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DISPERSION RELATION FOR SPIN WAVES IN CuFeS,

By A. Murasik
Institute of Nuclear Research, Warsaw, Poland*
( Received February 4, 1963)

The spin wave dispersion relation in the case of CuFeS, is studied. It was found that the
spin wave frequencies as functions of the direction of g are anisotropic. The possibility of experimen-
tal verification by the method of inelastic scattering of neutrons is discussed.

1. Introduction

The aim of the present paper is to derive the spin wave dispersion relation of the magnetic
lattice of chalcopyrite.
The crystal structure of chalcopyrite was determined in 1932 by Pauling and Brockway

by means of X-Rays [1]. They found the space group 1 42 d with the atoms positions as follows
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Where x = 0.73+0.01, a = 5.24 kx and ¢ = 10.30 kxr.
In 1958, Corliss et al. [2] studied the magnetic structure of chalcopyrite using
the neutron diffraction method, and found an antiferromagnetic structure at room tempera-

ture. The space group 1 42 d holds also for the magnetic structure in which the two iron ions
and probably also the two copper ions are tetrahedrally bonded to a common sulfur atom
and have parallel spins directed along the ¢ axis. Values of 3.85up and 03:0.2 ug were
found for the magnetic moments of the iron and copper ions respectively. Since the copper
moment does not participate significantly to the whole magnetic moment, the chalcopyrite
lattice can be considered as two interpenetrating body centered tetragonal sublattices consisting
of iron — ions only — (placed in the corner points and body centered points). One of the
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two lattices consists of atoms with spins ,,up” and the other with spins ,,down” (see Fig. 1).
The primitive unit cell is given by the basic vectors @; a, ay. In the present paper it is
assumed that the coupling of spins of the two iron cations @ and R is caused by an inter-
mediate sulphur anion S (Fig. 2). According to Kramers and Anderson [3], {4] such a ,,super-
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Fig. 2

Fig. 1. The magnetic unit cell of Cu¥eS,. Black and white circles indicate the positions of Fe ions (Cu and S
ions are omittted). The arrows symbolize the order of spins according to the two sublattice. The primitive unit
cell is given by the basic vectors @; @y ag.

Fig. 2. Geometrical relations between Fe and S ions. Small circles: iron ions, large circles: sulphur ions. Con-
ceivable superexchange couplings between two iron ions are given in Table I.

exchange” is possible only when the wave functions of the electrons of ¢ and R overlap
those of S.

Therefore, the interaction falls off rapidly with increasing distances Q—.S and S—R.
Furthermore, the indirect interaction depends on the angle QSR in such a way that the
strongest and weakest interactions occur at angles of 180° and 90°, respectively. In table
I are given the angles QSR and the distances Q—S and S—R for the most favourable con-
figurations of iron and sulphur ions respectively.

. Distances in A Exchange
Interaction 0—S S_R Angle Integral
0,—S—R, 2.3 2.3 109° I
Qy—S—R,

0,—5—0, 4.4 2.3 145° I
Q1—5—0, 2.3 44
Q:—S—R, 2.3 4.4
Q0;—S—R, 4.4 2.3 145° I
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Since the dependence of the interaction on angle and distance is not known quantitatively,
it is impossible to decide whether the interactions Q;—S—(, and Q,—S-—R, are stronger
or weaker than the interaction ¢;—S— R, (the smallest distances and the most unfavourable
angle). For these reasons we cannot estimate precisely whether the interactions Q;—S—Q,
and Qy—S—R,; can be neglected with respect to the Q;—S—R; interaction.

2. The spin wave dispersion relation

In this situation the Hamiltonian of the whole spin system will consist of the three
kinds of exchange interaction mentioned above and the effective anisotropy field acting on
each of them. Thus we have

H= 2Jl Znei‘s-:l. ‘§m + 2]2 Zn neigl' §m + 2-]3 (Zmi‘g;' ‘§l’ -+ Znei§m' §m') -
lm Iym Ll mm’

—2D [Z 57+ 3 () M

where [ referes only to atoms in one sublattice and m refers only to atoms in the other one.
The symbol ,,2,,;”" indicates that the sum goes over all ,,nearest neighbour” pairs
of spins and the symbol ,,X,
pairs of spins.

D is the anisotropy energy constant and [ I, I; are exchange integrals defined in table L.

2 indicates that the sum geos over all next nearest neighbour

Assuming the +C direction to be in the z direction we introduce spin deviation operators
%7, 7, to represent the deviations of S§, SZ from what would be expected in the perfectly
ordered state, i.e.

n=S—58 n,=S+S:
Define
aja =n, and B b, =1, 2
where
[a; @i} = Oy [bys byl = By ®3)

and all other commutators are equal zero. Then @, and b,, annihilate while a; and b}, create spin
deviation on the /th and mth atoms respectively.
Thus if we introduce S;¥ = Sf+.5 Si =S54 S it gives

%
St o= @S)hfa, S7 o= @S)half, f= (1_ zn_g)

S = @ ST = CVAfubn fn= (1 - 6%) @
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Writing Hamniltonian (1) in terms of these operators and retaining second order terms with

respect to these operators we obtain the spin wave Hamiltonian.

H = const+ 2],8 D3 ilab,, + ajby, + aja; + b,b,) + 2158 D3, ilab,, +arb, + aja,+b),b,) +
Lm i

a m

+2J55 [%}nei(a’;a’l’ + aap—aa—apap) + 2i(bnbme + bybp—by,
. =
+4DS(S) aja;+ 3 BLby.
i m

Fourier transforms are defined by

% - = l/2 s =

q q

2 \% - 2\ % -
i () Seiaa e (2) 5 e R
g q
where ¢ runs over all possible values in first Brillouin zone. Then
[a,,a;] = [b,, b;.] =0,

and all other comutators are zero.

bm"_ b:n’br’n) +

©)

(6)

™

The Hamiltonian is easily diagonalized by the following transformation (see for instance [5])

1 ) 1 .
aq = Vf (Qq+iPy) by = l/_i (Rg+iSy)

* _1_ - * _1_ —i
Qg = V-2— (Qe—1tPg) b Vz— (Rg—1S5)
Hence
[Qps Ppl = R, Syl = id,  [Q,,Q,] =0 etc.
1
Q,= ﬁ (g tag) Py = 171‘"5 (B1g+B20)
1 1
R, = ﬁ (=) Sg= ]7“—2— (Bra—B20)
Hence

[0514, ﬁlq’] = [“2q7 ﬁ2q’] = 644' {“lq’ “24’] =0 ete.
1
H=const — Y Ag+ 5 Y (Ag+B) (s +3) +
q q

+ % ). (4-B) (e, +6%)

q

®

©)
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where
A, = 4J3Sys(q) + 4J1Sy1 + 4J5Sys—4J5Sy; + 8DS
B, = 4J1571(q) + 4J:S7:(9)

Thus, for the spin waves dispersion relation we have the following expression:

ha(g) = 2SIy A1 —Ja(vs—va(@)/1vs + Jeyal Jyys + 2D Ty )3 —
—[171(9) + Jaya(@)]3} T f?’f

where
=4 py;=8 y;=8
and
72(9) = Dlneic Ry~ R
Rl Rm
Vz(‘]) = ZnneieuiQ(Rl—Rm)
§1—~1—€m
) = e 0=
ﬁ[—ﬁm
Therefore

9 ’ 2
ho(g) = 271 Syx {[1 + -j—? cos a2q cos % cos f.qi + 2(Jp—Jo) Jy + EA] —

_ e (L e So O agy (1 <4
[cos 5 (2 cos 4 lcos 8 (‘osaqx)—{—cos 5 \3 cos 4 +

2%
-+ é Ccos — cq cos aqy):l }
J

E4 = 2Dy, (12)

For the case of long 2, the spin wave energy can be expanded in powers of ¢ which gives

2) (110815 Sk,

[flw(q)] (1_%_2.«][2) E 4+ E%+ ( B Ji

Where

a¥(gi+ q3) +

2J: Syy 8
202 (5, %2 19,1_@)_@
(” Jl) (“JI I A

+ i+ ... (13)

32

If J, and J; can be neglected with respect to J; and E, is small then we have

ho(g) 1 . 1,
[2]15;11] =2E4+ 5 a¥(gi+ Qy)“‘—C 2+ .. (14)
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3. Discussion

The verification of formula (14) can be carried out experimentally by the techniques
of neutron spectrometry used by Brockhouse [6]. Brockhouse uses monochromatised incident
neutron beams measures the energy and momentum of the neutrons scattered inelastically.

If we restrict ourselves in [14] to spin waves moving im [001] and [100] directions,

then we obtain two relations

azq,% ¥

ho(gx) = 20,5y, (2E4+ g
Cq2\”

ho(q.) = 2,57 \2Ba+ (14)
16

which can be compared with experiment.
The constant term E, allows for the presence of an anisotropy field and can be also
estimated experimentally from the value of

w(g) for ¢g=0
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