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ON THE INTERMEDIATE REPRESENTATION IN THERMODYNAMICS
OF IRREVERSIBLE PROCESSES

By A. FuLiNski
Department of Theoretical Chemistry, Jagellonian University, Cracow*
{ Received October 18, 1963)

The properties of the intermediate representation for thermodynamics of irreversible
processes are described. In this representation, m forces X and n—m fluxes J; are chosen as
the n independent variables. The symmetry properties, physical meaning and transformational
properties of this representation are examined. It is found 7.a. that the matrix M of phenomeno-
logical coefficients is not entirely symmetrical, but consists of four submatrices, two of them being
symmetric and two antisymmetric. It is also shown that the transformation of Coleman and Trues-
dell [5] is a special case of the intermediate representation.

1. Introduction

In phenomenological linear non-equilibrium thermodynamics [1,2], n(i = 1, ..., n)
irreversible processes are described in terms of 2n variables: n fluxes J; and n forces X,.
Of these, only n variables are treated as independent, the remaining n ones being regarded
as linear functions of the former. The choice of the n independent variables is rather arbitrary
from the formal phenomenological point of view and the most frequent procedure is to
write the flows J; as functions of the forces X;

=Ly X > = LIXD; 1.1)
|> denotes a one-column matrix. Sometimes, too, the choice is made the other way round,
thus

X, = SRl [X> = R, 1.2)
The elements L, of the admittance matrix L, and R;, of the resistance matrix R are refered
to as the phenomenological coefficients. We shall term the first case the admittance or L-

-representation and the second — the resistance or R-representation. If no relation exists
of the type

ZaJ; = 0, (alJ> =0,
or Z_;b,-X,- =0, <b]X> =0, (1.3)
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(<| being the transpose of |{> i.e. a one-row matrix), with at least one non-zero g, or b; i.e.
if all the fluxes and all the forces are linearly independent, the matrices L and R are connected,
as is seen immediately from (1.1) and (1.2), by the relation

L=R1, R=L1 (1.4)

which gives the direct connection between both representations.

In the case when L and R are singular (i.e. when at least one relation of the form (1.3}
exists), it is also possible to find the relations between both representations (see [3]). In this
paper we shall restrict ourselves to the case of independent fluxes and forces.

Now, if the J; are time derivatives of the thermodynamical parameters, and if the
forces X, are chosen in such a manner that

o =2 JX; = (J|X), (1.5)
f==1
o being the entropy production (and if no relation of the type (3) exists}, the well-known
Onsager theorem states that

L, = Lki’ R, = Rki; L= LT, R = RT. 1.6
ik k

U

The use of the L- or R-representation depends on the physical situation in the case considered.
As already mentioned, the L-representation is more commonly used. However, a third case
is also possible, namely, we can treat as independent only some, say, m forces and thus n-m
fluxes. This case can be written down as follows:

Let us select as independent variables m forces X, (k = 1,...,m) and n-m fluxes J(k
= m+1,...,n). The remaining fluxes J; (¢ = 1,..., m) and forces X; (f = m+ 1,..., n)
will be dealt with as linear functions of the first n ones. Then denoting the independent
variables by Y; and the dependent ones by Z,(i = 1,..., n) we can write the phenomenolo-
gical equations as follows:

Y>, 1.7)

Ji for i=1,...m
X; for i=m+1,..,n

7 =S, MyY,, |Z>=M

1

with Z; = {

v, — X, for i=1,..,m
i J; for i=m+1,...,n
i.e., <Zi=lJy e Sy Xpps1 - X,

<Y| =Xy ... Xy Jsx - Jull-
It is obvious that this does not affect the form (1.5) of the entropy production
Z)Yy = {JX) =o. (1.8)

There are many physical situations which require such a choice: in fact, this is the choice
made e.g. in the description of thermoelectric or thermomagnetic phenomena, where for
various phenomena various J and X are regarded as independent (see, e.g., [2], Ch. 13,
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[4], Ch. 17). Now, no formal description of this intermediate, or mixed, or — as we shall
call it — M-representation has been proposed as yet. The purpose of this paper is to give
such a formal description of the M-representation; as we shall see below, its properties are
not trivially related to those of the L-representation, as is the case of the R-representation
(in the case of independent fluxes and forces) where, in view of Eqs (1.4) all the properties
of the matrix L (as e.g. its symmetry properties) are immediately transmitted to the matrix R.

2. Symmetry properties

Let us now search for the relations between the matrix M and the matrices L and R.
For this purpose let us first decompose the matrices L,R, M, each into four submatrices, as
follows:

mm Jmu
|\ il ; 2.1)

Irm o e

‘ M M
R M o= || ennnd e

where the elements of the submatrices are
meik = le with i, k= 1,-.., m
e, =L, with i=1..,m; k=m+1,.., n;etc.

and where u stands for n-m. This decomposition follows from our choice of the independent
variables and is rather obvious. (It should be remembered that matrices L™ etc. are not, in
general, square matrices.)

The three schemes (1.1), (1.2) and (1.7) of phenomenological equations can now be
written as follows:

=" = L XS L | >

|J># = L | X>™ L% | X>* (2.2)

| X>™ = R™ [J>™ + R™ |J>*

| X># = R |J>" + R |J>* (2.3)

|Z>m — Mmm |Y>m + Mmu IY>,u

|Z># = M*™ |Y>™ + M* |Y>* (2.4)
with

l

T>" = (257 = || Jy o Tl
J># = |Y>* = ||Jpiq - Ju|iTs  ete.
Eqs (2.4) in more clear form are
[J>™ = M™ X >4 M™|]>*,
|X># = M X>m 4 MM T >". (24a)
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Now, solving (22) with respect to |Z> (i.e., |[J>", |[X>*), we have
|[J>™ = [L™ — D™(L*)~1 L) | X>™ + D)L | T >,
XS = — (L)1 L (X7 (D)1 | T, 2.5)
and similarly from (2.3)
/> = (R™)7 |X>" — (R™)"1 R™ |J>*,
| X>* = RA™ (R™)-1|X>" 1 [R¥* — Rim (Rmm)-1 Rme | J>", 2.6)
Comparing (2.5), (2.6) and (2.4a) we obtain the required relations between M and I, R
M™ [ [ (-1 [ (R -1,

Y e (L/‘Il)—l - (Rmm)—l R,
M#™ — — ([##)~1 [Fm — R#m (R™™)-1,
M* = (L/*y~1 = R — R (R™)~1 R™, 2.7

The symmetry properties (1.6) of matrix L yield for its submatrices
[mm (me)T, me (Lum)T, I — (Ly,u)T’
(Lt = (L2, (et = [ (2.8)

and similarly for submatrices R. Egs (2.7) and (2.8) give the following symmmetry properties
for the matrix M:
M = (M™)T, M = (M"T,

M™ = — (M*™)T, (2.9)

i.e. the whole matrix M is, despite the matrices L and R, not symmetric. It consists of two
symmetric square submatrices (of orders mXxm, (n-m)X(n-m), respectively) and of two
mutually antisymmetric rectangular matrices (of orders mXx (n-m), (n-m)x m, respectively).

For an illustration, let us consider the simplest case of two independent processes. We

have, in turn,

o = J;X;+JX,, (2.10)
Ji =L X+ L1 X,,
Jo = Lo Xq+ Ly X,, (2.11)
X; = RpJi+RyoJ,
Xy = RypJi+Ryols, (2.12)

where the symmetry relations L, = Ly, Ry5 = Ry, were used. In the M-representation
the phenomenological equations are

Ji = Mu Xy +Myls,
Jp = My X, + My, (2.13)
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and we easily find from the above that

L L3, 1
M, = B =Ly =5
1 1—LyRy, YL, Ry
M. — LpRyy Ly _ _ Ry
B 1-LypRyy Ly Ry
yo_ IuRe _ Lo Ry
B 1—LyRyy Ly, Ry
R 1 Ria
M,y = 2o = — = Ryy— o, 2.14
2T T LgRy  Im P Ry &
and thus M,;, = —M,,, and the phenomenological equations can be written
J1 = MyXy+ My Jp, (2.15)

Xy = —Mp X+ My J.

3. Physical meaning of the M-matrix

[t is easy to see from the relations (2.7) that the submatrix M™" partakes of the physical
character of the admittance (conductivity) matrix, the submatrix M**—of that of the
resistance matrix whereas submatrices M™* and M*” have no definite physical character,
as being the products of factors of the resistance and admittance type.

Let us examine more precisely the meaning of the components of the M-matrix, es-
pecially of the diagonal ones. First let us take up once more the example at the end of
the preceding section.

Let us remark that both the coefficient L;; and the coefficient M;, = L, —13% L,
have the meaning of a conductivity in process 1, though in different conditions: L, gives
the value of the conductivity (of the process 1) in the absence of the field of process 2 (i.e.
when X, == 0) while M, gives that value in the absence of the flow of process 2 (J, = 0)

- Ji _ S
Lll - (E)X,=0 ’ Mll - (‘Xl J1=0' (3.1)
Similarly. R,y and M,y determine two resistivities of the process 2 in two different conditions
X X,
Ry = | 52 , My = |52 . 3.2
22 <J2)1,=o 22 (Jz)X,=0 (3:2)

The above interpretation can be easily extended to the case of many simultaneous
processes: both L; and M7 determine the conductivities of the process i; or: both R
and M#* determine the resistivities of the process i, respective of conditions imposed on the
system. L, is the conductivity of the process i in the absence of all the forces except X;;

M™ — in the absence of the m—1 forces X;_, and of the u (remaining) flows. R is the
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resistance of the process 7 in the absence of all flows except J; and M — in the absence
of the (u—1) flows J;,, and the m remaining forces

" J:
b = (—X;)XFO

M = (—J"—

X; )ijo, Jp=0

M — _&
" Ji ] 1,=0.%,=0

X;
Ro= (5

(Gj=1..,n; i#)

G,j=1..,m; i#j; k=m+1,..,n)

(G j=m+],..,n; 15%j; k=1,...,m) (3.3)

(i, 7==1, ..., n; %))

In a similar manner we can interpret the cross-coefficients M;; for ij. Namely, M;™

Yy

determines the magnitude of the flow J; given rise to by the unit force X;, in the absence
of the other forces and flows, respectively (see below, Formulas (3.4)), while L,; determines
the same effect in the absence of all forces except X;. M} determines the magnitude of the
flow J; arising from the unit flow J;, in the absence of the other forces and flows, according
to the indices m and . MZ™ determines the magnitude of the force (field) X; due to the unit
force X, and finally Mf* — the same, as caused by the unit flow J, in the absence of the
respective other forces and flows, while R also determines the last effect, although when

all other forces can differ from zero but all flows except J; are zero

M7™ = (%)Xfo,zﬁo
M7 = (%)X"=O,]l=0
= () e
MG = (%),fo,xﬁo
b= (%)

X;
Ry = (Ti)’f"

(o k=1, ..,m;j5k; 1 = m+1, ..., n) (3.4a)

Ghk=1..,m;j,l =m+l, .., n;j=£]) (3.4b)

o k=m+1,..,n;j,1=1,..,m;j#l) (3.4c)

@ j, bk =m+1, .., n;j4k; 1 =1, ..., m) (3.4d)

() k=1, ., n; j#k) (3.4e)

@, k=1, .., n;j#k). (3.4f)

For example, from Eqs (2.13) we have

M12:(

J1

A

X
, M, = —3) . 3.5
)X,=0 A <X1 J:=0 ( )
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The symmetry relations (2.9) yield also that

Ji Ji .. .
= | 2L =1,...,m; 3= .
(X/’)quéj:OL]l:O (Xi )Xk¢j=°”l=0 b=l ms B L=t e ) (G602

X; X S Crir ]
(Tj)’k¢j=°’xz=0 = (Ti)fk$1'=oixz=0 (G, k=m+1, .., n;i#j; =1, ..., m)(3.6b)

and

Ji B X; —— T
(Tj)fk;s,:o: Xm0 " (Y,')Xz;e,:l), 1m0 Gl=1,.,m;j,k=m+1,.., n). (3.6¢)

This last relation expresses the fact that some of the coupled cross-effects are interrelated
not by the simple symmetry relations, but by the antisymmetric ones. For example, from

(3.5) and (2.14) we have

A o Xy 3
(-JE)XFO - (Xl),ﬁo (n = 2). (3.7)

4. Transformation properties

We can distinguish here two different kinds of linear transformations of flows and
forces. First, we can consider what we term homogeneous transformations, written as follows:

J*> = alJ>, [X*> =b|X>, 4.1
with at least one element of the matrix ¢ and b different from zero. The new (transformed)

flows J; now are linear functions of the old flows J; and the new forces X are linear functions

of the old forces X,.

The second kind of linear transformation can be referred to as inhomogeneous and can
be written in terms of our variables Y, Z; as follows:

|Y*> = a|Y>, |Z*> = blZ>. (4.2)
In this case, obviously, the new flows J are linear functions of both the old flows J; and the

old forces X;, and similarly the new forces Xj.
It is easily proved that in order to preserve the invariance of entropy production,

6 = (J|X) = (J*|X*),

or
o = (Z|Y) = (Z*|Y*), (4.3)

in either case, {(4.1) and (4.2), the following relation has to be fulfilled:
b = (a7 (4.4)

(if a1 exists).
The phenomenological equations in the L- and M-representation are written in both
cases in the form

J*> = L¥|X*>, Z*¥> = M*|Y*>, 4.5
|

and we shall search for the properties of the transformed phenomenological matrix M.
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Let us first examine the first case {4.1). We could indeed find the relations between the
matrices M and M* and derive from these the symmetry properties of the transformed
matrix M*, but in this case the simpler way is the following:

It can be easily proved (see e.g. {2]) that the transformed matrix L* has the same sym-
metry properties as the matrix L. Since the transformed matrix M* is connected with the
transformed matrix L* by the same relations as the matrix M with the matrix L i.e. by Eqs
(2.7), and since the submatrices of L* have the properties (2.8), the matrix M* has the same
symmetry properties as the matrix M. We can thus formulate the following theorem:

A linear homogeneous transformations of flows and forces, such that the entropy
production remains unchanged, does not affect the symmetry properties of any of the
phenomenological matrices, L, R, or M.

Let us now examine the second case (4.2). From (4.2), (4.5) and (4.4) we have

M* = bMBT = (e )T M{a ), (4.6)

but this relation does not provide any information about the symmetry properties of M*.
Indeed, we have

(M*T = bMTbT 4.7)
and, because M7= 4- M, we known only that (M*)7s£ M*. We now divide the matrices a, b, M*
into submatrices, according to the subdivision of the matrix M (see (2.1)). It is readily veritied
that the submatrices of M* are given by

M e (B L D) (BT (B M 6 M) (67T

M = (B MY (BT (67 MM ()T,

M= (A M (BT 4 (B M b M) ()T

M = (B M (BT 4 (B b (BT (48)

Eqs (4.8) show that the submatrices of M™ do not possess the same symmetry properties
as the submatrices of M, so that the matrix M* as a whole has no symmetry at all. The same
result is obtained for the matrices L* and R* (we do not write explicitly the corresponding
formulas as they are rather complicated in this case). We can now formulate the following
(second) theorem:

A linear homogeneous transformation of the variables Y, Z (i.e. inhomogeneous with
respect to the flows J and forces X), such that the entropy production remains unchanged,
destroys completely the symmetry properties of all phenomenological matrices, L, R, and M.

It is easy to see that the above theorem can be extended: The linear transformation
inhomogeneous in both Y, Z, and J, X, also leads in general to asymmetrical transformed
matrices L*, R* and M?*,

Let us mention that a few years ago Coleman and Truesdell [5] proposed a special
linear inhomogeneous transformation of flows and forces (somewhat later generalized by
Nettleton [6]), which yielded an asymmetrical transformed matrix L*. This transformation

was

"> =U>+WX>, [X'>=[|X>, (4.9)



Fasc. 4

Vol. XXV (1964)

ACTA PHYSICA POLONICA

573

with
W=—wT (4.10)
It is readily proved that (4.9) with the condition (4.10) leads to
L'= 0" (L=1L%. (4.11)

Thus (4.9) represents a special case of the above theorem.
Let us remark that our transformation (4.2) does not mix the independent and dependent
variables, contrary to the transformation (4.9).
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