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SPIN-WAVE THEORY OF MAGNETOPLUMBITE FERRITES

By Leon KowALEWSKI

Department of Theoretical Physics, Adam Mickiewicz University, Poznan*
(Received April 27, 1963)

The theory of spin waves in ferrites having the magnetoplumbite structure is presented.
The approximation of the magnetic quasisaturation is used. The spin-wave spectrum consists
of five branches. The dispersion formulas have great uniaxial anisotropy.

I. Introduction

A wide class of ferromagnetic oxides obtained as products of the reaction of Fe,0,,
BaO and MeO in various proportions are technically useful as permanent-magnetic materials.
The crystal structures of these compounds present the hexagonal symmetry and are related
to the magnetoplumbite (PbFe;;0,,) structure described by Adelsksld (1938, see also
Smit and Wijn 1959). Many compounds, e.g. Ba; _;_,_,Pb,Sr,Ca,Fe;,0:9 (0 < A+u-+v <1),
BaMe["Fe,p_s0,9(Me =Al, Ga, Cr, ...), BaMe}!Me;VFe,, 5,0, (Me=Ni, Co, Zn, ...; Me' =Ti,
Ge, Sn, Zr, ...), crystallize in the magnetoplumbite structure. In this paper the spin-wave
theory of ferrites with magnetoplumbite structure is presented.

II. Dispersion formula for spin waves

The magnetic lattice of the magnetoplumbite structure consists of 24 translational
sublattices. The magnetic ions interact between themselves in an indirect way through the
oxygen ions. In the elementary cell, two magnetic ions are in the pentahedral sites, four in
the tetrahedral sites and eighteen in the octahedral sites. The foregoing nomenclature of
the sites denotes that the respective magnelic ions are at the centres of the pentahedron,
tetrahedron and octahedron in whose vertices there are oxygen ions.

Let us assume that the amplitudes of the spin-waves are equal at nodes having identical
environments.

Thus, we assume as equal the spin-wave amplitudes at all nodes within the following
groups of nodes: a) tetrahedral with indices ¢, b) pentahedral with indices «, ¢) octahedral
with indices 8, d) octahedral with indices 9, and e) octahedral with indices 8.
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The position vectors of magnetic nodes are the following:
pentahedral nodes (c)

- -
n

R,

- - 1 3 .
+Qa$ Pa; = (0309 Z)s (0a09 Z)s 1= 1’ 2;
octahedral nodes (f)

Rﬁzﬁn'{"éﬁ: éﬁi: (Os 09 O)s (0’ 09 %)9 i= 1’ 2;

octahedral nodes (y)

P S - 1 .
Ry= Rn+ Oys Q?i = (U, 2LT, Z)’ (U’ 2U7§" —Z)a 1= 1’ 2, 334’
> 1 1 17
J. — = —— e *
2u, U, 2), (2U, U, 5 +Z), U 3 Z 50 °

octahedral nodes (4)
Ry = R.+8s &, = (U,2U, Z), (U,5U,Z), 4U,5U, Z),
@QU, U, 2), (5U, U, Z), (5U, 4U, 2),

(U, 2U,§+Z), (U,sv,é+z), (zw,sv,—;-u),

1 1 1
(2U, D,—2~—Z), (SU, U’E“Z)’ (SU,4U,~2-—Z),

,Z=£;

1=12,...12, U = 2

1
6
tetrahedral nodes (&)

- -

Rsan‘{"_és: _ée(:(U,ZU,Z),(U, 2U,%——Z)’ i=1,23,4
ow.v.2), 200 Lrz), v=Ll z-1.
( 2 )’ ’ a“2-+ » _-37’ _,3_6_’
where
Rn = Z nigf’ n;' = 0, ]-, 2, cae N!-

N; + Ny » Ny = N— the number of elementary cells;
24N — the number of ““magnetic”’ nodes;

0, = a, B, y, 8, &) — the position vectors “of magnetic” nodes in the elementary cell.
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The coordinates of the vectors g; are given in units of a, c lattice constants (lex] = [e]
= Ay leal =¢).
The Hamiltonian of superexchange interaction between “magnetic” nodes is of the
form:
A 1 3 4
H=—_% J,1) 55, @
I, 1,
wherein

1, I, are the indices of ,,magnetic” lattice nodes;

J(4, Iy) are integrals of superexchange interactions between the ions I; and I;

S;is an operator of the spin vector at lattice node /, in 0 units.

We replace the spin operators S, S}, Sf by Bose creation and annihilation operators

I;‘f, I;, (Kowalewski 1961). We assume, furthermore, the Néel orientation of spins in the
ground state (Smit, Wijn 1959, p. 182, 193).

60°

[ 725

X

ST >

Y

Fig. 1. Elementary cell of the magnetoplumbite structure constructed on the unit vectors ;1, 24> 63 Only the
octahedral nodes § are shown in the figure.

g(ny) = ]/

Cz
S

n

S’

= VSlg(r)b,+ B ()],
= inVSlg(i)b—big(m)],

= 771[2b; b, “SI]’

ny = bfb;, M =

f+1 for I =a,pB,0
|—1 for l=vy,¢

Let us introduce also the simplifying assumption of magnetic quasisaturation (Holstein,

Primakoff 1940).
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We now transform the operators b, b* to the reciprocal lattice:

A 1 ~V4K Ry o o2
b+ 8 = Y e ‘0 (B),
17V1V1 - Q (K)

K
A N i —(-1)xit?-§(n) A -
by—by = ——— Z e 1 pr Ry,
R

VNN,
where
3
- }E: m’- - - e
K=2ﬁ._1—lvi" b - & = dy,
1 1
—-2~N,<m,<§N, -[V¢=Np=2, Ny=Ns=4‘s N0=123

y is even for [ = ¢, ¢ and odd for I = a, 3, 4.
The Fourier transforms P and Q satisfy the following commutation relations:

QUK)P(K') —Pu(K")QK) = 2i8, 8%, 7 -

All other commutators of the operators P and @ vanish.
On restricting the calculations to the case of strongest interactions between nearest neigh-
bours only, the Hamiltonian becomes

H=C+ 4, o50,K0.K)—BEPK)]+

(15 %) z
+ 33 B, 3 10,80 —E) + PP K)]. @)
#“ K

The sum Y] consists of four expressions: (u, %) = (&, ¥), (B, &), (3, ¥), (9, &). The sum h>
(1, %) “
consists of five expressions: gy = a, f, ¥, 0, &.

C = 6NJ, (S, +S,+ S.S,) +6NJy,(Ss+ S+ SpS) +
+ 12N, 5(S, + S5 +5,Ss) + 18NI (S, + S, + S55,)s
s = Zcos]%-i;;, (;0:;; = ¥ sin *-?ﬂ; = 0.
y; u;
The vectors i:“; connect an arbitrary node g with the nearest neighbouring nodes of type »:

-

7,5, = 0 £2, +z), (+%, £y, +2); i = 1,2; j = 1,2,...6;

%
V3 11

a
¥=g YT g T 10

;dp;, = (£ £y, £2), (£ £y, £2), (£25 0,+2), (£2x,0,%2);
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, . 1 V3 29
1=12..12; j=1,2; x=50 Y= 0 2= 5550

:Ed":l = (tha :{:ya :’:zl)7 (:‘:x’ :i:33’, '_‘b22), (i x, i3y, :’222)9
0, £2y, +2¢), (+2x,0, £ z), (£ 2%,0, -25); =12,..12;7=1,2,3;

1 ﬁ 49 29
TR YT AT 50 % 2T 360 &
. :Eﬁ‘,:l = (:txa :{:ya Z{IZ)’ (Oa :|:2}’, j:z)a I = 1a2; ] = ]-’ 2’ 6;
> welte ,=V3, 21,
= 27 6 36
___ The figures in parentheses denote vector components in the orthogonal x, ¥, z system (see,
2 Fig. 1).
g"/ D) denotes summation over all x nodes in an elementary cell and over all their nearest
— by ¥
. neighbouring nodes of type ».
<
= . VSeSy Ao~ )/ SgSe 7
L_c; ay 41/—2— ay> Be 4V»2——— Bes
2
_VSS, _VSsSe.

Ady = J("y: Aée = Jés’

S 8Y/3 83
3. 3 3

E Ba = - E b‘y]¢y7 Bﬁ = - E Se]ﬁs, By i Z: Sa-]zy - 5 Sd]dw
S
~ 1 3 3 9
@) Bs = — o S,Joy — — SeJoes Be = — — SpJpe — - SsJser
¥ 2 Ty 4 4
EC) The quantum equations of motion for the operators P and é are following:
~
0 Ao - - N
E Qu(K) = H1P¢(—K) _RIPy(A)’
i: 0p(K) = HyPy(—K)—R,P.(K),
& OK) = HyP,(—K) —RiPo(K)—RoPo(K),
<

0,K) = HPf(—K)~RyP (K)—RyP,(K),
0(K) = HP(~K) —RyPy(K)—R,PyK),

where

H, = 4B,, H, = 4B,, Hy = 4B, H, = 4B,, H; = 4B,,
R, = 2Azy9”;7’ R, = 2Aﬂs‘l’§?’ Ry = 2A5y995;, R, = 24,,95.
On interchanging é and P and on putting —H; in place of H; (i = 1,2, ... 5), we get
another valid group of five equations of motion.
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The second order equations of motion for Q and P can be written (taking into account
their exponential time dependence) in the form:

(H: —R:—?, 0 , —(Hy—H)R, , —~RR; 0 7
0 s H:—Rg —w?, 0 , —R,R, , —(H;—Hy R,
(Hs—Hy) Ry, 0 ’ Hg—Rf—R: —w?, —(H,—Hy)R, , —R;3R,
“RR, , —RR, , (H—H)R, , H'—R—Ri—w? —(H—H)R,
0 » (Hy—Hp) R,, —R3R, s (Hs—H) R, , H;"-—Rg—-—Ri—-wz_
Q£ K) ]
iR
0,78 | =0, ®3)
@a( + IZ)
| 0.(FK) |

The condition for obtaining non-zero solutions of Egs (3) is:

H+o, 0 , R , 0 |, 0
0 , Hytow, 6 , 0 , R,

—R,, 0 , —Hy40, —R,, 0 =0. (4)
0, 0, R ,H+to, R,
0 , —R,, 0 , —R,, —Hytw

In the special cases of Hy = Hy = Hy = Hand Hy = Hy = H' (J,3 = J,5 = S, Sy
2
=J<0, J, = 3 Jopr $Ss b= (5,+ 35, (Sp+ 3Ss)™") the dispersion formulas (positive
solutions of Eqs (4)) take the form:
w; = H,

1
= | £(H—H) — |/ (H+ H')*—2(R} + R} + RE + R —2/ (RI—R§ + Ri—R)* +4R3RY)

1
05— E{ +(H—H')—)/ (H+H')*~2(R2 + R3 + R3 + R) +2)/ (R — K& + R3—R)? + 4RCRE ).

IfS,=8=S =5 =3S,=35 we get for small values of K the following dispersion
formulas:

w; = —6JS,

Wi — (3 F 3)JS — % JSa?[(K#)® + (K?)?] —0.056 - JScX(K*)?,

wy5 > — 3(/7 F 1)JS — 1%7 JSa[(K%)? + (K)2] —0.0137 - JSc}(K®)2.  (5)
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It is readily seen, that the dispersion formulas (5) have the great uniaxial anisotropy (the
minimum of the spin-wave energy occurs for the c-axis).

The author wishes to thank Professor S. Szczeniowski for his interest in the present
investigation and for reading and correcting the manuscript.
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