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THE RELATIVISTIC GAS IN THE GRAVITATIONAL FIELD*
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Joint Institute for Nuclear Research, Laboratory of Theorical Physics, Dubna**
(Received August 14, 1962)

The Boltzmann kinetic equation is established for the rarefied relativistic gas in the gravita-
tional field with smallest restrictions on the topological structure of the space-time manifold.
The equation of change of molecular properties is obtained. It is proved that the divergences
of the numerical flux vector and the energy-momentum tensor equal zero. It is also proved that
the divergence of the flux vector of the entropy is nonnegative (H-theorem). The principle of
the detailed balancing for the relativistic gas in the equilibrium state is considered.

1. Introduction

The Maxwell-Boltzmann kinetic theory of the rarefied gas makes it possible to construct
its complete relativistic analogue. In the present paper basic foundations are stated for the
kinetic theory of the relativistic gas taking into account the gravitation. The two following
phenomena characterize the rarefied gas: the collision of two particles and the motion of
one particle in the external field in the intervals between collisions. They account for all
phenomena occurring in the rarefied gas, what just ensured success in the construction
of a relativistic analogue of the Maxwell- Boltzmann kinetic theory.

To explain the last idea we note that any physical theory is based in any case on the
concept of the velocity-space of the massive point [1—3|. This space is three-dimensional
one. It has at any rate an absolute geometry. Usually one calls so the science of space independ-
ent of the postulate on the parallels. The postulate on the parallels in the velocity-space
distinguishes between the non-relativistic and relativistic physics. In the non-relativistic
case the velocity- space is Euclidean one, while in the relativistic case it is the Lobachevsky
space radius k of curvature of which equals the light velocity ¢. The properties of both the
non-relativistic and analogous relativistic theory can be connected only with those prop-
erties of the velocity- space which are the object of the absolute geometry. In this sense,
in any physical theory an “absolute content” can be singled out. The latter is related to phe-
nomena which are not connected with the factor of independence of the light velocity

* A preprint in Russian was published in July, 1962 (JINR, P-1028) Dubna.
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on the source velocity. Basing on this idea, going back to Lobachevsky and Bolyai, in con-
structing the relativistic analogue of the non-relativistic physical theory we should first
single out an absolute part which is transferred to the relativistic case without
<change.

This can be made without difficulty in the mechanics of a single particle in the external
field. However the theory of two and more particles met difficulties yet unavoided. The
only completed result of the consideration of many particles is a so-called kinematics of
decay or fusion of particles. From the point of view of kinematics to the two last phe-
nomena reduce their arbitrary combinations so, for example, the particle collision. The
kinematics of these phenomena is considered in [4] starting from the absolute mechanics.
The success in the kinematics is due to the fact that it deals only with momentum-velocity
characteristics of particles involved in the reaction and does not touch upon a subject on
the particle coordinates during the reaction.

To single out the absolute content of the Maxwell-Boltzmann kinetic theory a special
method is needed which has been suggested and developed in [5—7].

The Boltzmann relativistic kinetic equation was obtained there under the assumption
that the space- time manifold is a Galileian one. Any external forces were taken into account
for the exception of the gravitational ones. In a subsequent paper [8] the relativistic
collision integral obtained in [6—7] is represented in the form of the Boltzmann five-fold
integral. In all these papers the problems have been considered from the absolute point
of view.

The developed method [5—7] allowed one to take into account the Einstein gravita-
tional phenomenon. In [9] the Boltzmann kinetic equation for the relativistic gas in the static
spherical — symmetrical gravitational field is derived and the solution of this equation is
found which corresponds to the equilibrium state of the gas. A kinetic equation for the
relativistic gas in the Einstein arbitrary gravitational field is derived in [10]. The flux vector
and the mass tensor of the relativistic gas in the gravitational field are investigated in [11]
on the basis of the above equation. The problem of a gravitating relativistic gas is raised
there. In [12] a close connection is established between the Maxwell-Boltzmann relativistic
distribution and the integral form of laws of conservation.

In the present paper these results are systematized and supplemented with new results,
to which belongs the equation of iransfer for the relativistic gas in the arbitrary gravitational
field and, in conformity with this case, H-theorem and the principle of the detailed balancing.

In the theory of the relativistic gas formulated here we digress in two respect from the
absolute point of view. First, particles with zero proper mass are considered, what is surely
absent in the Maxwell-Boltzmann non- relativistic theory. Secondly, the Einstein gravitation
effects are taken into account, while in the non- relativistic case the theory of space- time
with curvature is not constructed yet. From the consistent absolute point of view the corres-
ponding gap in the non-relativistic theory should be make up.

For methodical reasons we restrict ourselves to a case when external forces (of a non-
gravitational character) are absent although the account of such forces in a kinetic equation
is not difficult. For the same reasons we restrict ourselves to the consideration of only elastic
collisions of particles in a gas.
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2. Space of the states of a particle

The pair (x, p) of the space- time position x and momentum p of the particle is referred
to as the particle state. The proper mass m of the particle is fixed so that dimension of the
space F of states of the particle equals seven. As coordinates in the state- space we can choose
seven quantities x% x1, x2, 3, p1, p?, p% The component p° is found from the conditions

(p,P) = &apX)p™P’ = mPc2, py>0. 2.1)
Hence,
— 0 k
PO — Po SorP (2.2)
&oo
where
Py = Vg00m202+ (goigﬂk_googik)Pipk' (2.3)

The coordinate p* change in infinite limits. For m = O the point p! = p? = p® =0 is
omitted owing to the fact that the zero momentum characterizes the vacuum but not the
particle.

If we did not considered particles with zero proper mass then instead of the momentum
it would be convenient to use the particle velocity.

If we did not considered the Einstein gravitational phenomenon then we might restrict
ourselves to the choice of the Galileian coordinates ¢, x, ¥, z in the space-time.

The element of the volume in the state-space F is chosen to be equal to

dF = — g—’f{)— dx®dxrdx3dx3dpldp?dp3, (2.4)
0
where g(x) = |g,| is the determinant of the matrix (g,4).
The set of possible momenta of a particle in a given space-time position x is called
a particle momentum space P(x). Thus the state-space F'is a bundle P(X) of momenta applied
to various points of the space-time X:
F = P(X) = L P(x). 2.5)
xeX
This bundle is a fibre bundle [13] over the base space X with a fibre of the type P(x) and
with a group of motions of the three- dimensional Lobachevsky space as a structure group.
"This group is isomorphous to the Lorentz orthochronous group. The element of the volume
in P(x) is chosen to be equal to

ap=V=¢ dptdp3dp3, (2.6)
Do
s0 that

dF = dXdP, 2.7
where dX is the element of the volume in the space-time X:

dX =V —g dx® dxt da? dad. (2.8)
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In principle, the element of the volume dF is a skew- symmetncal 7-linear form [14]

dF = e(x, p; dy, dy, ..., dg),

2.8)

assuming the value (2.4) on the vectors of elementary displocements along the coordinate

lines 2", p,. We show why such a choice of the element of the volume is convenient. Lel us
Pr y

go over to new variables

xu = ¢u(xo’ xl’ xz’ xa)’ v = 07 1’ 29 37

3
, 3
o= Z P e o*a0, 21, 2% 2%, k=1,2,3.
=0 -
The Jacobian of this transformation is

J:..'.

" ,
a(x“ * xll’ lea x3l7 Pll, p2'9 P3,) - a(xﬁ!s xllv 12’, x3') . Q(Pl', pz,a [)3/)

But since

IpF  Ap* Ik pi

apt dx Ix0p,

2

then
Do I51 D2 Ps
gl dgl gt ¢!

. a0  Ixy  Ix? B
po |28 99 9¢* I¢P -
0 19x° xl Dx%  9x8

S¢? 9;,73 g8 g3
Ix®  Oxt  Ix® a8

ApY, p¥, p¥)
a(p*, p*, p?)

Taking into account that

, Dg”
Pr :Pa'a%’

we obtain

oY%, p¥) _ b for
a(p*, p* p®)

Do :5‘?1’

Hence

_ P [aw', AV, ¥, 2%) ]: Pag

T pe | (20, a1, a2, x8) 1 peg’”

é)(x", al, 22, 3, Pl,pZ’p:S) - 9(x°, %1, %2, x9) —g(pl’Pz’ps) :

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Thus, the element dF (see (2.4)) has an invariant form under the transformations of coordi-

nates (2.10).
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Since the Jacobian (2.16) is positive then the state-space F is orientable independently
of the fact if it is possible to orientate the space- time X or not. Indeed, we assume that the
metric tensor is continuous in the all space- time X. Then in the X there exists a continuous
field @(x) of non- zero vectors directed into the isotropical (light) cone [15]. On the coordi-
nates x°%, x1, x2, x3 we impose the condition that the vector of displacement along the coordinate
line 2% in direction of positive values of 10 will be directed at each point x into the same part
of the isotropic cone as the vector w(x). If regions covered by some pair of the coordinate
systems are overlaped then at the intersection of these regions the Jacobian (2.16) is positive.
Hence, it follows that the state- space F is orientable.

In the intervals between collisions the particle of a gas moves according to the law

dx* dp* k
=y —— A x) % ﬁ’ 2.17
dT 1 ’ d-,/- Gﬂ( )1 P ( )
where 7 is the proper time of the particle connected with the ordinary proper time 7, by
a simple relation 7, = m7. The proper time 7 is determined for particles with zero proper
mass as well. I';; are the Christoffel symbols

ro L (9 7 Qg“ﬂ). (2.18)

2 Az dae dxt

We write the solution of the set of equations (2.17) in the form

a = x (x%, p*, 1), = p (x*, p*, 7).
(* 1 P P57 2.19)

x (a¥, p*,0) =%, p*, p*, 0) = p*.

The first of Egs. (2.19) determined the world line of the particle and the second one which
is obtained from the first of Egs. (2.19) by differentiating with respect to 7 the change of
the momenta along the world line. The existence and the uniqueness of the solution are
ensured if I'j; (x) and their first derivatives with respect to a¥ are continuous.

The set of Eqgs. (2.17) specifies in the state- space F the vector field f{x, p}. For coordi-
nates x”, p¥ this field has the following components:

fr=p = D@p%t, v =0,1,2,3, k=123, (2.20)

It does not vanish anywhere since if f = 0 then p = 0 as well, and the momentum-of particle
differs from zero. The solution (2.19) determines in the state- space the vector line of the
field f(x, p) passing via the point (x*, p*) and the law of change of the state along this line
depending on 7.

The vector field f(x, p) defines the area on any hypersurface S in the state-space F.
The element of the area is

dS = e(x, p; flx, p), dys ooy dg) = 0(x, p5 dy, ..oy dg)y (2.21)

where d,, ..., dg are the vectors of infinitesimal displacements on S, & is the 7—linear
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form determined above (see(2.9)). We write in detail

P pt pt pt T =T pt I’
iS—_ & dyx® dixt dp? da® dip?t d, p? d,p® (2.22)
Po . . ‘
dex®  dgxt  dgx?  dgx®  dgp?! dgp? dgp®
In particular, on the hypersurface
S = P(U) = ngP(x)’ (2.23)

representing itself the bundle of momenta over the hypersurface UCX in the space- time
the element of the area dS is

0 1 2 3

p p P p
— 1 dix® diat dx? dyad

dS =V—g dP (2.24)
dox®  dpx'  dyx®  dpx®
dyx®  dgxl  dyx?®  dgxd

The exterior derivative ¢'(x, p; dg, dys-..,dg) of a 6-linear skew form (2.21) vanishes.
This statement is analogous to the Liouville’s theorem. In the coordinate form the equality
¢’ = 0 means

2 e\, 9 (&
=) (frtew) <o @)

The above mentioned vector field w(x) over space-time X allows one to define the
notions of the future and past at each point x of X. We call the future for a particle at the
arbitrary point x that part of the tangent isotropic cone with the center at the point x into
which the vector w(x) is directed. The condition py>>0 means that the momentum of particle
is represented by a vector directed to the future. Without this condition the momentum
would be represented by the pair of opposite vectors. If dt>0 then the vector dx = pdr
would be directed to the future as well, i. e. to the positive course of the proper time there
corresponds the motion of pariicle in the direction of the future. So far we do not exclude
the case when the solution (2.19) represents a closed curve in the space- time. In this case
the particle moving to the direction of the future would return from the past. Excluding
this possibility we shall assume that the set of the curves (2.19) form a six-dimensional
manifold S since the state- space F turns out to be a fibre bundle over S a type fibre of which
is the Euclidean line 7, and a structure group is the group of parallel transfer of the line I.

3. System of kinetic equations

Consider here the mixture of V gases. The disiribution function of an i-th component
of this mixture is denoted by A,(x, p). A,(x, p) is a scalar function in the state-space F; of
the particle of the kind i. Let the hypersurface SCF; be such that the particle, moving along
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any trajection in the state-space F; specified by (2.19) meet with S not more than one time..
The number of gas particles of the kind 7 crossing such a hypersurface is

n,(S) = f Afx,p)dS = fAi(x, p) o(x, p; dyse.., dg). 3.1)
$ $

During the proper time dt the i-kind particle starting from the state (x, p) € F; collides-
with a certain probability with the particle of the kind j and ceases to interact with the latter:
being in the element of the volume dF’ of the state-space F; with the center at the point
(', p). We calcualte this probability neglecting the change in the function A(y, q), (v, q)eF;-
in changing the argument y in the neighbourhood of x where collision takes place. The
collision is assumed to be instantaneous. In this approximation the desired probability is.

(%" —x)wy(%, p, p') dX' P’ dr, (3.2)

where the quantity w;; dP'dt equals the number of the j-kind particles crossing the six-
dimensional surface A4S in the state- space F; formed by the three-dimensional fibre P;(x)
at each point of which a three-dimensional parallelepiped is constructed with edges.
(" T%q P’ dv, (&, T, rq*dh), (0.1, +:q*67). The vectors d and & of the space- time X are-
applied to the point ¥ and form an area orthogonal to and p, ¢ and equal the differential
cross seclion

do = Hy(p, q, p")dP’ (3.3)

of scattering of the i-kind particle with momentum p on the j-kind particle with mo-
mentum q. The element of the area of AS according to (2.22) is

¢ ¢ ¢ ¢
_ 8D Pt P e gos
dS = _E— PO d @ d dq' dqg® dq? dr. (3.4)
0% 61 4% o3
The determinant of this expression is
_<pg>do
D === Vet (3.5)
where
<p, > =V, 9*~(p:p) (4: 9) (3.6)
characterizes the relative motion of particles, Hence,
wyle p, p') = [ 45, <ps 3> Hy(p, 9, 7') dQ, (3:7)
Py(x)

where dQ) is the element of the volume in the momentum space Pj(x).
The i-kind particle can collide with the j-kind particle being in the element dFCF; and
cease to interact with it being in the element dF’CF;. The number od such collisions is.

A=, p)d (' —x)w,(x, p, p’) dF dF". (3.8)-



Fasc. 5

)

Q
<

Vol. XXIIT (196

ACTA PHYSICA POLONICA

636

Indeed, we consider the infinitesimal six-dimensional parallelepiped in F; with edges
dy,...,ds and the seven-dimensional parallelepiped with edges d,, d;,...,ds, where dy =

= f(x, p)dt. The above mentioned number is obviously equal to
Ax, p)e (x, ps [ (%, p)ydyseen,dg)d(x’ —2)wy(x, p, p’) dX'dP'dr (3.9)
and consequantly it is equal to (3.8) as well, since
e(x, p3 f(2y p)y dyse.or dg)dt = €lx, p; dy, dy,.n., dg) = dF. (3.10)

i

Consider then the region D in the state-space F;. The numbers R§})(D) and RP(D)
of the i-kind particles incoming to this region and outgoing from it due to collisions with
the j-kind particles, as is easily seen from (3.8) and (3.7) are

READ) = [ [ [ 192, p)dF, (3.11)
D
where
IP0,p) = [ [ A4 4 Kp's ¢ SHP' ¢'s AP’ dQ’ (3.12a)
Pi(x) Pyx)
I, p) = [ [ A, ) Ax <, ¢ Hylps 4, p)dP'dQ. (3.12b)

Pi(x) Pyx)

Let the boudary I" of the region D consist of two hypersurfaces S, and S; for which
{3.1) is valid, S, being placed in the future with respect to S,. Obviously,

n(Sg) —n(Sy) = % [REP(D)—RPD)). (3-13)

=1

If an external orientation is chosen at the boundary I' then
nS)—ni(S) = [ = f A, p)o(, p3dy sy dg) = fD f - [ fix, p)Ax, p) dF, (3.14)
where f{x, p) is the differential operator
fle,p) = p* a_i‘,“ s ()pPP 9%, (3.15)
In (3.14) we have transformed the integral over boundary I' to the integral over the region D

and taken into account (2.25). Since the region D is arbitrary, then from (3.13) and (3.14)
it follows:

e, YA, p) = L, p), i=1,2,..., N, (3.16)
where
N
i p) = 2 Ty p), (3.17)
I=

Ii(x, p) = I’(x, p)—IP(x, p). (3.18)
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The set of the integro-differential equations (3.16) is called a svstem of kinetic equations
for the mixture of NV gases.

7

For more care account the diagonal elements I; should be replaced by ;}\-f— I,

i
where N, is the number of the i-kind particles. From the practical point of view this replace-
—1

ment is noi essential since the numbers N, are usually large. Besides, the multiplier
i - A
ivi

can be included into H ;.

4. The equation of transfer

Let a certain characteristic of the i-th component of the gas be represented by the scalar
function y,(x, p). The mean value y; of this characteristic transferred by particles of the
kind i through the hypersurface SCF; is

v = [ wla )iz, p)dS. (4.1)
S

Let further the hypersurface S represent itself the bundle P(U) of momenta over the hyper-
surface U in the spacetime. Owing to (2.24) the mean value y is

W) v v v |

* i
i dx® dial dpnt dppd

yn DA p) dS = [V —g 4.2
:!'I’( P p) t}l Cdgx®  dgxl  dpy? dpx® | (.2
dyx®  dgxt  dgx® dy® f
where
() = [ pwlx, p)A(x, p) dP. 4.3)

Pi(x)

The vector y}(x) represents itself the flux vector of the quantity y;(x, p) at the point x¢ X.
More exactly it is ¢ times smaller than the Hux-vector; this is connected with the fact
that we have represented the element of the volume of the state- space in the form dF =
= dXdP but not in the form dF = (¢c7dX) (cdP).

We find the divergence of the vector ¥}(x). For this we consider the bundle S* = P{U*)
of momenta over the closed hypersurface U* in the space-time. Let D is the region of the
state-space k) restricted to the hypersurface S* and R is the region of the space-time
restricted to the hypersurface U*. First of all we have the equality similar to (4.2) (with the
replacement of S by S* and U by U*). According to the integral theorem connecting the
integral over the closed hypersurface with the integral over the region restricted to this
hypersurface the above equality can be written in the form:

f f‘(x, pHy(x. pyA(x, p)ldF = f Vy¥x)dX, 4.4)
b R
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where
Vu'/)? = V Qx" O ) Fﬂa s . (4.5)

In deriving the left- hand side of (4.4) we take into account the identity (2.25). Since the
region R is arbitrary then in virtue of the kinetic equation (3.16) from (4.4) it follows

Vi) = [ L phyile, AP+ [ A, P)firs Py, p)dP. (4.6)
Py(x) Py(x)

The obtained equality (4.6) is a relativistic analogue of the Maxwell-Enskog equation of
transfer. For the sum

N
Y(x) = :Zl ¥i(x) @.7)
we have
V) = 3 [ L ot p)P+ S [ Adn o pnep)dP. (38)
'— P;(x) i=1pix)

Assuming that y,(x, p) = 1 we obtain the numerical flux-vector of i-kind particles
(see (4.3))

= f p®A(%, p)dP. (4.9)
Pyx)
Its covariant divergence is (see(4.6))
Vg = [ Ix p)dp. (4.10)
P(x)

Assuming y,(x, p) to be equal to the scalar product (£(x), p), where £(x) is a vector
field over the space- time we are led to a mass tensor (energy-momentum tensor) of partic-

les of the kind i:

T#(x) = [ p"pPA,(x, p)dP. @.11)
P ;(x)
Its trace is
Ty(x) = T, (x) = m¥? [ Ai(x, p)dP, 4.12)
)

The covariant divergence of the mass tensor is

V1% = [ pPL(x p)dP. (4.13)
Py(x)

In deriving (4.13) the equation of transfer (4.6) and the identity

. 1
fle p) (6@ p) = 5 V £p+VpE %" (4.14)

are taken into account.
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Finally we are led to the entropy and the flux vector of entropy of the i-th component
of the gas putting in (4.1), (4.2) and (4.3) that y,(x, p) equals to —In A,(x, p):

sHx) = — f peA;(x, p) In Az, p)dP. (4.15)
Py(x)

Owing to (4.6) the covariant divergence of this vector is

Vest@) = — [ L(x, p)ln A(x, p) +1]dP. (4.16)
P

In the following paragraph we shall prove that the right- hand side of (4.10) vanishes,
the right- hand side of (4.13), summed over i from 1 to N, vanishes and that the right-
hand side of (4.16), summed over i from 1 10 N, is non-negative.

5. Some properties of the collision integral

We specify the form of the function (3.3). It is supposed that the scattering is elastic.
Therefore, if the scattering differential cross section in the c.mus. is

Ae = hd{p, >, cos #) sin dddp (5.1)
then
7 +q,p+ )+, + s —p’ ’
Hi(p, q.p’) = (i’—(—f)——%‘q—)hﬁ (<p, o, 1+ P ’;p’qgf PTH ))5((p~p,[)~f—q)).
6.2

The presence of the d-function in (5.2) allows one to replace the integrals (3.12) by five-
fold integrals.

All quantities we are considering in this paragraph are relative to the same point x
of the space- time. The argument x will therefore be omitted.

We prove that for any function y(p’, ¢, p) the equality

[’ )3 —p. p" +4') Q" = [ v, p+a—1' P3((p—p's p+q)dQ.  (5.3)
Py Py

is valid.
To the left- hand side of (5.3) we introduce the momentum g¢ P; so that the equality
prq=4p"+q) 5-4)
holds, and replace the integration variable ¢’ by ¢. From (5.4) it follows that
1= (p, ’Qil/'.;f?;'é‘z—(f , u)? (5.5)
V(o' +d' 0" +4q)
where
, 7 + 7
u i (5.6)

Vo
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In deriving (5.5) it is taken into account that (g, ) = m?, (p, p) = m} and the scalar product
(g, ¥) is non-negative. We write ¢ in the form

q = —p+u{(p,u)+VmiA—mic+ (p, u)?}. (5.7)

It is not difficult to calculate the Jacobians

' | _q0 (ptqw? |9 _uy  (¢\p'+q) (5.8)
oukl wy  (p,u) T 99" gy (PP +q)ET '
Hence
(¢,p+9 [ (p+q.p+9q) ]3 ,
d0 = G 2 dQ’. 5.9
¢ (&r+q | (P+4d.p+9q ¢ 6:9)
Then
8(p'—p, P’ + ) = A((p—p', p+ q))- (5.10)

If(p—p',p+q) =O0thend =1, ¢ = p+qg—p’, (¢', p+9) = (¢, p+¢g). Taking into account
that all multipliers of the d-funciion are to be considered only when its argument vanishes
hence we obtain (5.3).

We consider then the integral

[ (o 00" )3(p—p'sp+)dP’, whereq’ = p+g—p'. (6-11)
Pq

We shall consider the vector

_ ptg _ (w, q)p—(u, p)q
Vptapt)’ <P (5-12)

and two other vectors & and % satisfying the conditions

(&,n =0, (£,0) =0, 0 =0,
Eu)=@mu =Gy =0, (5.13)
(6,8 =@n) =0 = —(u,u) = —L

From the integration variables p’® in the integral (5.11) we go over to the variables r, &, ¢
by the formula

p=u l/m?cz + 12+ &r sin & cos p+nrsin & sin @ + {1 cos J. (5.14)
It is not difficult to see that
r% sin ¢
dP' = ———— drdidd 1
]/m?c2 472 4 (5-15)

and that

. 1 e (pr+9 )
(p—p', p+ =——""" " |VYmir+rP— ———— . (5.16
(o=’ pr0) V(p+4¢, p+9) (V V(p+g,p+9) )
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Carrying out the integration over r we get the integral (5.11) to be equal to

n 2n
"o : ap — P a2 ', ) sin 9dddg, (5.1
v(p, ¢ p', ¢)0((p—p', p+q) dP ~ Ot p+q) v(p, g, P’ ¢) sin P, (5.17)
Py ;)
where
, (pp+9q <Py9> o P
= L = {&sin ¥ cos pFnsin & sin @4 cos ¥, (5.18a
(p+4. P+9)( 9 Vip +q, p+q) ‘ L 4 b )
, (3 p+9) _Lpq
= A , & sin ¥ cos @ +9 sin ¥ sin @ +{ cos 9 5.18b
(p+9 p+9q )= l/(p +q, p+q){ v v b )

By applying the equality (5.3) to the integral (3.12a) we write the collision integral
(3.18) in the form

Ii(p) = [ [{A4dp)4@) = A0V ALK pr 9> Hyl p g p')dP'dQ, (5.19)

P; P
where ¢' = p+q—p’. Applying to (5.19) the equality (5.17) we get

n 2n

Iip) = [ dQ [ [{4(p)410) A P)ADI s 4> hif< Py 45 cos B) sin 9d9dp,  (5.20)

Py 00

where p’ and ¢" are determined from the formulas (5.18).
We consider the integral

Iily] = f vdp) Ii(p) dP = I[Pyl — 1Py, (5-21)
Py
where in accordance with (3.18) and (3.12)

1P = [ [ [wD AV 4K 0> Hy(p', o', p) dPAP'AQ,  (5.22a)

Py Py Py

I = [ [ [0 4p) 4@<ps 0> Hy(ps 4, p') APAP'AQ. (5.22b)

Py P; Pj

This integral enters the right-hand side of (4.6).
Replacing in (5.22a) notations p=2p’, ¢'—>¢, we write the integral (5.21) in the form

Iitvl = f [ [ bep) = I A9) <ps @)> Hylp, ¢, p') dPAP'dQ.  (5.23)
P; P; Pj

Hence, it follows that the divergence (4.10) of the numerical flux- vector of particles
of each kind separately vanishes:

V ne = 0. (5.24)

This equality is obtained because we considered stable particles and assumed that the col-
lisions of particles are elastic.
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Applying to (5.23) the equality (5.17) we get

Livl = [ [ A0 4,@<p vy, 9)dPdQ, (5:25)
P; Py
where
n 2n
vi(pr @) = [ [ [l )= v phyp, @D, cos ) sin & didp, (5.26)
09

the momentum p’ is determined from the formula (5.18a). Eq. (5.18b) determines the
momentum ¢’ in the expression

n 2r

(0 2) = [ [ ) —v(@h;i(<g, p>s cos 9) sin & dIdep. (5:27)

00

Since the function { p, ¢ is symmetrical in the arguments p, g and function #;; is symmetrical
in the indices i, then

Lyl + Lyl = [ [ A(P)A4{@)<ps lw(ps 9) +:(g, P)IAPAQ, (5.28)
Py Pj
n 2n
(2 D tula ) = [ [ W) +9(@)— v D=9 @14 p, @, cos 8) sin & dIdep.
(5.29)

Hence, it follows that the mass tensor divergence

N
TH(x) = ) TH(x) (5.30)
i=1
(see(4.13)) of all gas is zero
N
A f PLi(p)dP = 0. (5.31)
i=1p;

We obtain one more important expression for (5.21) which enables us to prove the
H-theorem.
Substituting into (5.12) the expression (5.19) for the collision integral we find

Lyl = [ [ [ 400" 40) = A p) A(@)} wip)<ps @ H;(p, ¢, p)APAP'dQ. (5.32)
P; Pi Pj

By replacing in (5.32) notations pexp’, g==¢’ and taking into account the equality (5.3)
we get

Iyl = [ [ [ {40410~ A0V ALk P P2 DHif Py 4, p")APAP'AQ.  (5.33)

Py Py Py
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4ot = 3 [ [ [ A4n a0~ 400040 1) <o 38t 052 a0,

Py Py Py

Due to Eq. (5.17) we have

f [<p.a>apac f f (4P Ailg)— AP 4,0} %

P; Py

X[y, (p’ )_’Pi(P)]hinP’ q>, cos 9) sin & dijdeg.

n 27
1
L+ = 5 [ [<roarae [ [tamago-awaanx
Py Py 00

X [w:( ") +v;(¢") —vi(P) —v{(D)2;({ ps ¢ cos D) sin I dddgp.

According to (5.36) the divergence of the flux- vector of the entropy of all gas

Hence

N
() = 2

(see(4.16)) is

us“—— Zf[(p,qﬂPdej {4:(p") 4}(¢))—Ai(p) 4;(9)} X

z]—l

Ai(p') 4i(g) . :
In 4(p) Aa) Ri( p, ), cos ¥) sin & d dg.

x
Since the quantity (x—y) In — is non-negative for any positive x and y then
¥

Vs%x) >0

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

This is just the H-theorem in the relativistic case when the gravitational field is present.
If at a certain point x of the space- time V ,s* = 0 then owing to the positive definiteness

of the integrand in (5.38) for any i,j and any p, ¢ the equality

b (< py g, cos I A, (p")A(q)— A(p)A;(g)} = O.

(5.40)

is fulfilled. In this case according to (5.20) the collision integral at the point x vanishes for
all values of the momentum p according to (4.16) the divergence of the flux-vector of the
entropy of each gas component vanishes, according to (4.13) the divergence of the mass
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tensor of each gas component vanishes. In general, in this case (4.6) assumes the form

Vi) = [ A p) S p) v, p) dP. (5.41)

P,ix)
Eq. (5.40) can be written in the form
Ay(x, p) A, )P 4> W' 40— (¢, ¢)) dP'dQ'de’d X

= Ai(x’ P) Aj(x’ (])<P, Q> hij((Pa (]>’—(e, el)) d-Pdeean (542)
where e is the vector at the point x¢ X satisfying conditions
(e.p+q) =0,  (e¢) =—1, (5.43)

de is the element of the area on the two-dimensional sphere (5.43) in the space tangent to
the space- time. The quantities p’, ¢, ¢’ are expressed in terms of the quantities p, q, e

as follows:
r— (Pt _ L
= (Pt + ==
(p+aqp+q) Vip+a.p+q
. lep+a R XD,
= p+ 47,
(p+a.p+9 Vip+a.p+9q)
o Preadp—(ptaepq (5.44)

< OVptap+a

This transition is involutive, 7, e. unprimed quantities are expressed in terms of primed
quantities in the same way as primed ones in terms of unprimed one. The transition (5.44)
conserves the volume element (comp. [16]).

dPdQde = dP'd(Q’'de’. (5.45)
To prove this we go over from the variables p, g to u, v
. Pte v:(p+q,q)p-—(p+q,p)q. (5.46)
Vip+a,p+9 (p+ap+q)
The Jacobian of this transformation is
Mul, u?, u? vl 0% 0% ud(p, u) (¢, v) (5.47)

ApL p%p%ahq%h %) podelp+ g p+ @

Since u' = u, (p+q¢,p+q) = (p'+¢’,p’ +¢') then from (5.47) it follows that Eq. (5.45)
is equivalent to

dvtdv3dvdde = dv'1dy'2dv"3de’ (5.48)
The latter is obvious since

v

V"’ (U’ 1))_ .

v =)Y=(v,v)e, ¢ = (5.49)
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According to (3.8) and (3.7) in the left- and right- hand sides of (5.42) are written the
numbers of collisions of i-kind particles with j-kind particles in the elementary region
dX of the space- time. On the right we have the momenta of particles before collision p, ¢
and after collision p’, ¢’ while on the left, on contrary, the momenta before collision p’, ¢’
and after collision p, g. Thus, Eq. (5.42) or (5.40) is a particular case of the general principle
of the detailed balancing in the equilibrium state.
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