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ON LAGRANGIANS WITH HIGH DERIVATIVES

By M. BornEas*
Physical Laboratory; Polytechnic Institute, Timigsoara, Roumania
(Received April 8, 1963)

Starting from a Lagrangian with high order derivatives, a “canocical conjugate momentum*
is defined. With this, certain'commutation rules are written. The field momentum and the energy,
satisfying conservation laws are introduced. Finally two examples are given.

In two preceding papers [1, 2] we have presented the fundamental equations which
can be obtained from the variational principle, if Lagrangians with high derivatives are
introduced. Now we shall show some prospects originated by the results obtained so far.

We have formerly indicated [1] that, in the frame of a generalized mechanics, based
upon a Lagrangian function of the form

L=Lt..¢M.) (=012 ..5), (1)

where ¢ is the time, and g(”) the n-th order derivative of the generalized coordinates, we can
obtain the generalized Hamiltonian function

H = S—Zl i Z( ]')l(dl/dtl) (QL/é)q(")) q(n h_J @
1=0 n=Il+1k

which may be written also

s s—j
H =333 3 (—D(d)dd) @Ljog{™) ¢ —L (2
E j=1i=0
that is, in the form
H = Z Z Pryad—L @)

Here the magnitude p;, the expression of which results from the comparison of (2'),
with (2), is equivalent to the canonical conjugate momentum of the usual Hamiltonian.
Starting from the generalized Lagrangian of the form

L=L(.qf, ) ®)
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(here x, are the space-time coordinates in number of ¢, and ¢ = I"qy/dx,9%, ...), we
have obtained [2] the tensor

Z 2+l Z( D) Lt asime 1 8me. —L0s 4
l=0n=I+1 (n—1)y

which represents a generalization with high order derivatives of the energy-momentum
density. (We have noted as in [2]: (al/é?x,.é?x”...)(9L/<9q£’f%,,,_,;+1=g...) = Lf,l,;(’};[':.).l H=o. )
The notation ... A+ = g ... shows that the /-th index after 1 has the value g. Zja+1] mean

(n—1)
the sums X' X ... lacking the [-th after the first. 7 is the index of a certain variable x,, and «
1A p i
T—1)

is the first index after g etc.).

In order to develop a field theory it is useful to define a “canonical conjugate mo-
mentum’”. We shall show that this is possible.

We observe that the passage from (2) to (2') is made formally by the change of index n
into /+j and the limitting of summation over [ up to s—j, because from n<(s results [ +j<s,
therefore [<<s—j.

We make in (4) the same change and we obtain

s s—j

kzjzl 1—Z<;(1_§!;>+”( I)ILS%-H{ iw{«lx-g D Qk’nc. _L(an' (4‘,)

This expression has the form

Nﬂ@ = kz Z]_ Rk/qul(gm,,, _Lanq * (4‘")
]:

We consider the magnitude

Ryjo = Z 20+t (=D LG50 avtm ©)

1=0 (+/—-1)

as generalized “canonical conjugate momentum’ with high derivatives. Its knowledge
allows to write certain (anti-)commutation relations of equal time, analogous to those known
in the literature [3]:

[Re(2), qp(*)], = —i0d(x—x) ©
[Re(%), Rp(=)]: = [9a(%)> qu(@)] = O @

(We have noted with x all variables, and with x the hipervectors in the f-dimensional hiper-
space, if x, = ict and f = 0—1.)

Here we must take into account that every R, has jo components, therefore (6) and (7)
are referring to all these components.

On the other hand we can define the field momentum. The tensor N, gives by its
component N, the energy density, and (/c}N,, (¢ = 1,2, ... f) represent the components
of the f-dimensional field momentum density with high derivatives.
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If L does not depend explicitly on the coordinates, N,, has the divergence zero, and
by a well-known way one can reach

1 9Ny
fx — =
fdxw S =0 ®)
f

(d’x is the f-dimensional volume element). This is the conservation law of the energy-
-momentum o¢-vector P, of the field, with its components constituing the f-dimensional
momentum with high derivatives

1 ;
Po=— f Px Y (1) L e p38e.. ©
)
and the component representing the energy
¢ .. j
R R L) N e (10)
f O

(We have noted with (2)' all sums).
In a very interesting paper Fried and Plebanski [4] have adopted the Lagrangian
L =— (I3 + m)]p an

(5 = 9,9;, ¥ being the well known matrices, and m mass parameters) [5].
The Euler-Lagrange equations are [2]:

Z 2 (LG, = 12)

n=0 (n)

If we partially derive L, given by (11), with respect to y3

case n = 0, when we receive

we receive zero, except the

3Ly = —[II( + m)] y. (13)
Replacing into Eq. (12) we have
TG + m)] p = 0. (14)

If we partially derive L with respect to 3 we obtain every time an expression without ¥,
multiplied on the left with —y, that is, of the form

ILPYP = —pM,_yy... (15)
(m)

(s being the maximum value of n).
Acting with the operator 9%dx, ... on every expression, and summing accordingly
to (12), we see that one receives the equation

Z (= 1)"(9"/9951 =M, _.7;...) (16)

n=0 (n) (”)
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which, with the above adopted notation, and with 9,py, = 1?{‘5 yields

PO —m)] =0 a

Eqs (14) and (17) are the field equations obtained also in [4] and [5].
The “‘canonical conjugate momentum” for our case, R;, can be obtained by intro-
ducing in (5) the partial derivatives (15). Taking into account the indices, we have

s—j

R, = Z le(—l)’(a’/ax;---)(—@M,_z_,-w-~- Viglmgle (18)
i=0(H-D @
Consider
s—1
Ry = 2 2ia(—=1(9)0x,..) (=9 M,_y_yy;-.- v
=0 D ~TD
s—1
= > 2 (=D} @Y9%5...) (—pM,_y_173--.) va
=0 & OB
O]
= (=)t p(@—my) ... (9—m,_y) Vs (19
Condition. (6) leads in this case to
[, (1) 2@ —my) ... (3" —ma)yel, = i6E—=") (20)

which is identical with the first anticommutation. relation from [4]. Other relations too are
deduceable.

The introduction of high derivatives into Lagrangian functions is specially adequate
in the field theory, but we remark that — as we have previously asserted [1] —even in
a mechanical theory it may lead to some interesting aspects.

For instance take an unrelativistic Lagrange function

L = a—Bx2a1—U, @1)

Here we have noted with dots the time-derivatives of the coordinates, U is the potential
energy, & and f nonnegative constants.

Consider that a particle moves through a region I, in which U = 0, and enters a region II,
in which U = U, = const # 0. In both regions the equations of motion established in [1]
lead in this case to

% 74— 8% x5+ 10x3%x 8 = 0. (22)
It has the general solution
t = Coxt- L1 (eHCx+C) _g—iCu+Ca)) 4 (. (23)
G, 2

On the other part the equation of energy established in the general case [1] leads here to
xx3— (5/2) x2x~4—C = 0, (24)
where C = (1/2f)(x—U+E), E being the total energy.
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The introduection of solution (23) into (24) leads to the following relation between the
constants

Cy =+ [(YB) (=T + E)*™. (29)

In region I, U = 0, consequently C, is real. It follows that solution (23) may be put
the form

t = Coyx+ % sin (Cyx+ C3) + C,. (26)

In particular, for C; = C; = 0 there is the classic uniform motion.

In region I U = U, # 0. If U,<FE, (; is real and the solution is (26).

One notices that different solutions of forward motion of the particle may be obtained
in region Il also in the following conditions: E<U,<E+a, U, = E+a, U,> E +a, with
adequate values for the constants.

Thus, unlike in classical mechanics, the particle may enter the potential barrier and
move further on, even in the case E<U,.
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