR}$$

the real quantities a, b, c, d being of the form

 $a = (k_0 \cdot \cos k_0 R_0 \cdot \cos \alpha \varrho - \alpha \cdot \sin k_0 R_0 \cdot \sin \alpha \varrho) \cosh \beta \varrho + \beta \cdot \sin k_0 R_0 \cdot \cos \alpha \varrho \cdot \sinh \beta \varrho$

$$b = \left(\sin k_0 R_0 \cdot \sin \alpha \varrho - \frac{\alpha k_0 \cdot \cos k_0 R_0 \cdot \cos \alpha \varrho}{\alpha^2 + \beta^2}\right) \sinh \beta \varrho + \frac{\beta k_0 \cdot \cos k_0 R_0 \cdot \sin \alpha \varrho}{\alpha^2 + \beta^2} \cosh \beta \varrho$$

 $c = -\left(\alpha \cdot \sin k_0 R_0 \cdot \cos \alpha \varrho + k_0 \cdot \cos k_0 R_0 \cdot \sin \alpha \varrho\right) \sinh \beta \varrho - \beta \cdot \sin k_0 R_0 \cdot \sin \alpha \varrho \cdot \cosh \beta \varrho$

$$d = \left(\sin k_0 R_0 \cdot \cos \alpha \varrho + \frac{\alpha k_0 \cdot \cos k_0 R_0 \cdot \sin \alpha \varrho}{\alpha^2 + \beta^2}\right) \cosh \beta \varrho + \frac{\beta k_0 \cdot \cos k_0 R_0 \cdot \cos \alpha \varrho}{\alpha^2 + \beta^2} \sinh \beta \varrho$$

with

$$\rho = R - R_0, \quad \alpha = \text{Re } k_1, \quad \beta = \text{Im } k_1.$$

 $\sigma_{\rm el}$ is the total cross-section for elastic scattering, and $\sigma_{\rm r}$ — the sum of the cross-sections for all reactions including non-elastic scattering. Hence, the total cross-section is

$$\sigma_t = \sigma_{\rm el} + \sigma_r = \frac{2\pi}{k^2} \left(1 - |\eta| \cos \varphi \right) \tag{3}$$

wherein

$$\varphi = -2kR + \operatorname{arc} \operatorname{tg} \frac{e + dk}{a + bk} - \operatorname{arc} \operatorname{tg} \frac{e - dk}{a - bk}$$

The cross-sections thus defined coincide with the usual definitions of the mean cross-sections [1] in the range of lowest energies under consideration here, as no resonance extremums occur in this energy range.

If we put

$$a^2 + c^2 = p$$
, $2(ab + cd) = q$, $b^2 + d^2 = s$

we can write

$$\eta = \left[\frac{p + qk + sk^2}{p - qk + sk^2}\right]^{\frac{1}{2}} \cdot e^{i\varphi}$$

We now consider two cases: $\xi > 0$, and $\xi = 0$. In the former ($\xi > 0$) we have q < 0 which implies $|\eta|\neq 1$ although $|\eta|=1$. On applying de l'Hospital's rule once to Eq. (2) and twice to Eq. (1), we obtain the following limiting relations for the cross-sections:

$$\lim_{k\to 0} \sigma_r = \lim_{k\to 0} \sigma_t = -\lim_{k\to 0} \frac{\pi q}{kp} = \infty$$

$$\lim_{k \to 0} \sigma_{\rm cl} = \frac{\pi}{p^2} \left[q^2 + 4(ad - bc - pR)^2 \right]$$

as in the energy range under consideration E is so small with respect to V_0 and V_1 that we are justified in assuming a, b, c, d = const. This yields the well-known v^{-1} law for σ_t and σ_r .

In the second case $(\xi=0)$ we have q=0, i.e. $|\eta|=1=$ const. This leads to the obvious result

$$\sigma_{r} \equiv 0$$

and, on applying twice de l'Hospital's rule to Eq. (3), the relation

$$\lim_{k \to 0} \sigma_t = \lim_{k \to 0} \sigma_{\text{el}} = 4\pi \left(\frac{d}{a} - R\right)^2$$

Moreover, for the low energies considered, we have $k \ll a$, and

$$\sigma_t \! \equiv \sigma_{\rm el} = \lim_{k \to 0} \sigma_t = {\rm const.}$$

Thus, we have obtained the well-known law of flat $\sigma_r(E)$ curve in the pre-resonance range, holding for a very numerous group of isotopes.

REFERENCES

[1] Feshbach, H., Porter, C. E., Weisskopf, V. F., Phys. Rev., 96, 448 (1954).