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ON THE EQUIVALENCE OF PAULING’S DIRECTED BONDS THEORY,
THE MAXIMUM OVERLAP PRINCIPLE
AND THE MOLECULAR ORBITAL METHOD
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Department of Theoretical Chemistry, Jagellonian University, Krakéw*

(Received August 25, 1962)

The general properties of the maximum overlap method and its relation to the directed bonds
theory and the molecular orbital method were discussed. The maximum overlap method was
applied to explain the experimentally observed differences in bond lengths in PCl;, SbCl;, SF,,
CIF;, and also to explain semi-quantitatively the bond length-shortening in Cr(CO)s, Fe(CO);,
Ni(CO),. Finally, a possibility of constructing best hybrid orbitals for excited states is shortly
discussed.

1. Introduction

The Pauling directed bonds theory (d.b. theory, for brevity) is evidently one of the
simplest methods used for the description of bonds in molecules of the type MX,, where
k=0,1,2,... (Cartmell & Fowles 1961; Wells 1962; P. J. Durrant & B. Durrant 1962).
The main assumptions of this theory are as follows: 1) The hybridized atomic orbitals of
M, vy, ..., Y, should be directed towards the ligands X, ..., X, accordingly; 2) The “bond
strengths” of physically equivalent bonds should be the same; 3) A possible freedom in
the choice of hybrid orbitals should be fixed with the use of the maximum overlap criterium.

The d.b. theory can be generalized to include multicentered bonds and bent bonds.
This generalization follows directly from what is called the “maximum overlap criterium”
(Murrell 1960).

Let @, ..., @, be a set of atomic orbitals of M, and @, ..., 6, a set of atomic orbitals
of the ligands. Murrell suggested to look for k& best hybrid orbitals of the central atom M,

Y1 ?1 a1 Qg --- Ay, %1,
. Qg Qgp - Gy, .
=al . |=f. . .. . @
Y Pn Ay Oz -+ Oy Pn
(where n>k) such that the sum of all “bond strengths”
k
2 <bily> =18, @)
i=1
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is a maximum; the matrix S, in Eq. (2) is given by the formula:

Oy e <Oulpd\ (<Ol - <61|¢,,>) w
. . B . . . aT,-—: SaT (3)

S1 = : *. . : ‘. :
AR CAY, (Ol - <0k1‘Pn>,
A simple method of constructing y;s was developed by Lykos and Gilbert (1961), and inde-
pendently and differently by the author (1961).

In next sections I discuss some general aspects of the maximum overlap method, and
also its relation to the d.b. theory and the molecular orbital method. To illustrate the utility
of the maximum overlap method it was applied to the discussion of bond lengths in PCl;,
SbCl,, SF,, CIF,, Cr(CO)s, Fe(CO); and Ni(COy). The method was generalized to cover

s-bonding and electronic excited states.

2. General remarks on the maximum overlap method
If a set of n+k orbitals, 8y, ..., 04 @y, .., @, (where n>k) satisfies the condition (4),
<00,;> = 95,
{PlpD> = 0, )

we will call it a “semi-orthogonal”” set. In particular it may be the set of atomic orbitals
of the MX, system (Murrell 1961), the set of 2p, orbitals of alternant conjugated hydro-
carbons (Coulson & Longuet-Higgins 1947) or the set of bond orbitals in the LCBO MO
method of saturated hydrocarbons (Hall 1951).

Let us construct the overlap integral matrix S (3) and the matrix SS7, where S T means S
transposed. The author has shown (1961) that the condition (2) leads to the following formula
for best linear transformation coefficients (1),

a = (SST)iS (5)
and to the following formula for the maximum of the “total bonds strength”,
B = (11 8)ypey — tr (ST} ©)

Tt follows that to find @ and E we have to calculate the inverse square root matrix (SST)*
first. This calculation can be carried out in one of the following two ways.

The matrix (SST) (of the order not greater than k<n) can be diagonalized with the
matrix % (say), such that

(SST) = uTe?u )

where e is a diagonal matrix which diagonal elements are real and positive (Murrell 1961).
From the equations (5)—(7) it follows immediately that

F=tre @

a = uleuS )
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Alternatively we can calculate (SST)73%, and hence E and @, following a way proposed
by Hall (1955) on a different occasion. Let us write (§87)~#= Q. The matrix Q can be con-
veniently found by iteration,

1
Qi1 = 5 BI— OSSN} @, (10)
where Q, = } I. Having found Q we can proceed to the calculation of E and a:
E=tr Q1 Y
a =08 (12)

Finally we note that according to Eq. (3) S; = Sa”, and according to Eq. (3) and (5),
S, = (SSTL 1t follows that also a particular bond strength, {f,ly;> say, can be easily
expressed in terms of the S matrix elements:

Bily> = [(SST)H; = [w'eu]; = [Q71]; (13)

The use of the above method to concrete physical problems will be illustrated in next
sections. At present I like to put attention to the following topics:
First of all we note that

E =tr (S8 = tr (S8T)~# S - 8T = traS” 14)

It follows from this equation that the best linear coefficients a,; play exactly the same role
as the bond orders in the LCAO MO method.

We note that the construction of best linear combinations wy, ..., 4, is possible, if
n>k. Otherwise the matrix SST would be singular (what can be proved easily) and formula
(9) would loose the validity. The condition n >k does not restrict the generality of the method.
It plays, however, some role in the interpretation of the results. For example, we will see
in section 7 that Giacometti (1955) generalized the d.b. theory to include the z-bonds. In
this case, however, the condition n>>k was not fulfilled. In consequence the d.b. theory of
n-electrons was not consistent with the maximum overlap principle. According to the last
one we should rather ask for best linear combinations of ligand orbitals and not for the
best hybrid orbitals of the central atom.

We also note that if we linearly transform the 6; and the ¢, orbitals,

@ =bep, 6 =cb (15)
(where b and ¢ are orthogonal matrices) then, in accordance with the definition of S (3),
SS7T = ’S'Bb™S' e = ¢"S'S'Te = c(S'S T e (16)

It follows from Eq. (16) that the matrices SST and 8’S'T are similar. Hence the total bonds
strength E is invariant to orthogonal transformations of 6; s and ¢;s. In this way the directed
bonds representation of the MX, systems is completely equivalent (in this approximation)
to any other representation of delocalized bonds.
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Finally we note that the diagonal elements of e (7) have been chosen positive to ensure
the maximum value of the trace tr e. With a negative value for one (or more) of these ele-
ments we would come to other extremal values of E. It follows that e;s should be related
to orbital energies, and that choosing a negative sign for one or more e;-values in Eq. (9)
we should obtain the best linear combinations y;, j = 1,2, ..., k, for the excited states.

3. An approximate relation between the change of the structure and the maximum value
of the total bonds strength

We may be interested in the change of the total bonds strength E induced by a change
of the structure of the molecule. With this purpose let us remind that according to Eq. (10)
the matrix @ = (SST)~% can be found by iteration, and that the convergence of the iteration
is very good. Therefore, if we put 8’ = S+dS and d(SST) = S(dST) +(dS)S7T we can
write

(§'ST)H~ (31— (S87) (S5} (887) ) ()
Hence
dE = d(ir 8y) oy = % A tr{(SST)~#d(SST)} (18)

where 0<<A4 ~1.

4. Reduction formulae for atomic overlap integrals

In almost all practical applications of the maximum overlap principle we need the
explicit formulae for overlap integrals between the s, p and d orbitals. Besides, usually at
least one of the orbitals is situated relative to the bond axis as symmetrically as only possible.
For these cases which seem to be sufficiently general we derived some reduction formulae.
To be definite, we assumed that the §; orbitals are situated symmetrically, and the ¢; orbitsls

Fig. 1

deliberately. Finally we assumed three kinds of 0;-orbitals in respect to the symmetry prop-
erties relative the bond axis. We reproduce these types in Fig. 1.

With the above assumptions all overlap integrals {6,]¢;> can be expressed in terms
of the angular coordinates of the center of ;-orbital and in terms of one of the following
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OoelPa s> = S,alX)
Bosl9y> = Sop(X)
O:lp> = 55 (X) (19)
<0ny|(pdxy> = S,4(X)
<9nyl‘ppy> = Snp(X)

Fig. 2

In the case of 8, -orbitals the following reduction formulae are valid:

<Bols> = S(X)
<0.p> = sin ¥y " cos g S, (X) 20
(00Ipy> = sin ¥y "sin @y - SGP(X) (20)
{0,p.> = cos ¥ S, (X)
1 —
Oold> =5 V3sin®y sin 20y S,4(X)
1 —
0Jld,,> = 0 V3 sin 204 " cos @y " S (X)
1 —
Oildy,> =5 V3 sin 20, * sin @y, * S,,(X) L)

1
(Opldpe_yn> = 5 V3 sin? Oy cos 205 S, ,(X)

D> =G Boost D) S,u(X)
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Analogously in the case of 0 -orbitals one obtains the formulae:!
<0nxldxz> = CO0S 20X " €os Px ’ Smi(X)
(9,,x[dyz> = c0s 20 * sin @y * S, 4(X)

(Ouldy> = 5 5in 2y " sin 2" S,u(X) (22
(Ol = 5 500 285" 005 2" ,4(X)

O 0d> = — %V? sin 28, * S,4(X)

Oapldyed = —cos By sin @y * Spg(X)

{Old,,> = cosdy cos @g Syy(X)

{Onldy> = sindycos 2px " S y(X) (23)
{Onglds_yo> = —sin Jy " sin 20 5,4(X)

Onpld> =0

Onelpy> = cos By cos gy * Spp(X)

<0nx|py> = cos ¥y " sin @y - S"p(X) (24)
Oulp,> = —sindy " 5,,(X)

Onplps> = —sin gy~ Spp(X)

{Onlpy> = cos g Sp(X) (25)
{Oylp,> =0

In these formulae ¥, and @, mean the angular coordinates of the atom X, on which
the 0-orbital is centered (Fig. 1). S(X) means that the standard integral (19) depends still
on bond length and the nature of both atoms.

The overlap integrals S, S, S5 Snp and S, (19) can be evaluated if one knows the
radial parts of the orbitals. However, Pauling (regarding S, S,, and S;;) and Giacometti
(regarding S,; and S,,) suggested a simple approximate relation between these integrals.
Following their idea we assume that the overlap integrals (19) are approximately proportional
to the product of the maximum values of projections of angular parts of both orbitals on the

bond axis. In this approximation
Sap = Vg‘sos; Sad = Vgsas (26)
and (if 0, is assumed to be a sp hybrid orbital),

= (‘):7_5@ Sas; Snd = 3—‘/_1?3: Su's (2’7)
+

S
np 1+V§

1 If §5 = 0, then gy (Fig. 1) is not defined. With no loss of generality one can take then that ¢x = O.




5. Best hybrid orbitals in the case of the tetrahedral structure of MX,

Suppose, we are interested in the sp® hybrid orbitals in the case of a tetrahedral environ-
ment of ligands (Fig. 3).

N
Qj
£
=
g
2 Constructing the S matrix (taking formally S,, = 1) we find:
= 1-1 1 1
1 1-1

%S s=|; 171 1] ssT-u (28)
3 1 -1-1-1

Hence S; = (SS”)} = 2I and, according to equation (13), all four bonds are equivalent
<t yielding the bond strength 2.000 pro bond. From Eq. (5) and (28) we immediately find the
&) best hybrid orbitals:
% Y 1 1 -1 1 1\ /s
~ Py " @ 1 1-1 1}}p
S =SSH*8 |2 =1 * 29
QN Vs ( ) @3 2 1 1 1 -1 Py ( )
< Ya Pa I -1-1-1/\p,
é«i If we change now the angular coordinates of the ligand no 1 by d¢ and dg we find that
E 0 —27%9—dp 27¥I—dp —2'dD
A, 0 0 0 0
< ds = 0 0 0 0 (30)
& o 0 0 0
<

Substituting this equation to Eq. (18) and taking account of the fact that (SST)~#=11
in this example, we find that dE = d(tr Sy),,, = 0. Hence the tetrahedral environment
of ligands in MX, corresponds to an extremum of E.

6. The wvariation of bond lengths in PCly, SbCly, SF, and CIF,

It was found experimentally that not all bonds in PCl;, SbCl;, SF, and CIF; are equiva-
lent. For example according to Rouault (1940) PCl; and SbCI have the shape shown in
Fig. 5, with two kinds of bonds, @ and b. In the case of PCl; he found that R, = 2.044
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+0.02 A, R, = 2.19+0.02 A. Similarly in the case of SbCl; he found that R, = 2.31 4+
+0.06 A and R, = 2.43+0.06 A.

The unequivalence of bonds was also established in the case of SF, (Tolles & Gwinn
1962). It was found that the molecule exhibits the symmetry properties of the C,,-group,
with two bonds distributed almost linearly (186°56’ 4-30") and other two angularly (101°33’ +
+30). The appropriate bond lengths are equal to 1.646 A and 1.545 A. As sulphur has
a lone pair in this compound, the structure of SF, can be closely related to that in Fig. 5.

|

z 1

|

|
+

|

? |

@ | X

4 !

!

|
1604 -

s : !

@ 1208 (o \_1704 Cz\ — ma)o(;_mum |

U \-/ projection |
Fig. 4 Fig. 5

The same should be true for CIF; in which chlorine has two lone pairs and three ligands.
Indeed, Smith (1953) found the 7-shape for this molecule, where the almost linear bonds
correspond to the b-type bonds of Fig. 5, the other bond to the a-type bond. The structure
of CIF; is shown in Fig. 4.

It follows that all four molecules are related to the trigonal bipyramidal hybridization
and that we would explain the observed variation of bond lengths if we show that b-bonds
have a smaller value of the bond strength than the a-bonds.

Assuming the sp"d!+" hybridization and following the procedure described in section 2
(in a way similar to that in the preceding section) we find that (S;);; = (Sy) = 2.9289,
(SPss = (Spa = (Sy)s5 = 2.9623. Hence, according to the maximum overlap principle,
one should distinguish two groups of equivalent bonds, @ and b, where the b-type bonds
should be distinctly weaker than the a-type bonds. This is in a complete accord with experi-
ment. We also note that the lone pairs in SF, and CIF; occupy those corners of Fig. 5 which
correspond to the greatest values of the bond strengths.

The structure of the above molecules is usually discussed in terms of the sp3d hybridi-
zation (Wells 1962; P. J. Durrant & B. Durrant 1962; Cartmell & Fowles 1961) and not,
as in the present paper, of sp®"d™*". Then, however, the b-type bonds should be much
stronger (2.948) than the a-type bonds (2.237). This is clearly in contradiction to experi-
ment.

Dyatkina and Shirmazan (1959) discussed the a-type and b-type bond strengths for
the following hybridizations of the central atom: sdp3, spd3, sdpf?, sdp?f and sd3f. In all
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these cases the b-type bonds appear to be stronger than the a-type bonds what disagrees

with the experimental data.
Tt appears therefore that the hybridization of the central atom is rather close to sp*"d'**,

where n =1 —;—.

7. The m-bonding effect in some metal carbomyls

The z-bonding effect in Cr(CO)q, Fe(CO); and Ni(CO), was discussed by Giacometti
(1955) in terms of the d.b. theory. In the case of these carbonyls a distinct bond shortening
is observed (in comparison with the sum of bond radii):

Cr(CO)g ... by 0.10+0.04 A,
Fe(CO); ...... by 0.16--0.03 A,
Ni(CO)y ...... by 0.18+£0.03 A.

To explain this shortening directed s-orbitals of the shape shown in Fig. 6 were con-
structed. It was shown in the case of Ni(CO),, for example, that not more than three such

Fig. 6

orbitals could be constructed. Assuming resonance he averaged the m-bond strengths over
all four bonds. His results for all three carbonyls are given in Table L.

However, as already noticed in section 2, the d.b. theory is not equivalent in this case
to the maximum overlap theory since it does not exploit all possibilities of maximizing the
overlap. We will discuss therefore the z-bonding effect in terms of the maximum overlap
principle, asking for the best linear combinations of ligands’ o- and n-type orbitals. To do
so we assume what follows: 1) The CO group is bonded as :C = O, where the hybridization
of C is sp and of O — sp?; additionally we assume that the - boud of CO does not conjugate
with the metal; 2) The metal-carbon ¢-bonds have the origin in the lone pairs of carbon atoms
and the free central atom orbitals; 3) The metal-carbon z-bonds have their origin in the
electronic pairs of the central atom and the free 2p,, orbitals of the carbon atoms; 4) The
overlap integrals (19) can be approximated with the relations (26)—(27).
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TABLE I
Bond strengths in metal carbonyls according to the d.b. theory

Averaged bond strengths
Type of the bond
Cr(CO), Fe(CO), Ni(CO,
0, in absence of 7z-bonds 2.924 2.949 2.949
0, in presence of m-bonds 2.923 2.930 2.930
7 1.50 1.57 1.77*

Using the method developed in sections 2 and 4 we obtained the results given in Table 1.

TABLE II.
Bond strengths in metal carbonyls according to the maximum overlap principle
Average bond strengths
-bondin, effect
Molecul 7 & ;
olecute o o+ (maximum overlap 7-bonding effect
principle) (d.b. theory)

Cr(CO), 2.924 3.652 0.728 0.672*
Fe(CO); 2.949 3.876 0.927 0.704
Ni(CO, 2.949 3.940 0.991 0.793

One can see from Table II what follows:

1) The d.b. theory developed by Giacometti gives a smaller m-bonding effect than the
maximum overlap principle. Indeed, this is what we have expected.

2) Our results agree with the experiment better than those obtained by Giacometti.
From the column 4 of Table IT we recognize that our results explain both, the order of increase
of the bond-shortening (31) and the large jump of the bond-shortening between Cr(CO)g
and Fe(CO), in comparison with the pair Fe(CO);, Ni(CO),.

8. On the equivalence of Pauling’s d.b. theory, the maximum overlap principle and the
molecular orbital method

Basing on the LCAO MO method a simple method of bond orders calculation for alter-
nant conjugated hydrocarbons has been developed by Hall (1955). He assumed for this
purpose (after Hiickel) that all Coulomb integrals are equal and that all atomic overlap can
be neglected. The method was rediscussed by the author (Golebiewski 1963) and extended
to what was called the “semi-diagonalized” systems.

*) Giacometti used a different reference value for 7-type overlap integrals; to make the results compa-

2
rable one has to multiply his results by 1.5 -———V_- . In table II this factor is already taken into account.
3+)3
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It seems interesting to note that there is a striking formal analogy between the mentioned
Hall approach and the maximum overlap approach discussed in this paper:

The LCAO MO method The maximum overlap method
a) The ground state energy is given by a) The total bonds strength is given by the
the formula formula
E = tr (HHY)} ' E = tr (SST)}
where H is a resonance integrals matrix; where S is an atomic overlap integrals
matrix;

b) The ground state energy is equal to the b) The total bonds strength can be ex-
sum of orbital energies e;, which are pressed in terms of the eigenvalues
the eigenvalues of (HH™)}, of (SST)}, ¢,

E=1re E=tre

c) The not vanishing bond orders form c) The transformation coefficients for best
a matrix P which can be found from linear combinations (best hybrid orbitals)
the formula follow from the formula

P = (HHY)*H a = (SST-tS§

d) The ground state energy can be easily  d) The mairix @ can be interpreted as the

expressed in terms of P and H. bond order matrix, so as
E = tr (PHY) E = tr (aST)

This analogy is still more complete if we take the approximation introduced by Mulliken,
that H ~ S.

The maximum overlap method (with the d.b. theory in particular) and the LCAO MO
method follow apparently from different principles. And yet both methods yield much of
the information the same. This coincidence gives a sounder basis to the maximum overlap
principle and the d.b. method. However, it shows also for limitations; it seems that both
methods are molecular orbitally grounded for “semi-diagonalized” systems only (Gole-
biewski 1963), and only if <0,~fﬁ9{> = ((pjlfﬁpj> for any i and j.

Pauling’s directed bonds theory is a special case of the maximum overlap theory,
developed for M X, systems. This theory can be molecular orbitally based only then, when
the number of central atom orbitals exceeds the number of ligand orbitals. We have seen
on examples (sections 7) that it might not be so. In this case the maximum overlap criterium
seems to give a better agreement with experiment than the directed bonds theory.

It follows reciprocally that the m-electronic MO’s of conjugated alternant hydrocarbons
satisfy the maximum overlap condition, but that it may not be true for unalternant hydro-
carbons.

Finally we note that the e;-values of the masximum overlap approach, (7}, are numerically
equal to the orbital energies of the LCAO MO method. It follows that indeed it should be
possible to construct best linear combinations (best hybrid orbitals) for the excited states
and to correlate them with the spectra. We will return to this question later.
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