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THE <«“VECTORIAL” OPTICS OF FIELDS WITH ARBITRARY SPIN,
REST-MASS ZERO

By Jerzy PLEBaNskI®
{Received June 7, 1964)

The equations of fields with spin s, rest-mass zero, corresponding to the irreducible representa-
tion of the Lorentz group D{o, 5s) are studied in the high frequency limit. A formula for the
rotation of the planes of polarization-due to curvature — is given. The optical development,
i.e., the development of the field with extracted phase factor into inverse powers of frequency,
exhibits in its algebraic structure a characteristic ,,peeling off” effect.

1. Introduction

The standard “‘scalar optics” based on the eiconal equation studies the properties of
light rays (i.e. bi-characteristics). The ““vectorial” structure of the field under considera-
tion (amplitude, polarization, ect.) lies almost entirely outside of the scope of the *‘scalar
optics”.

The methodics of the optical approximation (i.e., physically, of the high frequency
approximation) can be so adopted that it yields an appreciable amount of information
not only about bi-characteristics but also about the **vectorial” structure of the studied
field.

In order to develop ““vectorial optics™ one does not need to enter into the fine details
of the diffraction theory. It is enough to study the integrability conditions of eqations deter-
mining higher terms of the “‘optical development”. (This development is the development
of the field with extracted phase factor into inverse powers of the frequency). The integrabi-
lity conditions impose some relevant restrictions on the terms of lower order. The fundamexn:-
tal idea of this trick — as applyied to the electromagnetic field scattered by week gravita-
tion — has been already used in {1], [2], but in a non-covariant manner.

The aim of this paper is to develop in a fully covariant formulation the ‘‘vectorial
optics” of fields with the arbitrary spin s but rest-mass zero. The cases of particular interest
are of course: 1) s = 4, the neutrino field 2) s = 1, the electromagnetic field 3) s = 2 “‘grav-
itational radiation”.
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We will work in a general non-flat space-time, a normal hyperbolic Riemannian space
V, with the signature (+———). By doing so we will be able to approach the problems:
(1) of the behaviour of “optical” beams of neutrinos as scattered by gravitational field;
(2) the same for electromagnetic waves?; (3) the optics of the ““ gravitational radiation”. The
last because of the very spirit of ‘‘gravitational radiation” has to be studied on the level
of the Riemannian geometry.

Naturally, all results derived in V apply mutatis mutandi when the curvature (i.e.,
gravitation) can be neglected and ¥y becames a flat pseudo-Euclidean space S,. Nevertheless,
the general covariance inherited from V} is also useful in §;. The arbitrarnes of curvilinear
coordinates allows one to discuss waves of different symmetries (e.g., plane, spherical,
etc.) on an equal footing.

The eqations studied in this paper have the same form when the physical fields are
understood as ‘“test-fields” not affecting the space-time or when understood as fields which
generate gravitation through theirs energy-momentum tensors. Therefore, most of results
obtained apply to both cases. The distinguished case of s = 2, where the physical field
consists from the conformal curvature itself, must to be dealt with special care.

Of course, one can talk about the spin 2 waves in £, or on the background of ¥V,. But
such waves as different from the conformal curvature have little in common with the genuine
“‘gravitational radiation”.

In Section II the fundamental chain of recurrence relations following from the “ optical
development” will be given. Section III will provide us with a resume of the theory of optical
congruences as adopted to our purposes. In Section IV the potential congruences will be
studied. Emphasis will be concentrated upon some differential identities which establish
relationships between the derivatives of optical scalars (also quasi-scalars) and the curvature.
Section V will introduce a convenient basis in the space of the spinors Va .4, = Y a4y
With the help of this basis equations of the ‘‘vectorial optics” will be reduced in Section
VI to a set of eqations for some ““scalar amplitudes™. The last equations in low orders are
investigated in Section VIL

Section VIII offers a ““spinorial” theory of the planes of polarization. Finally, Section
IX will give the physical interpretation of the results derived on the level of *‘vectorial
optics”.

II. The statment of the problem

Let V48 — g*4B 7 denote the operator of spinorial covariant differentiation in V.
The fields with spin s and vanishing rest-mass which correspond to the irreducible repre-
sentation of the Lorentz group D(s, o) (in tangeatial space) are the spinorial fields

= S ==
Ya,.4, = Va,.4,y

3
R I 2.1
5 2.1

0o | -

1 The papers [1], [2] studied this last problem but in the approximation of the week gravitational field
and in not fully covariant manner.
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submitted to the dynamical equations
pAs ¥8.B,. B, — 0. (2.2)
The are other possible irreducible representations corresponding to spin s and related
to these field equations with the rest-mass zero; see [3], {4], [5], [6]. We restrict ourselves
in this paper to the field equations (2.2) as Penrose does in his last works |[7], [8] — because
they cover the most familiar physical cases: s = §, the 2 component neutrinos, s = 1,
the Maxwell’s equations without currents in spinorial formulation. For s = 2, (2.2) may
be understood as the Bianchi identities in Einsteinian space (R,; = 0) expressed in terms

of the spin image of the conformal curvature: W 5 5<> Wypen = yapcp, (9] The field

af

Yapep Can be interpreted as the field of “‘pure” gravitational radiation; the spin image of
the Bell—Robinson tensor [10], [11] related to it is simply

Y4, .. A, ¥B,. B,

We are interested in solutions of (2.2} of the form:

Yyt = 23 (7" %%, exp 4D, (2.3)

where k is very large and the “partial waves” ¥ , are also symmetric in all indices
1Ay

(the “‘optical development”). The £ may be understand as related to the dominant frequency
of the field.

The fundamental idea of the ““optical development™ is very simple: the phase factor
exp{ik®D] is supposed to provide us with the dominant variation of the field, its gradient
is very large. The amplitude is supposed to have a limit when k —>oc; therefore it is reasona-
ble to expect it to be a power series in [fik.

Substituting (2.3) into (2.2), cancelling the factor exp[ik®] and equating the coef:
ficients at different powers of ik to zero, we obtian the following chain of equations for the
succesive approximations:

(PA2@) -y )+ VAR YR 5 =0, (2.4)
1 28 1 28
n=-1012, ..,
where, for conveniency, we introduced p§ P, =0.
-

28
We should like to integrate these equations step by step. Setting n =1 in (2.4)

we get
(TAPa) -y 5 =0 25)
We must however assume that
A E0, yP 4 #O, (2.6)
i.e., that @ has not-trivial gradient and that the optical development has a not-trivial

beginning. Suppose now that Det IIVABd?H # 0. If so, there exists a matrix ||Mg4]l such

that MC‘.,‘V“’.BQD = 82. Contracting (2.5) with M, we would get wg)l)_‘_ 4, = 0 which contra-
dicts (2.6).
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Therefore, one has
Det||V42@(| = 1 (V 3, ®) - (VBD) = &, = 0. 2.7)

Hence, as it was to be expected, the phase @ must obey the eiconal equation.
The study of the chain of eqations (2.4) splits into two parts:
1) The study of “scalar” optics based on (2.7), i.e., the study of the potential congru-
ences of “‘light rays” (in inverted comas because there may be either neutrinos-rays or
gravitational rays, etc., for different values of s).

2) The study of the chain of equations (2.4) when the properties of I/ ABG are already
known from the ““scalar” optics, i.e., what we understand by “vectorial” optics.

III. Congruences of light rays — general properties

The study of the congruences of light rays in a few past years stimulated important
developments in general relativity [12], [13], [14], [15], etc. The theory of congruences
forms actually a known, well developped useful tool in the field of all problems related to
the algebraic of the curvature. This section does not add anything essentially new to the
theory of congruences; its aim is nearly to adopt some elements of this theory to our pur-
poses and to provide us with the clear geometric interpretation which we will need on the
level of ““vectorial optics”.

The relations

% = Xz, p', p% p%), (3-1a)
_ I(xOx1x%x3)
i wp'p’p?)
represent a congruency of light rays when

dXe Dt
0 [ 7 — PN,
T t9>0, 1%, =0, 2 0 (3.2)

J (3.1b)

X

(1° >0 means that we restrict ourselves to the light rays “moving” into the future with

increasing affine parameter 7). Because of (3.1b), relations (3.1a) are reversible and,

therefore, t* may be understood as t* = t*(x), i.e., as a field in V. Obviously, the light
-

rays (3.1a) are the integrals of d?x:— = t*[a(7)]. The field t*(x) obeys the algebraic and
differential conditions
>0, t%t, =0, (3.3a)

1% 5 = 0. (3.3b)
Now, we would to give the geometric interpretation of the matrix of derivatives of
a, — @
t*: ME (6% 511
Consider a pair of events x%, x*+8x® linked by an infinitesimal vector 6x%. When the
affine parameter 7 increases by dt our events “shift” along the corresponding light rays
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to the positions x*+t%(x)dr, x%+0x%4t%(x+0x)dr. The vector which links these, §x*+
+t% ;0x°dr, after being parallely displaced from x*+:*(x)dv to 2* (along —1%(x)dr) may
be symbolically represented as

8% = (1+Mdr)dx (3.4)

(1 stands here for the unit matrix). This formula may be understood as an infinjtesimal
transformation of éx. This transformation — in the analogy with the standard procedure
of the mechanics of the continuous media can be thought of as the product of three more
elementary infinitesimal transformations (and not dependent on their order). These are:
1) an infinitesimal Lorentz rotation; 2) a “‘volume” preserving deformation; 3) a shape
preserving deformation (where x’ is just proportional to dx, i.e., a ‘““magnification”). The
only peculiarities encountered here are the 4-dimensional formulation and the fact obvious
form (3.3b) that (3.4) leaves unchanged any vector proportional to the null vector ¢,.
Now, decompose M as follows

M= M1+M23 Mlﬁ ||tg;ﬁ)\|, M2 = Ht’ﬁ;ﬂ]H' (3-5)

The ““skew” M,, of course, generates an infinitesimal Lorentz transformation.

It follows from (3.3a—Db) that t[w;{‘,]t‘3 = 0. This implies 1) that transformation M,
preserves t%; i.e., (1+Myd)t = ¢, and 2) that Det||¢,z|| = 0, so that the bi-vector tias)
is simple. There are two distinct algebraic possibilities: the bi-vector ¢ may be either
null or general. It presents no difficulty to find the canonical form of ¢, in both cases.

The easiest method of finding these canonical forms consists in the application of the
null-leg formalism. We will need this formalism also for other purposes; in fact, it will be
crucial in further sections. Therefore, we sketch it here.

The null vector * (with :>0) may be always represented

ty = %gwfat*"t‘*, (3.6)
the spinor t, being determined through ¢, with accuracy up to
ty >ty = e (3.7
One picks up a spinor s, linearly independent to it and normalized by
ts, = 1. (3.8)
This spinor is determined with accuracy up to
54> 54 =sqe 0+1,8, B complex, (3.9
where @ is the same as in (3.7).
From the spinors t,, s, one constructs a null-leg (sachs-leg):

1 ; 1 ;
tg =‘—2“gm'135”58, Sa = 5 8adBsish,

. 1 .
Mg = ‘2“ g:zziBlAsB, Mg == 5 gaA.BSAtB' (310)
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The only scalar products # 0 between the four null vectors ¢,, s,, m,, ﬁ“ are:
%, = 12, m*m, = —1/2. (3.11)

With the help of 4 null vectors one constructs an orthonormal, rightly oriented four-leg
(tetrad) as

g =t =5, 88 =t,—s, (3.12)

; — 5 1 _
gé = Mg+ Mg, gg = L_ (mz"'ma)a

with the properties:

2238580 = gup 800, Detllg¥| =V —g>0. (3.13)

(@ — the tetradial index-just labels different vectors of the four-leg and has nothing to do
with vectorial indices a, f, ... It runs through: @ =0, 1,2, 3; by g4 we understand

”g;ﬁ” i ]IDlag (]., —1, _]-, —]-)H)

When the rightly oriented tetrad g% is given, the elementary spinors ¢4 and s, which
generate it are determined with accuracy up to a simultaneus change of signs.

Now, in the case of ¢, s with the property ¢, mtﬁ = 0 the @ and B in (3.7), (3.9) may
be chosen so that ¢, 4 can be represented in one of the two alternative forms:

b 51= —2gg[iugg] (general case) (3.13a)
tasm = —20'teg% (null case) (3.13b)

Of course 9% = } 74,51 ?; in the null case o2 vanishes. In the general case the plane
of gi and g2 is invariantly distinguished. One easily sees that the vector dx, = axtgldx2gt
which lies in this plane, under the infinitesimal transformation 1+Mydt performs an
infinitesimal rotation through the angle d¢ = odr (in direction from gl to g2, “around”
the propagation vector £,); this is the rotation of the optical image. Hence:

do\* 1
2 _ (22 — g tlas Bl 3.14
e (dr) 5 lwalt (3.14)
The quantity p, the first optical scalar, is called “‘rotation”.

In the null case of (3.13b) a similar but not so obvious interpretation may be attached
to the quasi-scalar o’. We will not elaborate on this case.

Consider now the ‘‘symmetric” M, = |[t&sli. Also equations (3.3a—b) here imply
bas ﬁ)tﬂ = 0. Consequently, one has 1) Det |lt,z|| =0 and 2) the transformation
1+ M, dv preserves the vector % '

By applying the formalism of (3.6—3.13) one can prove by appropriate choice of
0O, f that one can always construct such a tetrad that #(,, 5 may be represented in one of
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the two possible canonical forms in terms of these tetrads:

1 co 1 . s

taspy = tats— 5 (O+0)gagh— 5 (0—0) gas}, (3.15a)
(when ©2%—g?%£0).

taspy = — 2080 —O8lel, (3.15b)

(when @2—¢? = 0).
The optical scalars @ and ¢ are the invariants:
6 5 1%, (the “divergence” or “magnification”) (3.16a)

o T——f- [2t(a; P t(w; ﬁ)_tz;a tﬂ;ﬁ]% (the “Sheer”). (3.16}))

The quasiscalars & and 7 are of secondary importance; their importance lies in whether

& or 7 are zero or non-zero as that influences the order of the minimal polinomial of the

matrix M; = |[t%_; || (the polinomial P(2) = 1.AN +aAN~1 4 ... with the property P(M,) =0,
of the lowest possible order V).

In this paper we will concentrate on ¢, of the general form (3.15a), leaving the de-
tailed investigation of the more pathological t(,, 4, of the form (3.15b) for the future.

In the general case of (3.15a) when @ = 0, ¢ #£0, 62—62% £ 0 the tetrad is uniquely
fixed, so that the gf, g¥-plane is invariantly distinguished. It is easy to see the interpretation
of @ and ¢ in this case. Under the infinitesimal transformation 1-+ M dz, the vector gl
+0x,82 from that plane changes into

[1+ —;— (6 +0) dt] Sxygl+ [1-}- -;—(@—c) d'r] 6x2g§,.

It follows that, under the transformation related to @, any area in the gi, g&-plane changes
from &S into 8S+d8S = (1 + @dr)dS without any change of its shape. Consequently

1 désS

_ 1 ddS 3.17
5 d7° (3-17)

o
which justifyies the name “magnification”. Under the infinitesimal transformation related
to o a geometrical figure in the gl, g8-plane presecves the area but changes its shape: ox; =
= (1 +40dr)éx;, 6xy = (1—}odt)dx,; a cricle of the radius ér becomes an ellipse with
axes da = (1+1odr) 6r and 6b = (1—30d7)dr and with the square of excentricity & =
= 1—(8b/da)? = 2¢dr. These facts give a clea rgeometric interpretation of ¢ and justify
its name “shear”.

A similar interpretation may be given to ¢ = |@| in the case of the canonical form
(3.15b) with some modifications due to the presence of the term proportional to 7.

The directional derivatives of p, @, ¢ “along light rays”, V, = t* V, can be easily comp-
uted as

V.o+00 =0, (3.18)
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1 1 . .
Ve + 3 [0%+02—(20)2] = — 5 UAgCDtAtBtCtD
oV, 0+ 020 + O(20) = 40 Re (W 45cpt*t5tCeP).

The spinor ¢, entering here is that which induces the tetrad corresponding to the canon-
ical form of ¢, 4, (3.15a). The curvature spinors Wgcp, Ujgcp entering in these formulae
are the spinor images of Weyl’s tensor of the conformal curvature and of the Ricei tensor
with extracted trace:

Waﬁya = S‘zﬁAB WABCD S}@CD —f— C. C. (3.19)
1 1 . . 77ABCD
Royp— 4 gapR = 9 8z4c8sepU ’

(the spin-tensor S 4,5 is defined through the Pauli matrices g, 4p @5 Spp4p = 8rs&N 4818y

IV. Potential congruences differential identities

The congruency is said to be potential when ¢, 5 = 0 which implies ¢, = @, , is tho
eiconal function; of course here f(,;5 = @,,; and the rotation g identically vanishes. Taking
these facts into account one can freely apply all formulae of the previous section, in particular
the canonical forms of ¢, 5 = D4, i-e., (3.15a—b). When 00, ©2— 520 (the canonical
form (3.15a)) or when ¢ = |@|540, 1540 (the canonical form (3.15b)) the spinors generating
the tetrad to which the canonical form is referred are determined with accuracy up to a simul-
taneus change of sign. Therefore, one has the formulae

tA; a = wcztA +vasA (4' 1)
1 .
Wy = E (§a+ ”71)’ Ea’ Na real’

S4;2 = TWes4 + Hota

which determine three geometrically determined complex vectors w,, v,, and g, The
coefficients of ¢, in t4,, and of s4 in s,,, have to be the same but with opposite sign
to guarantee consistency with the normalization condition t4s, = 1.

The chief aim of this section is to investigate the properties of these vectors under the
assumption that 4 and s, are rigidly fixed by the canonical form of @, 5. A geometric inter-
pretation of these vectors will be also given. On the level of the ““vectorial” optics these three
vectors are of crucial importance.

The &, and », are the simplest of the vectors considered. Indeed, applying (4.1) one
obtains

1 : _ _
Doy=t,p= 3 8oap(t'P) 5 = t. Lo+ mys+m,y;. 4.2)
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On the other hand, the canonical forms of @, 5, (3.15a—b) can be represented in terms
of the vectors of the null-leg as

D, 5 = Et,ip—2m(,mg) O—o[m mg-+m,mg] =

=&t tg—m (Omy+omp)—m (Om,-+omy) {(4.3a)
D, .5 = —tngh-tmlint,—Ogl] +C.C. (4.3b)

Comparing it with (4.2) and applying the linear independence of ¢, m,, and m,, we
conclude that in the first and the second case, respectively,

&, = &t v, = —(Om, +om,) (4.4a)
and
£, = —ngd, v, = Hgl+im, (4.4b)

Thus, £,, v, may be considered as known in both cases.

For our purposes we have to learns more about these vectors. We would like to know
the properties of their derivatives; also, any information about #,, #, will be of value.

From now on we restrict ourselves to the general case of @, 4 with the canonical form
(4.3a); all that follows, however, may be also repeated in the case of @ ; with the more
pathological canonical form (4.3b).

The required information about 7, and g, can be obtained by studying the third deriv-
atives of @.

Using the canonical form of @, 4 as in (4.3a) and applying the definitions of ¢,,...,m
and (4.1), one easily derives the following:

-1

25D oap) = ag, 1+ Mel) TMieCh = 5" Roop (4.5a)
Zm,"@;a[aﬁ] = —t[ﬁcﬂ]+m[¢a¢]+m[aba] = &’ Redaﬁ’ (4.5b)
where we have introduced a,, b,, and ¢, as abreviations for
a, = 0,—£01,+[0*+ 0% s,,

b, = 0,—&at,+20as,—2ion,,

Ca = ~(0ﬁ¢+aﬂ'z)' (4'6)
This enables to write, as equivalent to @, ;—®, 4, = t,R ;5 the relation
R pnap = 2t {116 01+ ey T a1} 20 (a0~ miebs—mia@p} + C.C. (4.7)

(Note that the right hand member, if skew-symmetrized over oaf, vanishes identically;
this is consistent with R,f s = 0.) These relations yield appreciable information about
» € and &, .

the unknown a,, b,
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Indeed, introduce the abreviations for the curvature quantities projected on the vectors
(spinors), according to:

[wwRwu] = uPR 55072, (pgrs) = W 4pcppqPrCsP, 4.9)
(pars) = UipcppAqBrosP.

Then, the following sequence of relations is easily deduced:

—V,& = 4[tsRts] = 8 Re (itss) — (tsts)+ %, (4.9a)
(ta) = V, 0+ % (@2+02) = 4[tmRim] = — éam), (4.9b)
(tb) = (p,+O—2i(tn)) 0 = 4[tmRtm] = 4 (tttt); {4.9¢)

then

(ma)—(mb) = Va@—Vu—2i(mn)) o = 4 [tmRmm] = —4 (ttts)— % (tstr),  (4.10)

and
(tc) = 4 [tsrtm] = + 4 (tets) — % (tstt), (4.11a)
(s¢) = —Vip+4[tsRsm] = —Vyz—A4(ssst)* + % (ssst), (4.11b)
(me) = (sa)—4 [tmRsm] = (VS— % f) O—4 [tmRsm] =
1 R
= (V: - E E) O+4 (ttSS) + T'2—, (41].‘3)

(mc) = (sb)—4 [tmRsm] = (V, — —;—E—Zi(sn)) o—

—4 [tmRsm)] = (17:— % E—Zi(sn)) o— % (sstt). (4.11d)

Of course, 7, = t*p,, s = s*,, etc. These relations exhoust all information contained
in (4.7), i.e., they are equivalent to the ‘integrability conditions” @, ,—®, 5, = #Rypps-
Notice that the relation (mc)—(mc) = 4 [tsRmm] derivable directly from (4.5a) is not
independent; it is a consequence of (4.1lc) and R,y = 0.

The first set of equations, (4.9), determines the derivatives of the optical scalars 6, o,
and of the quasi-scalar £ in the direction of the light rays. Of course, (4.9b) and (4.9¢) imply
the same as the (3.18) with ¢ = 0. But the imaginary part of (4.9¢) tells us something more,
namely that

o (tn) = —21Im (titt) = —2 Im [WgopttBiCtP), 4.12)

i.e., when 070 it determines (t5) = t*y, in terms of the conformal curvature.
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The second set of equations, (4.10) and its complex conjugate contain some informa-
tion about the ‘‘transverse” derivatives of @ and ¢ as related to (m#) and (m#). One can
simply look on these relations as on equations which, when 070, determine (mn) and
(m#) through the derivatives of ® and ¢ and the curvature.

The relations (4.11) can be understood as equations determining entirely ¢, = —Ou,—
—ou, in terms of the derivatives of the optical scalars and the curvature. Note, however,
that according to (4.11d), the quantity (mc) depends on the still unknown (sz). When ¢,
is known then, because of the standing assumption @%—¢25£0, the u, and u, are uniquely
determined.

Now, a few words about the geometrical interpretation of the vectors w, = 1/2 (&£, +
+in,), v, and u,.

Consider the tetrad determined through the canonical form of . s at points x* and

x%+06x* which are linked by an infinitesimal vector dx* The spinors which determine the
tetrad ga(x—}-éx) are, of course, tA(x)—HA #(%) 0x% and sA(x)-i—sA(x) dx% Therefore, the

spinors which determine the tetrad [g% (x—{—éx)]]l =g w L€, g5 (x+0x) parallely displaced
from x+6x to x along —da%, clearly are

ty = (14 0w)t, +0vs,
» where dw = w,02% Oy = v,02% Ou = p 0x"
s, = Out 4 +(1—0w)s . (4.13)

Now, (4.13) can be understood as an infinitesimal transformation of the elementary
spinors ¢4 and s, which on the level of the tetrad g7 induce an infinitesimal Loreniz trans-
formation g% = g:—l—éL“;,gﬁ.

In particular, taking éx* = t*d7 (a translation along the light ray) and the vectors
£, and v, in the form (4.4a) we have

06 =0, ov =0, 6n = (tn)dr, du = (tu)dr (4.14)

(of course, dw = 1/2 (6§ +id7n); note that (4.14) is also valid when one applies (4.4b) instead
of (4.4a)). Therefore, in this case (4.13) becomes

t, = (1+ %(tn) dr)tA (4.15)

54 = (1— é (tn)dr) sa+(p)drta.

The transformations generated by (tn) and (tu) may be understood as independent.

It is obvious that the transformation induced by (%) corresponds to a rotation in g1, g2-plane
through the angle

dp = (tn)dr — —fli% — (tn). (4.16)



3

Fasc.

11 (1965)

/

Vol. XXV

ACTA PHYSICA POLONICA

372

This rotation may also be comprehended as the rotation of the plane spanned on % and
3 p p P s

say, gf around ¢* This plane, as we shall see latter, can be in a sense identifyied with the
plane of polarization, so that dg/dr describes the ‘‘rotation of the plane of polarization”
per unit of the affine parameter. According to (4.12), when 050, we have for this quantity
the expression

—Cé—% = — %Im (WABCDtAtBtCtD), (417)
so that when 00 this rotation can occur only when induced by curvature. When 540
and the space-time is flat dg/dt vanishes. It is of importance to strees the difference
between dg/dr and the rotation p in the case of a general congruency; ¢ corresponds to
a rotation of the optical image as transferred by the beam of light rays. In the case of the
potential congruency such a rotation is impossible. The d(p/dr. rotation, which may occur
in the case of the potential congruency, consists in a rotation of the plane spanned by the
space-like eigenvectors of the matrix |[@** ;|| when one moves along the light rays.

The transformation induced by (tu)dr is less interesting; it of course, preserves the
direction t, but mixes gl, g2 with t, gi»gz—l—Z Re (tp)dt,; g2+g§+2 Im (tp)dre,.
Hence it preserves the plane spanned on ¢, and gi, i.e., anticipating the further develop-
ments, the “plane of polarization”. It is rather a rotation inside of this plane. When o?—
—6O2£0 (our standing assumption) the relation —6 (tu)—o (1) = 4(stes) — 4 (7see)
determines (tu) as a linear expression in the curvature according to (4.11a). Hence, when
O%—g2£0 in flat space-time (tu) necessarily vanishes.

Gathering this discussion we see that in flat space-time f ©2—¢2?£0 and 640 the
transformation (4.15) becames the identity transformation. This means that in the “flat”
case and in presence of shear the tetrad to which the canonical form of @, ,; is referred
stays constant along each individual light ray.

Notice that along similar lines one can discuss (4.13) with dx* differently specialized;
it is natural to take 6x% along s, g1, and g2 and to see how different components of w,, ¥,,
and u, influence the resulting transformation. That way one can give a full interpretation of
all components of these vectors. We will not elaborate this discussion.

For the purpose of “‘vectorial” optics we will need some further differential identities.
These can be obtained by the use of the Ricci formulae on the spinorial level:

B
Va;ap —Va; a8 = YoR4as» (4.18)
where the hybrid quantity Rﬁmﬁ is related to the fundamental curvature spinors introduced

in (3.19) by

1
Rapap = 4 SuuapR"a

- 1 .. R
= 2W apcpSas®P — 5 Uenas Sas®P +- o1 Sesan- 4.19)
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This formula is valid under the assumption that the spinorial affine connections I'4; are
traceles, i.e., "4, = 0, or, physically, under the assumption that the electromagnetic poten-
tials Ap do not participate in spinorial affine connections. (We assume the Au's are not
present in I because the coupling of the studied fields described by equations (2.2) with
the electromagnetic field seems to make very little sense.)

Specializing (4.18) for t, and s, and applying (4.1) one easily finds the ““integrability
conditions” of (4.1), i.e., conditions that the right hand members of (4.1) from covariant
derivatives, to be equivalent to

PR gy = —2 Via; g1 T4 V1a®g) (4.20a)
SAPR ypus = 2 s T4 08 (4.20b)
PRy pas = 200, 5 +2 Viulley- (4.20¢)

Information contained in (4.20a) does not give anything new in comparison to what
we already know from relations (4.9), (4.10), and (4.11). The equations (4.20b) contain new
information about the derivatives of u,; on the level of the ‘‘vectorial optics” in higher
orders it may be useful. The relations (4.20c) and their complex conjugates partly give the

same implications as the consequences of @ o —® ., =1 R but they also say

0 afy
something more.

Namely, contracting (4.20c) with 1*m’, using (4.19) and (4.4a) for &_and v, (also of
course (4.1)) one obtains the identity

20V () — 2V (mn) — i@ (mn) — o (ma) —2 (may) (tn) -+2i(en) () —20(ut) =
= 8W  5cpt?BtCtP = 8 (tts); (4.21)

this identity will be of importance in the study of the low orders of ““optical development”
on the level of ““vectorial” optics.

V. The convenient Bais

After the discussion of “scalar” optics in two previous sections we would now like to
prepare some tools which will enable us to conveniently approach the ‘“vectorial” equations

(2.4).

From the two spinors t, and s, normalized ¢?s, = 1 one can construct the quantities
i in T [2s\ %

qu...Az8 f exp ? (2S“Z)J I S(Al...SAztAHl...tAzs)’ (Sla)
. 1 795\ %

P;‘ll...Azs § exp [1_;'5_ (2S_Z)J ( ;) t(A1~--tAlsA“1'~~sA23), (5]b)

where the index erunsthrough 0, 1, 2, ... 25 (25 41 values). We will assume the summational
convention with respect to this index.
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One easily checks that in consequence of these definitions

Pl tegs, gy, = 6% . 8% (5.2a)
Pl Mgl = ok (5.2b)
g4 = exp [im (s—1)] Py, _ {1, (5.3a)
Py — exp [in (=) g% s s . (5.3b)

It is clear that these quantities can be understood as the 25 +1 orthonormal vectors
related to the irreducible representation D(s, 0); a linear transformation between t, and s,
(with the determinant equal one) induces the transformation of the ¢'’s according to
1| D(s, 0)*1!j, the irreducible matrix corresponding to the spin s. Due to (5.3), the ¢”s and
P/s may be considered as representing the same object.

One easily proves that

I\ %

‘A“]fql..Aﬂ = ('2‘;) ‘154:,.1..,12‘, (5.4a)
A 1 _ 2s—1 " 1 -
S 4,4, = ‘( 59 ) 9a,.4,,- (5.4b)

which will be needed later.
If ¢, and s, are understood as fields t4{x) and s5,{x) which have covariant derivatives
as in (4.1), i.e.,
Ly, q = Wulg+V,Sy {5.5)
Sd;0 = WSy Fltelg

then, applyving the definitions (5.1) and (5.5), one finds without difficulty that

Gh..ap, 3% = VD —D gt a, +
o2 =20y 4, —it Vi@ +1=D g2 , . (5.6)

All formulae of this section are valid for any arbitrary spinorial fields ¢4(x) and s4(x)
normalized by t!s, = 1 which generate w,, »,, and u, according to (5.5).

It will be, however, instrumental in further developments to take ¢4 and s, in (5.1)
though (5.6) as spinors generating the tetrad to which the canonical form of @, is referred.
Then, w,, v,, and u,became the quantities studied in the previous section with all the proper-
ties which we found.

VI. The scalar form of the egations of “‘vectorial” optics

Now, we are sufficiently prepared to approach the main subject of this paper, i.e.,
the study of the consequences of equations {2.4) of ““vectorial” optics.
In these relations one can replace VAB® by t4tB. Moreover, using the directional deriv-
atives
1 1

Vo= 1570 = 5 LitalAB, ., V= %y = o sataVA®
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and the relation 8?5 = ts5—s?ty obvious from t4s, = 1, we have
VAP 5 = 2[ABY,—P ) + AP, BV, 9 g (6.1)

Using this in (2.4) and applying the linear independence of ¢4 and sfi we conclude that
(2.4) splits into

tBuyy <n+1) +2(tB. —sB _),/,(u) =0 (6.2a)
(““pure” recurrence relatlons) and
(B V,—2 ¥ )yJ(") =0, (6.2b)

(integrability conditions for the recurrence relations).
In both these equations n = —1,0, 1,...
Now, using (5.2a) we have

Y0 a,, = W4, (6.3a)
where the ““‘scalar amplitudes” (for the pantal waves’ 'PAz... Aza) ™ are given by
o PP, (6.3b)

Now, considering ¢4 and s4 as determined with accuracy (3.7) and (3.9) by ¢, = @,, =
= 1 g,4st4tB by the known (by assumption) eiconal function @ we would like to derive
a convenient set of equations for the ‘“scalar amplitudes” p®.

We will leave the detailed computations to the reader and give only the general outline
of operations which have to be performed in order to obtain the desired equations.

After substituting (6.3a) into (6.2a—Db) one obtains a sequence of relations where the
differential operators act either upon %™ or on ¢; in the last case we use (5.6) and express
the directional derivatives of the ¢”’s through the ¢”s and v, w,, and U, projected on the
direction of the differentiation. That way all terms become expressed through qi,l_“ B,, with
various I’s. But, one still has to contract these quantities with % or 5P, as the structure
of (6.2a—Db) requires. These contractions may be executed with the help of (5.4a—Db).

Eventually, one ends up with some vanishing linear combinations of ¢5 5 (objects which
2728

correspond to spin s — 1/2 with 2s — 1 indices). But these objects are linearly independent,

therefore the scalar coefficients at these must separatly vanish. The most difficult part in

these computations is the last part where one has to order the coefficientsat g5, 5 and to
N

compute the numerical coefficients.
The final result is

V+T) pfti? = 2 () VI @s+1—D(@s—1) 9, +
—2i V(@s—1) [V + (mo)@s—2) +(s) (1+1)] v+
—2V(I+1) [V, 4 (sw)(2s — 21 —2) () (2s— )] v, +

+2 (s2) V(I + 1)1 +2)@s—1—1) 9Py (6.4)
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these are the ‘pure” recurrence relations; remember 9~ =0. The numbers n and ! run
through: » = 1,0,1... 5 I =0, 1, ..., 2s—1. Moreover,

Vas—1 [V, + (tew) (25 —21) + (1 + 1) (mw)] 9™ +
—i VIF1 [V, + (moo) (@5 —21—2) +2s— D) (t)] vf?y +

—(mp) VI +)(I+2)@s—1—D) {7y = 0; (6.5)

these are the integrability conditions of the recurrency relations; here also n = 0, 1, 2,...
and 1 =0,1, ..., 25s—1.

In these formulae (tw) = t*w,, etc. The terms proportional to (tv) are omitted because
even in the case where ¢, and s, are only restricted by ¢, = 1/2 g, 45 t4tB (the arbitrariness
of transformations (3.7) and (3.9)) (t¥) must vanish.

These formulae become slinghtly simpler when one considers ¢, and s, to be fixed by
the canonical form of @, According to (4.4a—Db), e.g., in the case of the canonical form
(3.15a):(sv) = 0, Re (tw) = 0, etc.

VII. ““ Vectorial” optics in low orders in 1[ik

The equations (6.4—5) in the general form look rather involved. In order 1o learn about
their physical content we will study these relations for a few low values of n: n = —1,0, L.
In doing so we will restrict ourselves entirely to @, of the canonical form (3.15a) and the
spinors t4, 5, related to it, so that all the machinery of Section IV will be applicable. (It
presents no difficulty to repeat all that follows in the case of the more pathological form of

@5 (3.15b), but that will be left for the further).

With w,, v,, and u, related to ¢, and s, which generate the tetrad to which the canon-

ical form (3.15a) is referred, relations (6.4) and (6.5) can be rewritten as

VI+T ofiid = oVI@s+1-0) @s—D) viZs+
—2iY2s—1 [V +i(mn) (s—)] pi —

—2YI+1 [V,+ (% E-i—i(sn)) (s—1—1) + (mp) (23—1)] v+

2s) VAT DU+ DB —1=]) 3 n=L O (7.1)
+ 2(sp) V(I + (1 +2)(2s—1—1) pita, = 0,1,...,25—1 '

and
V2s—1 [V,+i(m) (s—1) + % (l+1)@] v+

— i VIF T [mti(mn) (s—1—1) +(tu) @s—D] piTa—
—(mp) VI D (I +2)2s—1=D) P2 = 0 (7.2)

n=201,..
I =0,1,..,25—L
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Now, in (7.1) set n = —1. Because y{™P = 0; therefore,

P =0, 1=12..2s. (7.3)
D is different from zero; it must be non-zero because
(0) a, = 0 which cannot be.

Hence, in the lowest order only o)}
otherwise due to (7.3) we would have vy

But the scalar amplitudes of the lowest order must also obey the integrability conditions
(7.2). Because of (7.3), Eq. (7.2) provides us with not-trivial condition when n = 0 only
for [ = 0. This condition is

™ . 1 _

. [V, +is(n) + ]wgn =0, (7.4)
~ i.e., it determines the variation of 3 along light rays through the magnification @ and (t%),
= the quantities of the “scalar” optics.
© Now, setting n = 0 in (7.1) and remembering that (%, = 0 we obtain
= g Vi1
—

— Vi+1 o, = oV U2s+1—=1)(2s—1) ¢ -

v [V 2s—1 i(m (0)

é —2iV2s—1 [V - +i(mn)(s— D] v;”. (7.5)
. Substituting [ = 0,1 and [->/+2 here, one obtains

- WD = —20 V25 [Py +i(map)s] v, (7.62)
S P = o Vs@s—1) 9, (7.6b)
E yiy =0 for I>1 (7.6¢)
S Therefore, of all amplitudes 9" of the first order only 4P, 4V, and 9P may be different
Q  from zero; 93’ however vanishes whan 1) s = 1/2, which is only formal (in the case of
“~ neutrinos I runs only through / = 0,1 anyway), and 2) when the shear ¢ tends to zero.
ECD We still have to satisfy the integrability conditions of the first order. Set n = 1 in (7.2).
5«3 As not-trivial conditions we get only those for [ = 0,1, 2:

- 1

E V2s [V,—H(tn)s—}- 5 @] yh—

§ iV i) (s— 1) + 25(2p)] ¥ —(mpe) Y2E—D) 9P = 0 (7.7)
<

V2s—1 [V, +iltn)s—1) +O] piP—iV2 V—[V +i (my)(s—2) +(2s—1)(tw)] $i0= 0 (7.7b)
V2s—2 [V,—l—l(tn) (s—2)+ E ] p® = 0. (7.7¢)
Expressing " and 9" through 4 using (7.6), one obtains

[Vt+i(tn)s+ % @:l D = {2{Vm+i(mn) (s—1)+2s(tp)] [V +i(mm)s] +

+(@5—1) (maz)o} pfP (1.8)
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and

V2s—1 2[V,+i (tn)(s—1) + O] [V +i (mn) s] +

+ [V i (my)(s—2) +(2s—1)(ew)] o} 4§ = 0 (7.92)
V(@2s—1)(s—1) {V,—H’(tn) (s—2)+ % @} oyp® = 0. (7.9b)

The role of equation (7.8) is clear: it determines the variation of 9" along “light rays’”

with transverse derivatives of y{® as the sources of the equation.

Equations (7.9a—Db) as they stand look rather strange; they seem to impose some further
differential conditions on the amplitude »®. But, this is not so. They, in fact, reduce to
two simple algebraic conditions on the curvature related to @, .

Indeed, examine first the simpler condition (7.9b). It may, of course, be rewritten as

V(@2s—1) (s—1) {a ( V,+i(ty) (s—2)+ % @) + (V,a)} P = 0. (7.10)
But using here (7.4) we reduce it to:
V@s—1)s—1) {(V,0) +Oc—2i (1) }. »® = 0. (7.11)
Now, (4.9c) can be applied. We obtain the condition

V(2s—1)(s£1) - WapeptitBiCtP - 4 = 0. (7.12)

This algebraic condition has rather strong implications. It is automatically fulfilled for
s = 1/2 and s = 1, i.e., neutrinos and electrodynamincs. However for higher spins, because
pP##0 by assumption, it leads to

§>1>W, popt?tBiCt? = 0. (7.13)

It may be fulfilled either when W pop = 0 (the conformally flat V) or when W 570
with ¢, proportional to one of the 4 (in general [1—1—1—1] case) Penrose spinors. In other
words, the geodesic null vector ¢, = Q;a must be proportional to one of the Debever’s
vectors [16], [17], [9]. If this is so, the corresponding Debever’s vector has to be
a geodesic itself, which imposes rather severe restrictions on the curvature of space-time.
Note that all of the trouble with the condition discussed becomes immaterial in the case
of a shear {ree congruency, as one can see directly from (7.9b).

Notice that condition (7.9b) equivalent to (7.13) appears to possess some relationship
with the Sachs-Goldberg theorem [18], [19].

In an algebraically special ¥, with a shear-free congruency the condition (7.9b) is triv-
ally fulfilled.

Take now the condition (7.9b). In order to reduce it to an algebraic condition observe
first that by using (4.1) one can easily prove that

_ 1 1
Vi —~ViaVs = (@Vit 5 Qitn)—OWa— = oV (1.14)
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Using this in (7.9a) and aliminating afterwards the derivatives V, ¥ with' the help
of (7.4) one after ordering obtains

Vas—1 L(te) =V aO—V 0 +2i(mn) 61> +s{—2iV ,(tn) +2i V (mn)—2i(tp)(tn) +

+2(tm) (mn) +iO(mn) +io(ma) +2(p) oD} v = 0. (7.15)

All derivatives acting on 9 have been cancelled, so that this condition is purely al-
gebraic. The ¢, entering in the form (t¢) in this formula is the same as defined that by (4.6).
Now, in the first line we may use the identities (4.10) and (4.11a) while all the terms propor-
tional to the spin s can be replaced by — 8s (ttts) according to (4.21). In effect, (7.15) is
equivalent to condition (7.9a) and reduces to the following simple condition on the conformal

curvature:

Vas—1 (s—1) Wpept?tBiCsC - yp® = 0. (7.16)

Again, in the case of neutrinos and electromagnetic waves (s = 1/2, 1) this condition

is automatically fulfilled. Because y®#0 by assumption, for higher spins we have

s<1> W popt?tBiCsC = 0. (7.17)

The condition (7.17) must be valid simultaneuly with (7.13) for any s>1. Therefore
it does not say anything essentially new in comparison with (7.13). If the ¥, is conformally
flat or it t4is proportional to one of Penrose’s spinors, both conditions are fulfilled. (There
is however the possibility of satisfying (7.17) when s, is proportional to one of Penrose’s
spinors while ¢, is not; this possibility has to be rejected because by accepting it we would
violate (7.13) which must hold simultaneusly with (7.17).

VII. Plane waves, planes of polarization

The aim of this section is to recall some fundamental facts about plane waves, as ex-
pressed in the ““spinorial language”. Moreover, we will introduce here the notion of planes
of polarization as related with plane waves of arbitrary spins.

This will enable us to de conveniently in the next section the physical interpretation

phy p
of the results of ‘‘vectorial optics”.

For simplicity, we restrict ourselves in this sestion to special relativity (V,—S,). Later
on, however, we will return to ¥, transfering to ¥V, the physical interpretation clearly estab-
lished in S,.

The wave equations (2.2) considered as equations in carlesian coordinates in S, are
simply

AB
& 'y 5, =0 (8.1)

Now, to every spinor ¢, and the number ¢ = 41, one can attribute a solution to (8.1)
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of the type of a plane circularlypolarized wave:

Va4 (05 Pk 8) = 0, (B, 8) by s, exp [iK] (8.22)

D = £t,a%; t, = %g,ABtAtB 15>0, 1%, = 0. (8.2b)

In this formula a, (%, k, €) with the same dimensions as Va4, is some complex
scalar amplitude; the spinor ¢, is dimensionless, so it is the null veetor of the propagation,
t,- The phase @ has the dimension of length. The number £ of dimension (length)-! secures
the dimensionless character of k®. The frequency of the temporal oscillations is clearly
@ = eckty, so that ¢ = +1 determines the sign of the frequency.

One easily proves that (8.2a) represents the general form of a solution of (8.1) which
depends on coordinates only through the factor exp (ikD), @ being linerar in the coordinates.
We used the expression ‘‘ circularly polarized wave” anticipating the interpretation which
will be given later.

By superimposing waves with positive and negative frequencies but the same & and t,4
one obtains the waves in the more general ‘‘states of polarization™:

Vaa, (0% P RV 265 5 Rty b (8:30)
where
Z(x% B, ) = a (B, k, 1) 1a (B, k, —1)e ¥, (8.3b)

For half-integer values of s the waves (8.2) with & = 1, correspond to positive energy
density (particles) while those with & = —1 to negative energy density (antiparticles).
Hence, for the half integral spin the waves (8.3) represent some mixtures of ‘‘particles”
with “‘anti-particles” which have the common propagation vector k, = kt,.

The wave (8.3a) can be represented as:

"PAI...A”("’&“’ %, k) = Condy. C(r)A” (8.4a)
where, if
Z’ — R’eiA‘, R3>O (8.4‘b)
then,
i
8(r)A 5 [R5t 4 exp [2—3 (As+2nr)] ;7=0,1,...,25—1. (8.4¢)

The factor exp (izmr/s) (r = 0, 1, ..., 2s—1) describes all the arbitrariness in the defini-
tion of {, through the plane wave y 4.4, (x%, B, k). We have 2s of the possible * branches”
at our disposal.

The spinor {,,,; obeys the neutrino equation 948 L ,p = 0. The fact that can construct
plane waves with higher spins from the plane waves of neutrinos forms the starting point

of the de Broglie’s theory of fussion [20], [21].
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We will apply this fact to a much simpler purpose. Exploiting it, we will be able to
attribute to the general waves (8.3a) some well-defined ““planes of polarization”.

Indeed, from the well-defined spinor (4 one can construct higher irreducible objects.
The simplest is the D(1/2, 1/2) object

1 .
C(")“ d:f 5 gaA'BC(r)AC(r)B = |Zs!1/"ta9 (85)

where the right hand side is the same for all branches. Much more interesting is the D(0, 1)
object {4 {yp which has a self-dual bi-vector as its tensorial image. From the last, one
can construct a real bi-vector (a null object) and its dual:

f(f)fzﬁ df ZJ‘(r)A C(r)B +C.C (8.63)

Foret 5 Se*®Lialos— C.C. (8.6b)

The null bi-vector (8.6a) for s = 1 coincides with the null electromagnetic field (a plane
wave) which is the tensorial image of v, 4 (2%, t8, k). Both branches r = 0,1 generate the
same object, i.e., fig)es = fi1yes for s = 1.

But, the object (8.6a) is also well-defined for any value of the spin s with an accuracy
up to the choice of the branch number r. Therefore, one can formally proceed with the
interpretation of f{,,; as it were the electromagnetic field tensor for any value of s. This
way the notions, familiar in the electromagnetic case, of circular, linear and eliptic polariza-
tion can be extended in a natural fashion for all values of s.

Further on, we will refer to fi,,,; as to quasielectromagnetic field when s 7 1.
For s = 1 it becames a genuine electromagnetic field tensor.

According to (8.4c) the definitions (8.6a—Db) may be rewritten as

Soyas = [RJF” S, 4Bt 15 + C.C (8.7a)
Firas = as above — C.C, (8.7b)

where
Q. 57 (A+ 2nr)s. (8.7¢)

Now, take a time-like vector gg pointing into the future and normalized to unity:
8"%g%8% = 1. Using it, one can define quasi-““electric” and quasi-‘‘magnetic” 4-vectors by

_ ) I __if 05
Egyezr ~Sforust™s  Hupaz —irass” 88)

These vectors may be represented as gé = t,+s, where t%, = %, s%, = 0 implies
S, = % 8oips™s®, t1sg=1. In other words, with fixed spinor t, the spinor s, is determined
by the given choice of g0. On the spinors ¢, and s, we span the null-leg witAh the related
tetrad — the formalism of (3.6)—(3.13). The arbitrariness in the choice of g9 corresponds
to the transformations of elementary spinors given by

Ly >ty =1g; Sq—>Sq=Sq+Pts (8.9)
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One easily checks that saﬁABtAtB = 8t,mg;. Considering gg as given, i.e., t4 and s,
fixed, one easily finds that

Jows = WaEorpy Forap = —4itiaHopg, (8.10)

with
Eqy = 2R)Y {cos 2, i+ sin O, &8 (8.11a)
He,, = 2(R) {—sin @, gl 4 cos Qg8 (8.11b)

Now, the objects fi,),4 and f{,),s determine the quasi-‘‘electric”” and quasi-‘‘magnetic”
plane of polarization.

These planes are defined as follows (with the understanding that f{,,, and fv(r)zﬂ are
taken at a fixed event x%):

I1oE : /2" =0, (8.12a)
| § 2% =J;<r)[°ﬁxﬂ =0,

which is equivalent to

Iloe:fue’ =0, Tlopm:fup® =0 (8.12b)

With f,y,5 and j'(,)aﬂ taken in the form of (8.10), one can represent these planes para-

metrically as

Ios: 2* = p+vE, 5, (8.12¢)

Ien: »* = w*+vH,y,
where u and » are real parameters.

As it is clear from (8.12a—Db) these planes are entirely determined by the original
object 4,4 (g and do not depend on the choice of g8 which was instrumental in the
definitions of E,, and H,,. One can easily see that a new choice of gfz which corresponds
to the transformation (8.9) changes E,, and I:;(,)a by only some additive terms proportional
to z,, so that (8.10) remains true with so re-defined E,, and I}(,)u. It is also clear that such
re-definitions preserve the parametric representation of our planes (8.12c). The vectors
E,, and fvl(,)a are orthogonal. Therefore, the planes 11 g, 11, are orthogonal. All these
planes contain, of course, the propagation vector ¢,.

The question arises concerning what happens with the planes when one moves from
the point % to which they are attached to the neighboring point ﬂ?“-{—dx“.

Of course, the propagation vector #, stays unchanged. But as is clear from (8.11a-b)
and (8.12c), the planes attached at 2%+dx® can be understood as the same planes as were

0 . . o .
attached to x® after the rotation around ¢, through the infinitesimal angle

dx®3.82, , = —1— dx®d, 4, = dfs; (8.13)
i s df
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this angle happens to be the same for all branches. With the help of (8.4b), (8.3b) this quan-

tity can be computed, and in obvious abbreviated notation it is

k |a;(1)|* —las(—1)[?
- = o .
ds2, . tadx VAE 8.14)
This formula can be rewritten in a more plausible form. Indeed, let
(Zs(l) =pe—isu+i-v, ds(—l) _ qe—i.m—iv, (8153)
where p = la(1)|, g5 la(—1)|. Moreover, let:
« __2pq e
A fktux +v, | € FPT-I—_qé’ & == sign (p—q)- (8.15b)

In principle, all quantities so defined should have subscripts s; we omit them for sim-
plicity.
In terms of these convenient quantities one can rewrite (8.14) as

ek 1-¢2

o8 = el T (8.16)

This formula forms a convenient starting point .for the physical interpretation of our
waves and their related planes of polarization.

Notice first that when one moves along the ““light ray” i.e., dx® = t*dz, due to t*%, = 0,
d£, stays equal to zero. Therefore, along light rays (4 dimensionally) our planes stay constant.
The same holds when one moves along any direction orthogonal to the null propagation
vector, i.e., when £,dx* = 0.

The factor ¢,dx* may be different from zero when dx® contains a component along s%,

in particular when one moves along the temporal direction g. With dx® = gé\"‘ dr, Eq.
(8.16) reduces to:
dQ, ek Jl-e* (8.17
dr ~ 25 1+4€ cos2i 17)
This gives rise to a few distinguished situations. First when either a(1) or a(—1)
vanishes so that we are dealing with a wave with the definite sign of frequency then € = 0,
and Eq. (8.17) reduces to
df, &k

= (8.18)

Therefore, ours planes of polarization rotate with the constant ‘‘angular velocity” given
by (8.18). The & introduced by (8.15b) coincides here with the & determining the sign of
the frequency. For this reason we used the same symbol for both quantities.

3

The waves with property (8.18) will be called “circularly polarized waves”.
Secondly, when € = 1, which is equivalent to |a(1)| = |a,(—1)|, we have

iQl
dr

0, (8.19)
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so that our planes of polarization stay constant even when one moves in the temporal direc-

tion.
The waves with this property will be called “‘linearly polarized waves”.

. ans .« . .
Finally, when 0 <€ <1 the ““nagular velocity” —— reaches the minimal and maximal

dr

values when

e, ek 1—-€ _ 1 dQ, ek 1+€

s

The waves where the “angular velocity” —— passes through maxima and minima (with

increasing time in A = kt,x%-v) will be called elliptically polarized. The discussion above
was concerned only with the properties of the plalAles Il g, 11,y determined entirelyvby
{ryaliyp- However, when the temporal direction 8y is given an the vectors E,, and Hg,,
are well-defined, one can give an even more direct interpretation of the “states of polariza-
tion” defined on the level of-the ‘“planes of polarization”.

Indeed, consider the projections of E, on gl and gg, which according to (8.1la)
are

Xy = 2(R) cos Q,,, ¥4y = AR sin Q.. (8-21)

Now, using the notation introduced by (8.15a) and (8.15b), one esaily finds that if
etu[x('r)—i—iy(’r)] = Xy T Yy then,

2 T X TWw = 0 (8-22a)

0 = 2[(p+q)? cos® A-+(p—q)? sin? AJV%, (8.22b)

1-€
@ = [arctg (8 1/IT€— tg l) +2nr] /s

This can be understood as the parametric representation of the curve zg, (1) plotted
in the complex plane by the vector Ej,, when x° changes and «* stay constant. The curve

corresponding to H,,,, has the same representation but with @, shifted through =/2.
Notice that by eliminating 4 from (8.22b) one derives the same relation for all branches
of Egy,:

(1 e)m e (3.23)

2 1—€ cos 2sg,

We would like to examine the shape of these “quasi-electric” and *“ quasi-magnetic”
curves. ‘

First, take s — 1/2. Here we have only one branch, r = 0. As one can sese from (8.23)
the quasi-electric curve is an ellipse with the focus at the origin of coordinates. Fig. 1 xeplains
the situation. The values €A which correspond to the maximal and the minimal length of
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E are as indicated in the picture. Of course, ¢ max = 2(‘;—|-q)2 and ¢ min = 2(p—q)2.
When.either p or g vanishes both ‘“magnetic’ and ““ electric™ ellipses tend to a circle (circular
polarization). When p = g, the case of linear polarization, these curves degenerate inio
two lines (see Fig. la).

— E

—_—_—

Fig. 1 Fig. la

Now, consider the genuine electromagnetic case, s = 1. Here (8.22) can be seen lo
reduce to

Zyy = 2(p+q) cos A+i2(p—q) sin 4. (8.24)
Hence, we also have an ellipse, but this time with the center (not the focus as for s =

= 1/2) at the origin of coordinates. Of course, both branches r =0, 1 coincide here: E,, =
= E),. The situation is illustrated by Fig. 2.

€A=0, 27... £

Fig. 2 Fig. 2a

The maximal and minimal values of E and H are, of course, 2(p+¢) and 2|p—g¢|. E takes
these values for the values of e given on the picture.

When either p or ¢ vanishes we have circular polarization: both ellipses became one
curve, a circle. When p = gq we have linear polarization (see Fig. 2a).

In the case of s = 3/2, E has three branches corresponding to r = 0, 1, 2. The vectors
E,, circulate around the common curve (see Fig. 3). The vectors F,, E;, and E, are in-
dicated for the “initial” situation A = 0. The values of &4 around the circle correspond
to the “history” of the fundamental branch E,, when it rotates around the curve. One
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obtains the * quasi-nlagnetic” curve for the three branches Hy,, from Fig. 3 by rotating
it through 7/2. The radii of the external and the internal circles are obviously 2(p +q)*®
and 2|p—q|*®. When either p or q vanishes the ‘ magnetic” and “‘electric” curves became
one, a circle (circular polarization).

But, when p = g our curve degenerates according to the scheme of Fig. 3a. The arrows
describe the history of the fundamental branch E,. E, first decreases along ¢ = 0 to

m
T A
- ~ 2 =7
- EA=D, 3. - — EA =0‘ 37
=27
Fig. 3a
=T
=217 €A
=37
Fig. 4 Fig. 4a

the value zero, then climbs along ¢ = 27/3 to its maximal value, returns along this line
to the origin, etc. It is clear however that the three constant planes I/,,r are well-defined
at all times. In that sense, we have linear polarization.

The last case which deserves detailed discussion is the case of s = 2.

As is clear from (8.22b), the branches F, and E, coincide as do E) and Ej; in reality
E,y and E, “anti-coincide”: Eg, = —Eqy,. The same is true with respect to Hg,,. Now,
in all of the previous cases the ‘‘electric” and ‘“‘magnetic” curves were different except
for the degenerate case of circular polarization. For spin s = 2, due to excgptionally high
symmetry, these curves always coincide. The picture generalizing the previous ones is
Fig. 4. The radii of the external and internal circles are respectively 2|p-+q|* and 2|p—gq|”.
The values of eA corresponding to the maximas and minimas are indicated for the fundamen-
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tal branch Ey,,. When either p or g vanishes we have circular polarization and the curve
becames a circle. When p = ¢ the curve from Fig. 4 degenerates into that from Fig. 4a.
The arrows illustrate the history of the fundamental branch E,,.

In a way, Fig. 4a, is similar to Fig. 2a.

It is clear from this discussion that for s = 2 we have only two different planes of
polarization, similar to the case s = 1. Independent of the ‘“history” of E e when p = g
these planes stay constant; in this sense we have here linear polarizarion.

Now, for arbitrary values of s the structure of the corresponding “electric” and “ma-
gnetic” curves is similar to that for s = 3/2, 2. It is clear from (8.22a—b) that when e} = 0

the point z(, lies on the x axis at the maximal possible distance from the origin of coordi-
nates, i.e., at ¢ max = 2(p+q)'. When &2 increases to 7/2, ¢ becames ¢ min = 2|p—ql**.
During this transition ¢ increases from 0 to #/2s. Then, when ¢l increases to 7 one returns
to ¢ max with ¢ = afs. The story then repeats itself (see Fig. 5). The mechanism for both
types of degeneration is obvious. When either p or ¢ vanishes the curve becomes a circle;
P = q it degenerates into 2s radii which divide the circle into 2s symmetric segments.

IX. Physical interpretation

The aim of this Section is to examine the physical interpretation of results derived on
the level of the ‘“vectorial optics™.
According to Section VII the beginning of the ‘‘optical series” has the form

1 ) . .
Ya,..4, = { V42,4, + 0 (m)} exp {ik®} = {e‘”’wf,o)tAl...tA2s+0 (ik)} exp {ikD}.
i
9.1)
The eiconal function @ can be assumed to be a known fixed solution of @ o, =0

Then t,4 and s, can be understood as fixed by the canonical form of @,;. As far as ¢ is
concerned we are in possession of the information that

[17,+is(m) + —;~ @] P® = 0. 9.2)

Comparing (9.1) and (8.2), we conclude that the beginning of the “optical series”
has the algebraic structure of a plane, circularly polarized wave. In fact, it can be under-
stood as such a wave locally. In the neighborhood of event x* at x®+6x% we have ®(x+
+06x%) ~ P(x) +¢,6x%; moreover, because ¢, is geodesic it is covariantly constant along
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light rays. The “local” frequency of such a wave is clearly kcty; because t,>0, the sign of
the frequency is determined by the sign of k = elk| where £ = +1.

By superimposing waves with positive and negative frequencies (both scalar amplitudes
pO(+), 9(—) must obey (9.2)) one can obtain waves in more general states of polarization.
All of the discussion in the previous section applyies to such waves, but only on the local
scale.

Equation (9.2) integrated along the ‘“‘light ray” yields

T

ng)) = @ * exp l:— [‘d‘( {ls(t?])+ % (’)}] ) (93)

where ¢ is some function constant along the light ray, V,a = 0.
Therefore, if we restrict ourselves to the circularly polarized waves the quantity Z,
which plays the same role as Z, in the case of the genuine plane waves from the previous

Z = aexp [ik@— fdr {is(m) + % @}:I ‘e (9.4)

Ignoring the terms denoted by O(1/ik) in (9.1), we have

section, is

Ya .4, = ZtAI...tAz" (9.5)

Now, representing Z as R exp [iA], one can construct the planes of polarization Il
and I1,y; according to the scheme of the previous section. These planes, however, when
one moves along the light ray from x* to x*+1%d7, rotate arocund t* through the angle

dQ = % v, Adr, (9.6)

(compare (8.13)). Then, using (9.4) and p,® = 0 one easily finds that

) ©7)

independent of the spin s. This rotation of the planes of polarization when one travels
with light rays (i.e. the rotation per unit of the affine parameter) forms a pure “ curvature
effect”. Indeed, combining (4.16) and (4.17) with (9.7), we obtain

aQ 2

—— = —Im (W 4pcpt4tBtCtP). 9.8

dz po m (W apcptit ) (9.8

It is sensible to talk about this effect only when ¢ = 0, so that the phase of ¢, is determi-

ned by the canonical form of @ ;. This effect is certainly absent when V is flat or confor-
mally flat. It also does not occur when ¢, = @, coincides with one of Debever’s vectors.
Moreover, according to the consistency conditions (7.13) and (7.17), it also cannot appear
for higher spins, s> 1.



3

Fasc.

Vol. XXVII (1965)

ACTA PHYSICA POLONICA

389

Therefore, the rotation (9.8) — a rotation of the planes of polarization due to curva-
ture — can be understood as a sensible physical phenomenon only in the case of neutrinos
(s = 1/2) and electromagnetic waves {s = 1) traveling in a V; with non-zero conformal
curvature. In order to have this effect ¢, = @ and @_,, which determine the phase of
t4, must be related to Weyl’s tensor W4 5 s0 thdt Im (W pcp t4tB1€tP) # 0. This, we repeat,
prevents gravitational vectors (Debever’s vectors) from having the orientations of z,. Of

course, the smaller ¢ is, the larger is, but when ¢ — 0 the phase of ¢, is undetermined.

dr
In other words: The smaller ¢ is the more difficult the detection of d2/dv becomes.

It is clear that the formula (9.8) answers invariantly and for arbitary spins the problem
studied in [1] and [2] in the electromagnetic case and in the approximation of weak gra-
vitational field.

Finishing the discussion of the leading term of the optical development (9.1), we would
like to point out that the ““divergence” or “magnification” @ affects the amplitude %3 in
the form of the factor exp [—1/2 ff@dt]. This was to be expected. The positive magniﬁcatlon
@>0, i.e., a divergent beam of “‘light rays” causes the amplitude of the waves (the *‘ density”
of waves) to decrease with increasing affine parameter. In the case of negative magnification,
a convergent beam of “light rays”, the amplitude increases with increasing affine para-
meter.

“Vectorial optics” also gives appreciable information about the higher terms of the
“optical development”. Although a detailed study of the structure of these ‘“higher terms”
lies outside of the scope of this paper, information which we have already gathered is sufficient
to drow some general conclusions about the algebraic properties of the terms considered.
There are two situations drastically distinguished: 1) ¢ =0; 2) 0£0.

When o = 0 but [V +i(mn)s]p{’ 70, then we have i # 0 (see (7.6a)) and y§’;, = 0
for I>1 in the first order in 1/ik. The amplitude y{” may be non-zero or in the special case
could vanish; it certainly must be non-zero when the ‘“sources” of equation (7.8) are non-
4.4, =V T, ..a, +w1”q},

This makes clear that, while w(o) 4, can be represented as az A, az 4, the quantlty y)

-zero. Therefore, the terms of the first order have the form y,

has the form of a, . B 4, From the structure of the recurrence relations (7. 1) one
1

“31

can easily see that the hrgher terms also exhibit a similar regularity: The term (ik)"p$ " .4, is
3

the product of &, ... times symmetrized over spinorial mdxces.
p Ar Aes—n ﬂAZs—n+1‘}JA28—n+2 5“’2; ’ p

The spinor @ is form the leading term. The spinors B4, ¥4, ... £4 (n of them) are in general
all different, but in special cases some of them may coincide. Of course, this statement
makes sense for 2s—n>0.

A similar situation arises when o % 0. One easily sees from the results of Section VII

2
that, while »© has the structure o, ...« R the quantity 3 = Xy has
Y 4,4, 4%, q Y ¥ a,.4, ; ‘PI 9a,..4,,

the algebraic structure of a4 . B4 . Two new spinors f4 and y4 appear
1 28 2 25— 1

in the first order. From the recurrence relat;ons (7.1) one can deduce that this is a general
regularity. The spinor a is contained 2s—2n times in y 4, together with some 2n other
oAy
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spinors f4, ... &4 in the form of an external product. Of course, this is totally symmetrized
over the 2s spinorial indices. One can talk sensibly about this regularity of algebraic struc-
ture for 2s—2n=0.

Summing up this discussion, our “optical development” has the algebraic structure
1
o= ()—>1p.41...,428 =184, - %aq, + A “(Al“Azs_lﬂAz.,)—l—
1 .
+ @ GC(AI “Azs—-z ﬂAzs—lyAzs) + ... exp {lk @} (993)
1
0#£0—>ypa ... A, = (%4, o 04, + %A, %Ay, /3’,42’_1 va,, +

1 .
+ W (X(Al aAZH /3‘428_3 7’42;—2 6‘423—-1 8A2&) + } exp {lk@} (99b)

In particular, for s = 2, using the standard graphical symbols for the Petrov-Penrose
types of the W pon = Wancps we have

el ) (e ) oo sy o

0=0->y4 .4, = {

o # O->ya, 4, = {;IH + %) <+ (z%)z> <+ } exp {ikD}. (9.10b)

The optical ‘“peeling off” property described by (9.9) shows some affinity to Sachs’s
development of the curvature along light rays [13] and the ““peeling off” effects studied by
Penrose [7] for the fields with spin s which are essentially the same as the fields studied
in the present paper. But in the quoted works, however, spinorial objects were studied
along light rays and their asymptotic behaviour was investigated; 1/7 served as the para-
meter of the development.

The “peeling off”” of the type (9.9) is something very different; here, it is 1/ik which
serves as the parameter of the development.

Now, we would like to comment about the nature of the consistency conditions (7.13)
and (7.17) derived on the level of *“ vectorial optics” and necessary if s <1. These conditions
impose some restrictions on the propagation vector ¢, as related to the conformal curva-
ture.

One can easily see that similar conditions are necessary quite generally, i.e., without
any approximations,

Consider the Ricci formula

25
— Ct
¥B,..B, a6 —¥B ..B, 30 = glRBiaﬁWBr..Cl.“Bu' 9.11)
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Contracting it with gePB, gﬁQB_- and applying field equations 48 ¥g .8, = 0, one derives
the necessary algebraic condition

2s
2, RS 658708 5,5, = 0. 0.12)
For s<1 this is trivially fulfilled. For s=3/2 by using (4.19), one proves that (9.12) is equi-

valent to

Wanam0 " g By = O (9.13)

This algebraic restriction on the solutions of the field equations is very strong. It is
of interest to find its implications with W pcp’s of the 6 possible algebraic types of Petrov
and Penrose. However, we will not elaborate this point in the present paper.

Substituting our optical development into (9.13) canceling by exp (ik®P) and demanding
the validity of (9.13) in all orders in 1/ik separately, one obtains

(n)A14,4,
B,.B,)

W 4.4,4,8Y =0. (9.14)

This condition for n = 0 can easily be seen to be equivalent to (7.13) and (7.17).
A few words more about the case of s = 2, the case of the gravitational radiation.
In a general V, with R.#0, i.e., with some tensor of matter present, the Bianchi
identities in the spinorial transcription are

. 1 .
4B, WB,B,B,B, == '§ VS(B, VBaB‘)AS (9.153)
Rapys; e = 0 . 1
VRSszA'sgw Z VA'BR = O, (915}))

where the object Ujpep = 38.4c 8s5p [R¥— 1 8% R] due to Einstein’s equations G =
87y .
—5 T may be understand as determined by the tensor of matter T, according to

=T

4 1
Uiscp = “—gz— 82 ACEBBD {*4— g“ﬁgng”“—T“ﬁ}. (9.16)

The relations (9.15b) are equivalent to G*; = 0 which implies T%,; = 0, i.e., “equations
of motion” of matter. »

Now, (9.15a) can be understood as the field equations of the field of the gravitational
radiation, W ,g.p,, with the sources generated by the gradient of the tensor of matter, T,
The right hand member of (9.15a) can be interpreted as the ‘““gravitational current”. We
have here the perfect analogy with the electromagnetic case. Maxwell’s equations with

1 n - 1 . .
currents, written in the spinorial transcription are V48 g = —C— jfc, where jip = g.inj"

is a hermitian object. .
In the regions of space-time where T,; = 0, (9.15) reduces to VA2 Wy = 0, ie., to
the equations studied in this paper. Notice that it follows from its derivation that (9.14)



3

Fasc.

Vol. XXVII (1965)

ACTA PHYSICA POLONICA

392

if is applyied for s = 2 it should hold for y, 4 only in the absence of gravitational currents.
One finds it to be trivially satisfyied because WAM*A’PWA‘A*A'Q = dgpoWy, W44

Solutions of Einsteins empty-space equations are certainly of interest, especially those
which exhibit on the level of W go, a wave-like properties. It is, however, the authors
opinion that one can learn more about the physics of the gravitational radiation by studying
W 45cp as generated by the gradient of the energy-momentum tensor according to (9.15a).
Notice that with the help of (9.15a) one can show that the effect of

O = —g™V,V, acting on W,pep is

L . RS U pi s o 7
0+ 3 R) Wapep — 24W 45" Wepyrs = — ) ViaVslooygs, (917

wheere the sources are determined by second derivatives of the tensor of matter. Equations
(9.15a) and (9.17) form a convenient starting point to study the emission of gravitational
radiation by matter in motion. This can be done effectively at least in the weak field appro-
ximation.

As far as the difficult problem of the detection of the gravitational radiation is concern-
ed, it seems that formula (9.8) can be of some importance at least theoretically. Namely one
can study the polarization of electromagnetic waves as effected by the conformal curvature.

Combining (9.8) with (4.9¢) one has

AW 4pptHBICP = V,0+0 - 0+2i6V Q. (9.18)

The quantities £, 0, ©, and £ can be understood as related to a beam of electromagnetic
waves. The quantities appearing on the right hand side of (9.18) are all in principle measur-
able. That way the lett hand member ot (9.18) referring to the conformal curvature, i.e.,
’gravitational radiation”, is in principle a measurable quantity.

It would be of interest to study (9.18) in the weak field approximation. The methodics
of [2] may be applyied where the ‘‘scalar optics” was developed in the case of the weak,
but otherwise entirely general, gravitational field. The weak gravitational field can be consid-
ered as given explicitly through the tensor of matter; there are available well-developped
approximations procedures [22], [23] which give explicite expressions for the weak gravita-
tional field as pressed through the tensor of matter. It will present no fundamental difficulty
to compute a, @, V,0, and V 2 due to the scattering of electromagnetic waves by a weak
gravitation field.

It is the authors pleasure to express the gratitude to Dr Arturo Rosenblueth for the
warm hospitality extended to him during his stay at the‘‘ Centro de Investigacién y de Estud-
ios Avanzados del Instituto Politecnico Nacional”. The author is also grateful to Mr Bogdan
Mielnik for helpfull discussions.
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