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An alternative derivation of the quantum-statistical equation with exchange is presented
and details concerning the procedure of its numerical solution are given. The solutions are
tabulated for the cases of the free neutral Kr atom, one free positive Kr ion and one neutral Kr
atom in a crystal under pressure.

§ 1. Introduction

The author (1963, henceforth denoted by [I]) recently derived a statistical equation with
exchange where the local density correction due to the existence of the finite volume of
exchange holes in the electron gas of statistical atom has been taken into account. Different
solutions of this statistical equation with exchange are possible, depending on the various
conditions imposed on the boundary of the atomic system. We obtain in this way solutions
corresponding respectively to free atoms, free positive ions, atoms (ions) in crystals and
crystal atoms (ions) under pressure. The purpose of the present note is to give details concern-
ing the numerical solution for each of these atomic cases.

On the other hand, we find it desirable to derive our statistical equation along a some-
what different path than in [I}. The calculation is carried out by variation of the energy E of
the statistical atom where a simple form of Slater’s (1951) average exchange potential used

formerly and given by

23,

Ve = on M

3 Y
{0 being the density of particles (electrons), x, = n (—) e? and ¢ — the positive ele-
7

mentary charge) is replaced by a more developed form of the eschange potential. Here,
no simplifying integration is applied previous to the calculation of 0F. The treatment
is presented below.
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§ 2. Derivation of statistical equation with exchange

We have the average exchange eleciron density represented by

o(r) [3 sin {[37%(") [ [r =1} — [3n%(r) ] r—1”| cos {[3a() B jr '} ]?
2 {I32%()]Ar—r'|}®

0a(P,¥) = —

9]
(¢f. c.g. Wigner and Seitz 1933, Slater 1951). The corresponding expressions for the exchange
potential and exchange energy are, respectively,

V:Z_ef@{:fr:)d' 3)
E, = — ; e f Veo(r)de. )

It is convenient to denote
0,(7, ¥") = o(*)h[o(¥), [r—1']]. 5)

Thus, we have

f f "[(: )"ff' o), Ir—1|] dvdv (6)

and the corresponding expression for ¥? with A from (5) is obtained.
The relation between the electron density p and the total potential }” acting in the
statistical model is established from the equation

S(E+ VyNe) = 0, (7)

where E is the total energy, V, the Lagrangian multiplier and N the number of electrons

in the statistical system. We compute here only 8E,, since the other components of E are
the same as in the book by Gombiés (1949). Thus,

f[o(r)éor)+6n(r)g(r) Ho(r), [r—r"| drde +

.._»r]

[fo(r)o(r)% o), [r—r'l] . o(r”) dvdy’

r—7r'! do(r")

_ g o()o(r) ko), v} ,
A~ [7 op(Pydv+ = ff r—r] 5o(r) do(r) dedv

o 1 dh ,
= f (—eV¢ + 5 eZp [:(TT)[ 89(’!‘ dv) dodv, (8)

where in the one but last transformation of (8) use has been made of the fact that

o(r’) dhfo(r), [r—r']

L0 ho(r), r—r']]  and ) ¥

=
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tend to zero unless *—>¥". Introducting 0 E, into Eq. (7), where E, is one of the components
of E, we have

5 2, k e a 1 Q('r) oh
f{g_%kg/a—Vee—Vee—V,e—kEe% =] do(r (~—d "+Veer dodv =0, (10%

€

3 Y.
where x, = o (372" e2ay, €ON =€ f dodv and V¢, VF are respectively the electron-

-electron and electron-nucleus potentials. Thus we obtain the equation

(V—Vo)e— 2 0% — 1 e%o o) _oh

3 290 ) ey ™ = a1

where the total potential } is put — following the reasoning of [I] — equal to:
VELVe+ve. 12)

Calculation of the integral entering into (11) can be effected according to Fliigge (1952):
(I) Instead of integrating over dv’ we integrate over dv|,_,.; (II) The integration limits tend
to infinity ; (I1I) We put o(r’) = o(r) = ¢, where g is now a constant. Introducing the variable
u = (37%)" % r—r'| and denoting the last term on the left side of (11) by -- 1, we have

SIn Uu—u Cos u

k]
I = — 2e%% <i) f——A—_ {(u®—3)sin u+3u cos u} du. (13)
0

44

Integration in (13) yields — %, thus

2
=3 nagh. (14)

Substituting [ into Eq. (11) and applying it locally we arrive at

) 2
(I o)e— ‘é‘ Mk Q%_ g Ha 073 = 0 (15)‘

thus, we have an expression identical to Eq. (15) of [I]. Substituting ¢ as a function of ¥ in
Poisson’s equation we obtain the statistical equation with exchange

) 3y 1 b e %7138
e R —
e (G e sm) () T

(. [1], Eq. (16)).

§ 3. Numerical solution of statistical equation with exchange

The statistical equation with exchange of Section 2 can be represented in a reduced
form analogous to that of the Thomas-Fermi and Thomas-Fermi-Dirac models. This reduced

e flg) -,

form is (see also [I])
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where
y= Z_ [V“V + 3nza ] (18)
and
r
T (19)
Y L R Y A

Z is the atomic number, and r the distance from the atomic centre (spherical symmetry).
The set of boundary conditions corresponding to the free neutral atom (Z = N) or to
the free positive ion (Z>N) is!

@(0) =1 (20)
Plxg) = ¥2xg (21)
%@’ (%) — () = — Z—Zﬁ ; (22)

%g is the reduced atomic (ionic) radius. (xg = ro/u where ry is the atomic (ionic) radius). We
found elsewhere (see [I]) that for the free neutral atom with exchange x, tends to infinity.
In the case of an atom (ion) in a crystal we have instead of (21)

49
¢lxo) = 7 ¥*%o. (23)
Then, x, is finite. The case of
49
P(xg) > 1 ¥2xy (24)

corresponds to an atom (ion) in a crystal under positive pressure, and
49 -
V2R <@(xe) < o ¥ (25)

represents the atom (ion) under negative pressure, i.e. a situation intermediate between the
free atom and the atom in a crystal. The remaining boundary conditions in each of the
cases represented by (23), (24), and (25) are the same as for the free atom (ion) i.e. identical
with (20) and (22). The electron density p of the atom (ion) at the distance r = ux
from the atomic (ionic) center is in all cases equal to

o \h ] e”é(el/éa
@”<e_ao> 37 2[(”’)“1]" 82a) B 872"’5)]

Z '@ Z [fe* T°
R Rl v [{—} *7’] : (252)

where V(r), Vy ¢(x) change from case to case.

1 For a discussion on the negative ions, see the end of the present section
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Practically, in solving our statistical Eq. (17) we apply a procedure fully analogous
to that applied by Feynman, Metropolis and Teller (1949), and Metropolis and Reitz (1951)
in solving the TF and TFD equations. We replace the variable x by w
w?

%= (26)
and expand ¢ (and @) for small w (or x) in series taking into account {17) and {20) and
considering ¢'(0) as a parameter of known value. It is easily verified that in calculating the
coefficients in the expansions we are justified in using the corresponding formulae of Feyn-
man, Metropolis and Teller (1949), completed by Metropolis and Reitz (1951) and Kobayashi
(1955), and given for the case of the TFD equation, if the constant & of the reduced form
of the TFD equation entering in the formulae is replaced by —y. Between the values of &
and y the simple relation exists

4 =5 27

We take the Kr atom as object of our solution (y = 0.00972). In calculating the values
of ¢ and ¢’ for the set of small w (up to w = 0.48) we include eleven terms in the series,
in order to obtain the accuracy of Feynman, Metropolis and Teller and of Metropolis and
Reitz. The ordinary procedure of step-by-step integration is now applied, beginning from
w = 0.48. The interval is dw = 0.04.

We arrive at a value of g,(0) corresponding to initial slope of the free neutral Kr atom
by considering the behaviour of the ¢ solutions of (17) (with @(0) = 1) for the different
¢'(0). In general, we obtain two sets of solutions:

The first set is when fulfillment of condition (21) is attained. We have then generally
a negative value for (22). This corresponds to Z>N, i.e. to positive free ions, if by an ion
we understand any object with Z>N.

The second set of solutions are those where fulfillment of condition (21) is never attained.
In this case the curves change in character from descending to ascending at some point;
they rise, however, more steeply than y2x and never come in touch with the ¢ = »2x axis.
For solutions of this type we always attain ¢"(xy) —@(x,)/%, = O after the minimum point,
but then @(x,)/%g>>y2 Thus, the solutions correspond to an atom having a finite electron
density at the boundary and, consequently, a finite radius. A particular case of such an atom
is the atom in a crystal (¢f. Eq. (23)). The other atoms with finite electron density at the
boundary are those at positive and negative pressures (of Eqs (24) and (25), respectively).

The values of ¢'(0) corresponding to each of the two sets of solutions approach one
another and in the limit we obtain g,(0) — the value of the slope corresponding to the neutral
free atom. The ¢ solution now exhibits asymptotical behaviour tending to the ¢ = y2x
axis. In the case of the Thomas-Fermi model of a free neutral atom the reduced @ solution
tends asympiotically to the ¢ = O axis. Thus the whole situation presented above is well-
-known from the Thomas-Fermi atom with the only difference that the classification of the ¢
solutions as to their behaviour with regard to the ¢ = 0 axis is replaced by an investigation
of their behaviour towards ¢ = 2% axis.
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Solution of Eq. (17) in the w variable for the initial slope from Eq. (28); i.e. ¢ approaches the solution for the
neutral Kr atom

TABLE 1

w P(w) —¢'(w) w P(w) ~@'(w)
0.52 0.84998 0.46826 4.04 0.04654 0.03215
0.60 0.81160 0.48953 4.12 0.04406 0.02985
0.68 0.77191 0.50139 4.20 0.04176 0.02772
0.76 0.73159 0.50528 4.28 0.03962 0.00075
0.84 0.69124 0.50254 4.36 0.03763 0.02395
0.92 0.65133 0,49441 4.44 0.03579 0.02228
1.00 0.61225 0.48200 4.52 0.03407 0.02074
1.08 0.57430 0.46627 4.60 0.03246 0.01932
1.16 0.53771 0.44808 4.68 0.03097 0.01800
1.24 0.50265 0.42814 4.76 0.02958 0.01678
1.32 0.46924 0.40708 4.84 0.02829 0 01565
1.40 0.43753 0.38540 4.92 0.02708 0.01460
1.48 0.40758 0.36351 5.00 0.02595 0.01363
1.56 0.37937 0.34175 5.08 0.02489 0.01274
1.64 0.35289 0.32039 5.16 0.02391 0.01190
1.72 0.32809 0.29962 5.24 0.02299 0.01113
1.80 0.30493 0.27960 5.32 0.02213 0.01041
1.88 0.28333 0.26043 5.40 0.02132 0.00974
1.96 0.26323 0.24219 5.48 0.02057 0.00912
2.04 0.24456 0.22491 5:56 0.01986 0.00854
2.12 0.22722 0.20862 5.64 0.01920 0.00800
2.20 0.21115 0.19331 5.72 0.01858 0.00750
2.28 0.19627 0.17898 5.80 0.01800 0.00703
2.36 0.18249 0.16560 5.88 0.01745 0.00659
2.44 0.16975 0.15313 5.96 0.01694 0.00618
2.52 0.15797 0.14154 6.04 0.01646 0.00580
2.60 0.14708 0.13078 6.12 0.01601 0.00544
2.68 0.13702 0.12081 6.20 0.01559 0.00510
2.76 0.12773 0.11159 6.28 0.01520 0.00479
2.84 0.11915 0.10306 6.36 0.01483 0.00450
2.92 0.11122 0.09519 6.44 0.01448 0.00422
3.00 0.10390 0.08792 6.52 0.01415 0.00396
3.08 0.09714 0.08122 6.60 0.01384 0.00371
3.16 0,09089 0.07504 6.68 0.01356 0.00348
3.24 0.08512 0.06935 6.76 0.01329 0.00327
3.32 0.07978 0.06411 6.84 0.01303 0.00306
3.40 0.07485 0.05928 6.92 0.01280 0.00287
3.48 0.07029 0.05483 7.00 0.01257 0.00269
3.56 0.06607 0.05074 7.08 0.01237 0.00252
3.64 0.06216 0.04697 7.16 0.01217 0.00125
3.72 0.05855 0.04350 7.24 0.01199 0.00220
3.80 0.05520 0.04031 7.32 0.01182 0.00205
3.88 0.05209 0.03736 7.40 0.01166 0.00191
3.96 0.04921 0.03465 7.48 0.01151 0.00178
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w @l(w) — @' (w) w plw) —@'(w)
7.56 0.01138 0.00166 9.32 0.01023 —0.00011
7.64 0.01125 0.00154 9.40 0.01024 —0.00016
7.72 0.01113 0.00142 9.48 0.01025 —0.00022
7.80 0.01102 0.00131 9.56 0.01027 —0.00027
7.88 0.01092 0.00121 9.64 0.01029 —0.00032
7.96 0.01083 0.00111 9.72 0.01032 —0.00037
8.04 0.01074 0.00102 9.80 0.01035 —0.00042
8.12 0.01066 0.00092 9.88 0.01039 —0.00046
8.20 0.01059 0.00084 9.96 0.01043 —0.00051
8.28 0.01053 0.00075 10.04 0.01047 —0.00056
8.36 0.01047 0.00067 10.12 0.01052 —0.00061
8.44 0.01042 0.00060 10.20 0.01057 —0.00065
8.52 0.01038 0.00052 10.28 0.01062 —0.00070
8.60 0.01034 0.00045 10.36 0.01068 —0.00074
8.68 0.01031 0.00038 10.44 0.01074 —0.00079
8.76 0.01028 0.00031 10.52 0.01080 —0.00083
8.84 0.01026 0.00025 10.60 0.01087 —0.00087
8.92 0.01024 0.00018 10.68 0.01094 —0.00092
9.00 0.01023 0.00012 10.76 0.01102 —0.00096
9.08 0.01022 0.00006 10.84 0.01110 —0.00100
9.16 0.01022 0.00000 10.92 0.01118 —0.00105
9.24 0.01022 ; --0.00005 11.00 0.01127 - 0.00109

TABLE 11
Solution of Eq. (17) in the w variable for the initial slope ¢'(x),—g = —1.5730990; i.e. ¢ corresponds to the
solution for Kr's positive ion with (Z—N}/Z = 0.0299

w plw) — ' (w) w plw) ~ " (w)
1.56 0.37937 0.34176 2.84 0.11912 0.10310
1.64 0.35288 0.32040 2.92 0.11119 0.09532
1.72 0.32809 0.29963 3.00 0.10387 0.08797
1.80 0.30492 0.27961 3.08 0.09716 0.08128
1.88 0.28333 0.26044 3.16 0.09085 0.07511
1.96 0.26323 0.24220 3.24 0.08507 0.06942
2.04 0.24455 0.22492 3.32 0.07973 0.06419
2.12 0.22722 0.20863 3.40 0.07479 0.05937
2.20 0.21114 0.19333 3.48 0.07022 0.05494
2.28 0.19626 0.17900 3.56 0.06599 0.05086
2.36 0.18248 0.16562 3.64 0.06207 0.04710
2.44 0.16973 0.15315 3.72 0.05845 0.04364
2.52 0.15795 0.14157 3.80 0.05508 0.04046
2.60 0.14706 0.13081 3.88 0.05197 0.03754
2.68 0.13700 0.12085 3.96 0.04907 0.03485
2.76 0.12771 0.11163 4.04 0.04639 0.03237
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TABLE II (continued)

w plw) —g'(w) w plw) —¢'(w)
4.12 0.04389 0.03009 6.20 0.01355 0.00715
4.20 0.04157 0.02799 6.28 0.01299 0.00697
4.28 0.03941 0.02605 6.36 0.01244 0.00682
4.36 0.03739 0.02427 6.44 0.01189 (.00669
4.44 0.03552 0.02263 6.52 0.01136 0.00659
4.52 0.03377 0.02113 6.60 0.01084 0.00651
4.60 0.03214 0.01974 6.68 0.01032 0.00644
4.68 0.03061 0.01846 6.76 0.00981 0.00640
4.76 0.02918 0.01728 6.84 0.00930 0.00637
4.84 0.02784 0.01620 6.92 0.00879 0.00639
4.92 0.02658 0.01521 7.00 0.00828 0.00637
5.00 0.02541 0.01429 7.08 0.00777 0.00638
5.08 0.02430 0.01345 7.16 0.00726 0.00641
5.16 0.02325 0.01268 7.24 0.00674 0.00645
5.24 0.02227 0.01197 7.32 0.00622 0.00650
5.32 0.02133 0.01132 7.40 0.00570 0.00655
5.40 0.02045 0.01073 7.48 0.00518 0.00661
5.48 0.01962 0.01019 7.56 0.00464 0.00668
5.56 0.01882 0.00969 7.64 0.00411 0.00675
5.64 0.01806 0.00925 7.72 0.00356 0.00682
5.72 0.01734 0.00884 7.80 0.00302 0.00689
5.80 0.01665 0.00847 7.88 0.00246 0.00696
5.88 0.01598 0.00814 7.96 0.00190 0.00703
5.96 0.01535 0.00785 8.04 0.00134 0.00710
6.04 0.01473 0.00758 8.12 0.00077 0.00719
6.12 0.01413 0.00735 8.20 0.00019 0.00730

TABLE III
Selution of Eq. (17) in the w variable for the initial slope ¢'(x),_q = —1.5728125; i.e. ¢ correrponds to the
case of Kr atom under the pressure

w pw) —¢'(w) w Ppw) —¢'(w)
0.52 0.85002 0.46811 1.56 0.37988 0.34079
0.60 0.81165 0.48935 1.64 0.35348 0.31928
0.68 0.77197 0.50117 1.72 0.32878 0.29836
0.76 0.73168 0.50503 1.80 0.30572 0.27815
0.84 0.69135 0.50226 1.88 0.28425 0.25878
0.92 0.65146 0.49409 1.96 0.26430 0.24030
1.00 0.61241 0.48162 2.04 0.24578 0.22276
1.08 0.57449 0.46584 2.12 0.22863 0.20617
1.16 0.53794 0.44758 2.20 0.21277 0.19052
1.24 0.50292 0.42758 2.28 0.19812 0.17581
132 0.46956 0.40643 2.36 0.18461 0.16199
1.40 0.43791 0.38466 2.44 0.17218 0.14904
1.48 0.40802 0.36266 2.52 0.16075 0.13690




Fasc. 4

Vol. XXV (1964)

ACTA PHYSICA POLONICA

583

TABLE I (continued)

w p(w) —@'(w) w p(w) —¢'(w)
2.60 0.15026 0.12552 364 | 0.07842 | 0.02275
2.68 0.14064 0.11486 3.72 0.07685 0.01641
2.76 0.13186 0.10486 3.80 0.07580 0.01002
2.84 0.12385 0.09347 3.88 0.07525 0.00351
2.92 0.11657 0.08663 3.96 0.07524 —0.00320
3.00 0.10998 0.07827 4.04 0.07577 —0.01017
3.08 0.10404 0.07035 4.12 0.07688 —0.01749
3.15 0.09871 0.06283 4.20 0.07858 —0.02526
3.24 0.09398 0.05363 4.28 0.08093 —0.03360
3.32 0.08980 0.04871 4.36 0.08398 —0.04264
3.40 0.08618 0.04202 4.44 0.08778 —0.05253
348 0.08308 0.03530 4.52 0.09241 ~0.06346
3.56 0.08049 0.02909

We obtain in the case of the free neutral Kr atom an initial slope equal to
@o(0) = —1.5730975. (28)
The initial slope corresponding to a neutral Kr atom in a crystal lies between
—1.5730950 < ()< — 1.5730900. (29)

The figure to the left in (29) corresponds to the initial slope of the neutral atom at small
negative pressure, that to the right to an atom at small positive pressure. Positive ions in
a crystal (boundary coditions (20), (23) and (22) where Z>>N) can be obtained in a manner
completely analogous to that applied for neutral crystal atoms.

It is readily seen that in our model there is no place for solutions corresponding to free
negative ions, because the solutions for those ions are only possible when ¢ will intersect the
line ¢ = y2x with ¢'>2. This can never happen: the curve intersecting first with ¢ = %x
has ¢’ <92 and at the same time has its inflection point where ¢’’ changes its sign from plus
to minus. Thus ¢’ at this point is the maximum value of the derivative of @ and farther ¢ is
never bent towards ¢ = y2x. The problem of the existence of negative ions in crystals lies
beyond the scope of the present note.

In Tables I, II and III we present as numerical examples of the solution of (17) solutions
with initial slopes equal respectively to (28),

— 1.5730990 (30)

and
— 1.5728125 (31)
(30) corresponds to the free positive ion: (Z—N)/Z ~ 0.03, the reduced radius of the ion

being equal to 30.5, whereas (31) corresponds to the initial slope of the neutral Kr atom
at pressure of ca 7.1x10'2 dyn cm~2. This pressure of the eleciron gas of the statistical
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atom (ion) exerted at the boundary can be obtained from the value of the solution of (17)
at the boundary. We follow here the equation:

2 Mp 1
= — */a R
d 3 " (r0) [1 2% Q"/Z‘(’o)] (32)
established by Jensen (1939), which is valid in our case too (see[I]). rgis here the radius of

the present atom (ion) under pressure, P the pressure at the atomic (ienic) boundary
and g{ry) is the boundary electron density equal to

Z ¢ Z & 3
200 = s : 95: - 4o’ [{(pi?)} ﬂ/] ' (%)
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