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HIGH ENERGY SCATTERING IN SYSTEMS WITH
ANOMALOUS THRESHOLDS*

By G. Domoxkos**
Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna USSR***
(Received March 1, 1963)

An S-matrix-treatment of high energy scattering is given in the presence of anomalous
thresholds. The high energy behaviour of the elastic amplitudes is governed by the Pomeranchuk
pole. In the case of the scattering on a nucleus, the amplitude is proportional to the atomic number.
Besides the scattering on individual constituents of the target, a non-vanishing coherent scattering
on the target as a whole is found. The possible role of many-nucleon intermediate states is briefly
discussed.

1. Introduction

It is now a common belief that scattering of high energy “elementary’ particles can be
suitably described by means of the exchange of a Regge-pole between them. The question,
naturally arises, whether taking systems with anomalous thresholds into consideration would
substantially change the picture. Working with a mixed formalism (scil. describing the
composite target with the help of wave functions, while taking the usual relativistic ampli-
tudes for the elementary process). Udgaonkar and Gell-Mann were able to show that the
situation remains more or less unchanged as compared with the scattering of elementary
systems. They have found, namely, that nulceon-nucleus scattering is dominated by the
same Regge-pole which governs elementary processes. There are two modifications, however,
first, the residue of the pole is 4 times the residue, appearing in NN scattering. Second,
a cut appears in the angular momentum plane, due to multiple scattering. The contribution
of the latter, however, dies out in the asymptotic region.

The present work aims at formulating and solving the same problem in the framework
of S-matrix theory. This seems to be desirable not only from an esthetical point of view,
but in order to treat systems where a description in terms of wave functions is inappropriate
(e. g- scattering on X' particles). In Sec. 2 we treat nX’ scattering, while Sec. 3 is devoted to
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the consideration of scattering on a nucleus, taking nd scattering as an example. {Compli-
cations arising from the spin and isospin structure of the amplitudes are neglected throughout
the calculation). The comparison of our results with the work of others, especially a discussion
of the problem of the cuts in the angular momentum plane is found in Sec. 4.

2. nX scattering

Consider the generalized partial wave amplitude in the ¢-channel. In the two-pion
approximation we can write the unitarity condition as follows [2]:

1
g1=15- (G —G1y = 20,G,F, (2.1)

where G, is the amplitude of the mn—Z2 process, F that of 7w scatering, FI G the
corresponding amplitudes on the second sheet of the Riemann surface of the function
Vi—d; 0, = (¢—4)¥t~* the pion mass being chosen as unity. Neglecting the normal part
of the left hand cut, the dispersion relation for G; can be written as

1 d :
(r—4) G (z) = 3?,[ 0 __‘4)1 fi2+
4
a(m?)
1 de AT + 2ip.(0) Filt))
9{,[ (G —a) B e— 22)
4

In writing down Eq. (2.2), we have explicitly exhibited the threshold behaviour of G, in
order to avoid “kinematical”’ singularities, when [ is non-integer;

a(m?) = —M 2 {(m2—(M+1)%} {m*—(M—1)8}

is the position of the anomalous threshold, m and M being the masses of X and A particles,
respectively [3]. 4,(¢) is given exactly by the contribution of the A — pole; if 4 is an ele-
mentary particle (i. e. described by a standing pole in ¢ and u, rather then by a Regge-tra-
jectory), then

G 2(M?—m2—1) +s .

. _ 1 p—inl 2.
A?) (t—A)%(t—am)% ! ((s~4)% (s —4m2)% (L+e) 2-3)
and A = —A,, where G is the AXn coupling constant. In what follows, we work with the
symmetrical amplitudes only so we drop the factor (1+e-™).

We take the mzr amplitude in the one pole approximation, i. e. for t>4

I—L*(1)

2.4)
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and continue this expression below threshold with the help of the technique of generalized
Jost functions. Thus we put S, = f)(g){(f;i—q) ! with ¢ = (z—4)* and then it is easily seen
that the Regge-poles are determined by the roots of f)(—g) (the details of the continuation
procedure are explained in the Appendix). Formulae (2.1) to (2.4) constitute an integral
equation for G which can be solved by standard methods. In our notation the solution reads:

4

R o /lhffigffﬁjg. 2.5)

a(m?)

Looking at the expression (2.5) we see that the singularities of G, in the l-plane (and thus
the asymptotic behaviour in the crossed channel) are determined by the denominator,
fi(—q). Hence it follows that the presence of the anomalous threshold does not change the
qualitative behaviour of the amplitude for large energies: w2 scattering is dominated by
the vacuum pole, just like scaltering without anomalous thresholds.

3. wd scattering

As a second example, we treat pion-deuteron scattering. The essential difference between
this process and the one treated in Sec. 2 is that for nd scattering the anomalous threshold

comes from NN intermediate states. Besides that, in 7.5 scattering we had two contributions
to the anomalous cut (from the left-hand cut of the amplitude, passing over to the second
sheet and from the left-hand cut of GY, coming out to the first one). In ad scattering, the
left-hand cut of the amplitude on the physical sheet does not contribute to the anomalous
cut, as the lowest possible state is that with one deuteron. Correspondingly, we have the
following dispersion relation for G:

r(M®)
) ) 2 dt'on()RIN(Y) Hy(?)
[y(2)| 2 (z—4) " Gif2) = ; W,_—Aﬁf(?"__z)
AM2
1 [ e
*Ef“wwmldw@' 3D
4

In writing Eq. (3.1) we neglected both the left-hand cut and the normal part of the two-
AN\

-nucleon cut. The notation applied is as follows: opf(t) = (L—A}}I—) , Hy(t) is the pion-

-nucleon-amplitude, R)(z} is the absorptive part of the NN->dd amplitude in the pole approxi-

mation (corresponding to the amplitude 4, of the previous section). w(t) is the Fourier

transform of the deuteron wave function, while the threshold value r(m?) is given by:

r(m?) = 16MB + O(B?). (3.2)

(Actually, B, the binding energy of the deuteron is very small: B ~ 1/70, so formula (3.2)
is completely satisfactory for every practical purpose). The factor 2 before the first integral
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can be understood, if one takes into account that the latter arose from the contribution of
two diagrams. (7 scattered on p, plus 7 scattered on n; the 7p and zzn amplitudes are taken
to be equal).

The other details of the derivation of Eq. (3.1) are completely anologous to the consid-
erations made in the previous section. Now, in the one-pole approximation one has

_ @
B = 7@y

where /() contains the contributions of left-hand- and inelastic cuts. Taking into account

(3.3)

the expression (3.3), we can write the solution of Eq. (3.1) as follows:

4(M?)
dt’ YR
6 = w2 [ 2 e (=) (3.4

We see that in complete analogy with n2 scattering, the singularities in the Il-plane are
determined by f;(-—¢) and thus the considerations at the end of Sec. 2 apply to this case
as well. Let us only notice at this place that — as can be seen from Eq. (3.4) — the residue
of G; at the vacuum pole will be proportional to the number of nucleons contained in the
target nucleus.

4. Discussion

Summarizing the main qualitative features of our results, we see that the asymptotic
behaviour of the #X or zd amplitudes is determined by the Pomeranchuk-pole, just as in
the cases without anomalous thresholds. In the case of the scattering on a nucleus (A4) the
residue of the pole will be proportional to the atomic number. So, in particular, the well-
-known relations between total cross sections of (nA), (nn) and (A4A) scattering:

2
Ona = Onn044

remain valid, as in the “elementary” case [4].

There are some complications, however, which may obscure the above picture. First
of all, besides the twonucleon intermediate state, one has in a nucleus, heavier than deuteron
two-deuteron, two-triton etc., intermediate states, giving rise to anomalous thresholds.
They obviously spoil the linear dependence on A4 of the amplitude. In principle, they could
be calculated by successively determining the (7d), (7t), (nHe), ... amplitudes.

It is not clear from the beginning, how the result of such a calculation would look like,
but if e. g. the individual terms simply added up, they would give rise to an essentially-
-exponential dependence of the amplitude on 4. (Note that in this case the relation between
total cross sections remains valid). A second complication arises from. the presence of a co-
herent scattering on the nucleus as a whole. One can see, namely, that to the solutions (2.2)
and (3.4) the solution of the corresponding homogeneous equation can be added, multiplied
by an arbitrary constant. (This homogeneous solution corresponds to the presence of the
two-pion intermediate state only). Now, obviously, this homogeneous solution has a pole
in the [-plane, corresponding to the Pomeranchuk pole, and thus gives rise to the same
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energy dependence as the other terms. The “arbitrary constant’ plays the role of the eTective
coupling constant of the Pomeranchuk pole to the nucleus (or X respectively). In view of
a remark of Freund [5] it will be proportional to A, so its presence would not spoil the rela-
tion between total cross sections.

Finally, we want to comment on the absence of the “eclipse term” [2] in our results.
As can be seen from [2], this term (giving rise to a cut in the [-plane) arises from double
scattering inside the nucleus. This implies the exchange of four pions, a contribution we have
not taken into account.

In conclusion, we take the opprotunity to express our sincere thanks to Professors
M. Miesowicz and Z. Koba for pleasant discussions on the subject.

APPENDIX

We want to explain the details of the continuation of the one-pole approximation below
physical thresholds. Taking a complex partial wave in the one-pole approximation, we have:

) . I—L*
Sp=e¥% = 14 2ipF; = —— (A.1)
I—L
1ImL

Obviously (A.]1) or (A.2) as it stands is valid above the physical threshold only (e. g. for
a two-pion pole, for t>>4). In order to continue this expression for any value of the energy
variable, we make use of the generalized Jost functions (g.J.f.) [6].

Introduce the variable ¢ = § (t—4)". Then S, can be written as follows:

Jdg)
Si(q) = L8, (A.3
where the g J.f. (f)(¢) has the following properties (¢f. ref. [6]):
a) fi(g) regular for Im ¢<<0

by lim f{g) = 1

ig o0
) Sl—=4") = Sl)*
d) For Im g—>—0, the phase of fi(q) is 9.
e) For Im ¢>0, fi(q) = S(9)fi(—9)-

(The properties a) to e) can be generalized for complex [ in a straightforward way).
One can easily write down a formal expression which is valid on the whole g-plane.
Writing g = ¢, +igs (qq, o Teal) the expression

1/ 3i(») dv
Siq) = exp {; [ -—~—-—’-(—)—--——} (A.4)

o2 2 o .
T V“]l”f’(h*b%l’h:

salisfies the requirements a) to e) (v = 1/4{¢t'—4)).
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With the help of (A.4) we have:

oo

— 24 |g] } -
= 2 dvd . A.
Sia) eXp{ L a[ Yo (v—qi +q8) +491q3 (4-5)
Inserting from (A.l)
1 I—L*(»)
61(?’) = 2—1,:10g "[——L—-(v)*' N

fA.4) and (A.5) gives the result we needed. It is clear from (A.3) that the Regge-poles arise
from the roots of f(—q).
The relation of (A.3) with an N/D representation is clear: one can write
F(t) = Ni(©)D, (),
with
Dy(t) = fil—q(9)
Ny() = (2ie(®)) *[fi(g()) —fi(—q())].

Comparing this with the usual N/D method, the appearence of the factors f)(—g) in expres-
sions like Eq. (2.5) is easily understood.
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