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Recently, a general microscopic formalism was proposed by one of us (W.Z.) which permits
a uniform description of ferromagnetic as well as ferroelectric domain structures. The main idea
of this approach resides in employing inhomogeneous rotations of the spins or electric dipoles,
respectively, and setting up a suitable variational principle. As variational parameters one can
choose, generally, either the rotating angles or the direction cosines of the rotating axes. To
facilitate the calculations, the former description is preferably used though in principle both
the procedures are strictly equivalent. The present paper studies the applicability and efficiency
of the latter procedure by applying it to some specific domain structures of ferroelectric crystals
and imposing asymptotic boundary conditions. The variational principle is derived for the case
_of an orthorhombic dipole-lattice, and the Euler-Lagrange cquations are solved in the limit cases
when the deviation from a cubic lattice is either remarkable or negligible (both in a specific sense).
Effective formulae are given for the thickness and erergy of three types of inter-domain walls,
and the results are compared with those obtained when using conventional methods. Moreover,
a satisfactory qualitative explanation of the influence of particular homogeneous lattice-defor-
mations on the direction of polarization and type of domain structure can be given.

1. Introduction

As recently shown by Zietek {1], the microscopic formalism given in {2] which has
already been applied, with considerable success, to ferromagnetic domain structures (e.g.,
[3—8]) can easily be generalized to that extent as to be applicable to ferroelectric domain
structures, too. This formalism, in its generalized form, has already been employed in [9]
where the asymptotic and periodic solutions corresponding to domain structures of perovsk-
ites are investigated and the influence of a tetragonal deformation of the cubic crystal lattice
on these solutions examined. Rotations as well as elongations of the elementary polarization
vectors are considered in [9] though the equations are solved in the limit cases only when
either rotation or elongation occurs. For the case of rotations, however, the rotating angles
are chosen as variational parameters, the direction cosines of rotating axes being put constant
before starting the calculations. None the less, it is pointed out in [9] and exhaustively discus-
sed in [1] that one can as well choose the direction cosines as variational parameters and put
the rotating angle, ¢, constant and equal 7 from the very beginning, without restricting in
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any way the degrees of freedom of the problem. Furthermore, it is also pointed out in {1]
that both the procedures though strictly equivalent when rigorously treating the problem
may lead, practically, to somewhat different results because of the simplifications and various
approximations that, of necessity, have to be done when intending to arrive at effective
results. It seems thus expedient to examine this alternative description, and this is the task
of the present paper.

2. General assumptions

Following |1, 9] we shall use the notion of the “dipole lattice** and assume it to be
orthorhombic, the corresponding lattice constants being a, b, ¢ in the directions x;, x,, and x,,
respectively (see Fig. 1). Let P7 be the elementary polarization vector assigned to the site

Fig. 1. Elementary cell of orthorhombic dipole-lattice, co-ordinate frame, denotation of lattice constants.
and labelling of nearest neighbours (¢f. scheme (11))

a(u=1,2,3) and 4%, B% . the interaction tensors of second and fourth rank, respective-

ly. In the absence of an external electric field the Hamiltonian will then have the form [1]

P:xplngapﬁc}’ (1)

Bafiathsliy

H N Zﬁ {A:ﬁ“zpzxpﬁn-*-Bmﬂ
&)

where af. (With respect to tensor indices y Einstein’s summation rule is used.)

The rotating matrices R}, introduced in [2] and applied, inter alia, in [1, 9] have
to be specified according to our assumtion that the rotating angles ¢® are for all sites the
same and equal z. Thus, the matrices become simply

R = 26:1622 - 6!‘1#9’ (2)

MLty

% being direction cosines of the rotating axis associated with site a. Besides.,

(€9 = L 3)
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Let us denote by P Debye's conventional elementary polarization vector [1], and let
P, be a vector (“generating” vector, see [1,9]) of length P. Then,

P,:l = R:x#apﬂz’ (4’)

if elongations of the polarization vectors are not-taken into account [9j, and the Hamiltonian
(1) becomes

H = Zﬁ {A:ﬁ‘zplhpﬁa +B:xﬁﬂz!‘3ﬂ¢Pﬂ1Pﬁ:Pﬂ:Pl‘t} ? (5)
@,

Azf"z - Afle'sR::Iﬁfollz’ (6)

B:ﬁ‘zﬂa!“s = B:xe’:"s”cR:xﬂxR:d‘zRfa.“;Rg‘m' (7)

Further, let ¢2* be the spatial vector between sites @ and f, its length being ¢*. Then,
it is convenient to introduce the dimensionless quantities

n% = oo™ 8

Assuming the interaction tensors to be of dipolar and quadrupolar type one can write |7, 9]

‘4;7?”2 = Aaﬁ{éﬂx#z _.”3712137]::3}’ (9)
B e = BP0y, (10)

where the coupling functions 4% and B* depend merely on the distance between sites
o and B.

For the sake of simplicity, we shall restrict our considerations to interactions between
nearest elementary polarization vectors',
If the lattice constants a, b, ¢ of the orthorhombic lattice differ not too much from each other,
each site & has six nearest neighbours 8 that correspond to those ones in the (simple) cubic
lattice. In the following, let “central” sites be numbered with & and neighbouring ones with
(=1, 2, ..., 6), the numeration of the latter being as indicated in Fig. 1. The configuration
vectors (8) are then as follows

g 1 2 3 4 5 6
gﬁ‘a +a —a +b —b +c —¢ i1
7  +1 -1 +1 -1 +1 -1
\/ \\/ \\ //
Oy Oz, O3,

where the values in the columns have to be multiplied by the corresponding 6,,, as marked
in the last row.

1 That interactions hetween farther sites can be taken into cosideration as well is shown in [8]. As for
conditions under which this can be done and the accuracy of the procedure see, however, Appendix I in [9]
and remarks in [1].
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Finally, since the interaction is restricted to the first-order neighbourhood we may
confine ourselves to the first-order Taylor-series approximation {1, 9] when expressing the
variational parameters assigned to the neighbouring sites by those of the corresponding
central site, i.e.

N
3 3 4

o= (Lot of, == (12)
S

Moreover, we shall assume the (single) crystal to have rectangular shape with dimensions L,

in the directions x

"

structure) in that we specify

and simplify the problem to the one-dimensional case (plate domain

et =0, (13)

and assume the remaining direction cosines to be functions of x; only (domains parallel to
the co-ordinate plane x,0x5).In this instance no electric charges are produced on the inter-
-domain walls as the component of the polarization vector normal to the wall is constant on
passing through the wall.

It should perhaps be mentioned that due to the specification (9) and restriction to
certain a neighbourhood the influence of free electric charges at the surface of the crystal
on the internal domain structure is automatically excluded from our considerations (cf.
Appendix VI in [9]), and due to (11) inhomogeneous lattice deformations (such as internal
stresses) are not taken into account. Hence, all lattice sites are mutually equivalent and
we can drop the superscripts in the coupling functions in Egs. (9) and (10) using instead
the simpler notation shown below:

B 1,2 3.4 5,6
A% A, A, 4,
B B, B, B. 14)

3. Variational principles

As an example, let us study the case when domains are polarized in direct ons parallel
to the walls, i.e. perpendicularly to the co-ordinat axis x, because of Eq. (13). To be able
to determine (in the co-ordinate plane x,0x;) the direction of polarization of the domains
for both the cases b<tc as well as b>¢, it is convenient to perform the calculations twice
according to the following two specifications of the generating vector

P, = Pd,, (15a)
P, = Pé,,. (15b)

In either case the transformed interaction tensors (6) and (7), thus the Hamiltonian (5) too,
become relatively simple, partly because of the specifications (9) and (10), partly because
Eqs. (15a) and (15b) imply in (4) that only the respective columns R%, and Rf 5 of the
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rotating matrices (2) be needed. Besides, the first elements in these columns are zero because
of Eq. (13).

Now, due to Eqgs. (3) and (13) one can express the matrix elements (2) by means of a single
direction cosine. Let it be ef for the case (15a) and ef for the case (15b). Similarly, when ex-
pressing the direction cosines ef ascribed to a neighbouring site § by those of the correspond-
ing central site @, according to Eq. (12), one can use again Eqgs. (3) and (13) in order to reduce
the (first-order) derivatives to a single one (i.e. with respect to a single direction cosine,
as specified just above). Hence, the variational problem can be formulated by using only
one component of the unit vector which determines the direction of the rotating axis in
every site, thus the functional derivable from (5) in the usual way (¢f. 1, 2, 9]) will depend
on a single function and its first derivative. As the procedure has been oftentimes demon-
strated (see [1—3, 7-—9], especially [9]) and a general description can be found in [1], we
will omit here all the details and merely indicate the successive steps that have to be done
when passing from the Hamiltonian (5) to the functional. First, one has to insert expressions
(9), (10) and (2) into (6) and (7), and the resulting quantities into (5). Then, one can specify
the generating polarization-vector P, by substituting in (5) either (15a) or (15b). The next
step resides in utilizing Egs. (3) and (13) and eliminating in (5) either the direction cosines
e and €} or e§ and €}, according to whether specification (15a) or (15b) is used, respectively.
After doing this one has to replace in (5) the direction cosines assigned to the neighbouring
sites B (i-e. e} for the case (15a) and e} for the case (15b)) by the direction cosines (and their
first derivatives) of the central sites «, by the aid of Eq. (12). Due to the last step the sum
over f§ in (5) becomes evaluable for there are no variational parameters (i.e. direction cosines)
with index . All one needs in evaluating this sum is the form of the coupling functions in
(9) and (10) and the configuration vectors (8), which in our case (non-deformed orthorhombic
dipole-lattice, co-ordinate axes along principal crystallographic directions, restriction to
first-order-neighbourhood interaction) are given by (11) and (14). When carrying out the
calculations according to the above scheme one arrives at the following functionals, cor-
responding for 4 == 2 and 4 = 3 respectively to the specifications (15a) and (15b)

)

H(9] = % Lyly I fup(cos 28, ~ 183+ (—1uy cos 48, +ug cos 88 + consty) daxy,
(16)
where #, = 29,/3v, and
e, = cos U, (17)
wy — A,a?, (18)
g =3 (A, — 4) +P*(B, — B), (19)
g = %2 (By -+ B\, {20)

{Note that 1 takes only the values 2 and 3).
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Fig. 2. Geometrical meaning of variational parameters &, and position of generating vector P, for 4 — 2, (a),

and A =3, (b) (¢f. Eqgs. (2), (4), (13), (15a, b) and (17))

The angles 9, and ¥ are indicated in Fig. 2 which illustrates the position of the genera-
ting vector P, in both the cases, as well as the position of the elementary polarization vector
P} as a result of rotating the vector P, by the angle 7 around an axis lying in the co-ordinate
plane x,0x, and forming the angle ¥, with the generating vector.

4. Solution of Euler-Lagrange equations

As the integrand in (16) does not depend explicitly on x;, one can write the Euler-
-Lagrange equation in the form of a first-order differential equation, namely,

__ (=Duy cos 483+ ug cos 8%+ C; @
o u(cos 29;,—1) ’ -

92

the constant C; to be determined from the boundary conditions.

We shall solve equation (21) in the limit cases when either ug or u, is negligible, that
is when either inequality [u,[>>[ug] or |uy|<€|u,| holds. In the first instance our requirement
implies the dipolar coupling to be much stronger than the quadrupolar one, and the difference
between lattice constants b and ¢ to be sufficiently large to ensure the condition 12 |A4,-—
—A,>P? |By+ B,| as may easily be concluded from Eqs. (19) and (20). In the latter instance
we conclude from similar considerations that the difference between those two lattice constant=
must be sufficiently small, that is the lattice must be almost cubic (at least in the x,0x,
plane). The lower limit for the difference |b — ¢| in the first case and the upper limit in the
second depend substantially on the (relative) intensity of both types of interaction and the
character it changes with distance. It is not the purpose of the present paper to analyse this
question in further details, nor to list ferroelectric substances and experimental conditions
for which those limit assumptions may hold. Suffice it to say, however, that there are a number
of perovskites that in the vicinity of their transition temperatures are likely to fit the required
conditions (¢f. [10, 11]), either when passing from the paraelectric (cubic lattice) to the
first ferroelectric phase (tetragonal lattice) or from the first to the second ferroelectric phase
(orthorhombic lattice).
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Although it is not yet quite clear how to specify the coupling functions 4%* and B*, espe-
cially the latter one {¢f. [12-—17]), nevertheless, they must correspond to the first two coeffic-
ients of Devonshire’s thermodynamic potential [18, 9] and these are known to be functions
of temperature and stress. Hence, in a microscopic theory the (effective) coupling functions
though depending solely on the inter-atomic distance when properly chosen can be expected
to describe phase transitions as well provided the temperature-dependence of the lattice
constants is known. One should thus be able to fix, for instance, the temperature regions
in which our approximate solutions are justified.
Let us now solve equation (21} in those two limit cases.

1% fuy| > lugl

In this instance we put u, = 0 in (21). In order to determine the constant C, we have to
impose appropriate boundary conditions. As we are actually concerned in asymptotic solu-
tions (two infinite domains separated by a finite wall, ¢/. [9]) we demand

Hxy = + o0) = 0. (22)

One easily proves that this condition does not determine C; until the value of ¥; at plus or
minus infinity is fixed. There are two values that lead to real solutions and correspond to
domains polarized (at infinity) in the main crystallographic directions; namely,

Py = -+ o) = 72 (23A)
and
(e, = + ) = wf4. (23B)
(See however Appendix) Accordingly, the constant in Eq. (21) takes the values
C, = (=D)uy, (24A)
= (=D, (24B)
and the equation itself becomes
Ty u4(cos 49,—1) o
=1 ug(cos 29,—1)° (254)
93 = (1) Lalcos dhat]) (25B)

1g(cos 20;,—1)°

respectively. These equations can be given the simple form

9, = +2V(—1)u,fu, cos 9;, (26A)

cos 29,

sin 9

B = = V(=1 ugfu

(26B)

A straightforward integration provides the solutions
tan (9,/2) = tanh (x; V' (—1Duyfug), (27A)
2 cos 9, = V2 tanh (2%, V(—1) Tuy/u,) (27B)
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when choosing respectively the intervals

2, <72, (28A)

3nfd =8, >l (28B)

for —oco<{a;<C+ oo. The last integration constant has been determined according to the
conditions

ey =0) =0, (294)

P, = 0) = x=/2. (29B)

As we see for ugf/uy>0 the real solutions are: (27A) with 4 = 2 and (27B) with 2 = 3,

and vice versa for uyfu, <0 we have the real solutions: (27A) with 2 = 3 and (27B) with
A=2.
Solutions (27A) describe domains polarized in parallel directions and separated by a 360°-wall
which is polarized opposite to the domains. Solutions (27B) correspond to domains that
are polarized in antiparallel directions and separated by a 180°-wall, this being polarized
perpendicularly to the domains. According to the value of A which is determined by the
sign of the product uyu, the direction of polarization of the domains is parallel to the co-
-ordinate axis x; in the first case, and to x;_, in the latter. This is illustrated in Fig. 3 where
the solutions (27A) are marked with A4 (shape of curve independent of 4) and solutions
(27B) with B (¢p. Egs. (15a), (15b), (17) and Fig. 2).

SR
T
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|
|
|
|
|
{
|

Xy Xy

_______ -
i ;
Ld’ -l | J..;
!
T & ? Xls 1%5-x 1 © *
domain L wall Ydomain i * domainlwall tdomain
A B

Fig. 3. Schematic curves and domain structures corresponding to asymptotic solutions (27A) (360° -wall, (A))
and (27B) (180° -wall, (B})

These results have an interesting interpretation when assuming the moduli of the cou-
pling functions (14) monotonically to decrease with distance. This is certainly true whatever
the correct form of those functions looks like, since the interaction between the elementary
polarization vectors must weaken at larger and strengthen at smaller distances, at least in
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case of elastic lattice deformations. In this instance, however, inequality ¢> b implies ugu, <0
and, conversely, ¢<b implies uquy>0 (provided the quadrupolar interaction is weaker
than the dipolar one, or else opposite in sign). Hence, whether 360° or 180°-domains, in
the first case they are polarized parallel to co-ordinate axis x, (c-axis), in the second parallel
to x, (b-axis), thus perpendiculary to the c-axis. These effects are in agreement with experi-
mental observations, as the spontaneous tetragonal lattice deformation of cubic ferroelectrics
when passing the first transition temperature corresponds to the first effect (first phase
transition of perovskites, ¢c>¥ = a), and the rotation of the direction of easiest polarization
from a parallel into a perpendicular position to the c-axis when pressing the crystal in the
c-direction can be regarded as an examplification of the second effect (¢f. [10, 11]). True,
it is mostly the 180°-domains that are observed in those experiments, never 360° ones —
as to our knowledge. Whether the latter domains are physically realizable at all is an open
question. Although in ferromagnetic crystals this type of inter-domain walls certainly exists,
or can be produced (by means of an external magnetic field), in ferroelectric erystals it
possibly cannot be expected to appear because of the large local internal stresses that such
a wall would produce.
Let us turn back to equation (21) and consider the other limit case, i.e.

2% uy|<Llugl-

Now, we put u4 == 0 in equation (21) and maintain condition (22). To determine the constant
C; in (21) we consider two types of boundary conditions for the value of the angle 9 at infi-
nity>3, namely,

7T
’

MNxy = +00) = {(2n+1)£1} 3

(30A)

By = +o00) = (2n+1) % (30B)
where n =0, 41, £2, ... . According to whether (30A) or (30B) is assumed we get

Cy = —u,, (31A)
C), = +u8’ (31B)

and equation (21) becomes

ug(cos 89—1)

g2 __

T ug(cos 20—1)° (32A)
52 _ Ug(cos 89 +1)
T uplcos 29—1)’ (32B)

2 When putting uy = 0 in (21) one can drop the index A as the type of the equation does not depend on
the value of A. The only difference resides in this case in the interpretation of the angle which may correspond
either to Eq. (15a) or (15b) (p. Fig. 2).

% The boundary conditions (23A) and (23B) can similarly be generalized, namely, é‘f(x1 = 4 00) =
- (2n4-1)7{2 and ﬂf(xl == == 00} = {2(2n+1)4-1}7/4, respectively.
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respectively. After some manipulations one obtains

:jiu 4'19
sin 9’

& = = Vuglu, (33A)

D=t Vit —— 19 (33B)

Uy ————
% sing’

and thus the solutions

, - SO+ dno—1
C exp (8% V—ugfug) = R (34A)
sind— !
9
| 5 15 |Verz SR VevE

_— 2 cos 9—1/2—V2 2 cos 9412+ V2
C" exp (£8x |V —ugfug) = 1/_-— l/-—,«_ (34B)

2 cos 1‘)—}—]/2—]@ 2 cos 19~«]/2+ V2

From Eqs. (30A) and (30B) it follows that the angles in the above solutions may vary
within the intervals

najA<L9<(n+)n/4, (35A)
2n—1) % <9 < (2n+1) %, (35B)

and hence the constants €’ can be determined from the conditions

Bx, = 0) = (2n+1) 385 , (36A)
B, = 0) = n %. (36B)

However, when deeper examining the solutions and taking into account conditions (22)
and equations (33A) and (33B) one easily verifies that certain intervals have to be excluded,
j.e.  is ot an arbitrary integer. It can be shown that » must be such as to fulfill the condi-
tions?

n Ak, o (—D)H2k—1); (37A)
n % 4k, (37B)
where k=0, 41, +2,.... (See also Appendix.)

4 Quite analogously, from Footnote 3 it follows that the intervals (28A) and (28B) can respectively be

E E4 7 a
generalized in the following manner: 2n—1) 5 < 19?4 < (2n+1) 5 and {4n+1) T < 19?/< {4n+3) T where

n=0,41,42, ... as in the latter case the exclusion of not permitted intervals which follow from Egs. (22),
(26B) and (27B) is automatically ensured.
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As seen from Eqgs. (34A) and (34B) the first solution is real if uyu >0, and the second
if ujug<0. Since the widths of the intervals (35A) and (35B) are 1dent1c and amount 7w/4,
both solutions describe 90°-walls and correspond to the schematic curves and domain struc-
tures shown in Fig. 4 (cp. Fig. 2). The only difference is that in the first case the domains
are polarized in the directions x, and xg, i.e. along principle crystallographic axes (¢f. Fig. 1),
the inter-domain wall being polarized in a direction which bisects the angle between the

polarization directions of adjacent domains (i.e. parallel to crystallographic directions of

s o
il / S .._/. _______
STt o= — 5
aTh i
[ i
t i
| |
; X I Xy
! 1
] ,' ! :
3
——————— AL e
|
1 |
A[bo:j 1Lon]
" ® //A‘? t ® |’/‘ 2
o)
domaini wall \domain Igjgj'z 3 domain | wall \domain 77 ym
A B

Fig. 4. Schematic curves and domain structures corresponding to asymptotic solutions (34 A, B) (90° — walls)

type {011] in a cubic lattice), whereas in the second case the situation is exactly opposite,
that is domains are polarized in directions of type [011] (in reference to a cubic lattice)
and walls in principle crystallographic directions of type [010] or [001] (cp. Fig. 2). Although
this type of wall exists neither in ferroelectrics nor in ferromagnets and is a pure conse-
quence of neglecting the influence of surface charges (i.e. neglect of electrostatic or magneto-
static self-energy of crystal, see [9—11, 19--23]), it is interesting in that it shows our ap-
proximation u, == 0 to be equivalent to the cubic-lattice approximation, and on the other
hand, indicates the crystallographic directions of type [011] to be possible directions of
easiest polarization (see also Appendix). Particularly the latter conclusion seems worthy
to be emphasized as it suggests that more accurate calculations can reasonably be expected
to permit a suitable description of the rotation of polarization directions when passing the
second transition temperature in perovskites (tetragonal-orthorhombic phase transition)
or compressing the ferroelectric crystal in the tetragonal phase along the fourfold axis
(rotation of tetragonal axis). As in both the cases the second coefficient of Devonshires
phenomenologic potential changes its sign (¢f. [10, 11, 18]), and this coefficient must cor-
respond to the quadrupolar coupling function in (10), thus also to ug (cp. Eq. (20)), the
solutions (34A) and (34B) that are assigned to opposite signs of the product uyu, may quite
well correspond to those effects mentioned above. A further argument in favour of our
expectation can be found in [9] where the periodic solutions of a similar differential equation
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are discussed (¢f. Appendix Il in [9]; therein, the constants 1, and u, correspond to the
constants u, and u, used in the present paper).

It is to be noted that conditions (37A) and 37B) are purely mathematical ones and
cause no physical restrictions when remembering that solutions (34A) and (34B) permit
either choice of the specifications (15a) and (15b) of the generating vector (see Eqgs. (31A)
and (31B), ¢p. Footnote 2).

3. Calculation of thickness and energy of inter-domain walls

The thickness ¢ of an inter-domain wall can easily be caleulated from the formula

- !19(.\" = woo)—-z’)(xl = — o)
By == 0) ' 9
according to Fig. 3 and 4, and the energy o per em? of the wall is given by
Hy -
= C
LyLy ~ (39)

where H, and H, denote respectively the value of the functional (16) after inserting the
solutions of the Euler-Lagrange equation and #{x; = — o) and evaluating the integral
(cf. [7,9, 20]).

By the aid of these formulae we shall calculate the thickness and the energy of the
180°-wall and 90°-wall. In the first case, we make use of Egs. {22), (25B), (26B), (28B) and
{29B) and arrive at the results

9, = mal Ay~ V20304, ~A) + PR(B,~ B (40
51 = b A 40+ PHB— B (41

when putting u, = 0 in (16) and utilizing Eqs. (18) and (19). In the second case we employ
quite analogously Egs. (22), (32A) or (32B), (33B) or (33B), (35A) or (35B), and (36A)
or {36B), respectively, and take into account conditions (37A) and (37B). Thus, we obtain

I = b H
éA — Ta V 2 b Vé t “Iﬂ :I , ('1—2A)
4‘1)"_ Bb“ Bc
p? 1 z\
64 = ~— [AuABs+ Bc)]i 3 (2 V2)+ = [In (34A)] 2 {434)
be 8 J
for the solution (34A) (¢f. (30A), et sg.), and
wen _7a| A, | .
og = 2—1—)[ Bb+B¢J . (42B-1)

odd naV 2 Ag V oy«
- . _Aa 42B-
%5 4P [ By+B.1° (42B-2)



Fasc. 1

Vol. XXVIII (1965)

ACTA PHYSICA POLONICA

135

even P3 8 o 1/ 1 in
o5 = G [ By B {B 2+y2— g (3413)1;,,}. (43B-1)

03 : — ——
o I/{E (— Aa(By + B {“1‘}5 (V2+v2+y2-12) + % (ln (34}3)]’53;} (43B-2)
for the solution (34B) (¢f. (30B), et eq.), in either case putting z, = 0 in (16) and making
use of Egs. (18) and (20). The symbols In (34A) nad In (34B) in Egs. (43A), (43B-1) and
(43B-2) denote logarithms of the right-hand sides of Eqs. (34A) and (34B), respectively;
they results from the integration in Eq. (39) and have to be evaluated by inserting the indi-
cated limits into the respective expressions’.

The notation “even” and “odd” refers to the fact that in the “B”’-case the value of the
derivative (33B) at the point x; == 0 (which is needed in Eq. (38)) as well as the value of
the integral (16) (see Eq. (39) and final result for o5 given in Footnote 5) depend on whether
1the integer n in Eqs (36B) and (35B) is even or odd (note however the exclusion condition
(37B)).

As we see from Eqs (40) and (41), the 180°-wall vanishes if the orthorhombic (or
tetragonal) crystal lattice becomes cubic, at least in the x,0xs-plane, i.e. if b = ¢, since
lim 8; = oo, lim o, = 0. (44)
b-c b—c
'This can be related to the ferroelectric-paraelectric phase transition of perovskites [10, 11}.
Besides, owing to A both the quantities, §; and 0,, can always be made real independent
of whether 6> ¢ or b<c. The only difference is in the direction of polarization of domains
which is always parallel to the larger lattice constant (cp. discussion of solution (27B) in
the preceding section), in agreement with experiment.

5 The evaluaton of the integral in (16) for the case of solution (27B) is quite elementary. As regards solut-
ions (34A) and (34B), it is also simple when utilizing Eqs (32A), (33A) and (32B), (33B) in the following way:

anc

3 64 = [{uo {cos 28 — 1)1.92-}-118(005 88+1)] dx; = 2uy [cos&?dxl =

.

R T cos 89 sin & — [ sin® ] . . i
< 2 Y ugug ST d@ = 2 [ ugug T de -2 sin 4% sin § dd | =

N 1 1 '
= 2V uqug | —- In (34A) —- — sin 3% 4+ — sin 59 {,
*ls 3 5 ‘

abe ) B cos 89 sin ¥
P OB = 2ug cos 8 dxy = 2 l/- Uglty ) T dd =

.

— " sin & '
=2/ g [z [cosﬁisinﬂdﬁ-»— / = da] -
J cos4d

»

oy | 1 1 ) 1 ’
Y —urg | — cos38% — — cos50 — -~ I (34B) | .
3 5 8
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As for the 90°-wall, we have three slightly different formulae for the thickness which
is finite, and as many for the energy which due to the logarithms is infinite®. The latter
result is rather surprising as for the same type of wall we obtained in {9] finite values for the
energy.

Since in [9] we chose the rotating angle @ as variational parameter (see Sections 1 and
2 of the present paper), it proves that the choice of variational parameters can have influence
upon the numerical results. Notwithstanding this difficulty one can attain to finite values
by introducing sort of “renormalized” energy, i.e. by simply subtracting the logarithms
from the expressions (43A), (43B-1) and (43B-2). The respective remainders are then
finite and can be interpreted as the measurable energies. However, even then we have for
the case “B” (i.c. domains polarized in directions of the type [011], see Fig. 4 and discussion
at end of Section 4) two formulae for the thickness as well as the energy of the wall, the
“even” and the “odd” one. One easily proves, by taking into account Egs. (33B), (35B)
and (37B), that only for the “even” case solution (34B) is symmetric (note condition (36B)).
Thus, when choosing the symmetric solution for the case uyu, <0 (i.c. sign A,=— sign (B, +
+B,), ¢f. Eqs. (18), (20) and (34B)) we have for the thickness of the wall the formula (42B-1)
and for the renormalized energy, instead of (43B-1),

even/ren 8P3 /2‘5“'1/2
0B fren — “’}T [~ Aa(Bb'*'Bc)] (45)
Moreover, beside (37B) we have the additional condition
n £ 2k+1. (40)

Analogously, the renormalized energy that follows from (43A) for the case uju,>0 reads

en AP324)2) o
04 — — 15be *[AQ(B(,-TBC)]-. (4'1)

cubic
6‘1’

Now, when calculating the thickness and the energy o™ of such 90°-walls
by means of the “p-representation” (see Eqs. (49), (50), (62), (66), (70) and (85) in [9]

where these quantities are denoted by 8, and 20y, respectively) we get for the cubic lattice

0y = op 4B, (48)

cubic 2p3
oy ="y 4B}, (49)

¢ This may readily be shown either by inserting the respective integration limits into Egs. (34A) and (34B),
or, even simpler, by suitably changing certain integrals when calculating the energy (39). For instance, when
calculating ¢4 according to Footnote 5 one can write

sin & V-— d
sin 49 48 =Y ufuy 1

In (34A) = 8x; J/u/uy + const

because of Eq. (33A), or

by virtue of Fq. {34\). As — 00 «Zx; <=+ oo, hoth the expressions are evidently divergent.
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for either type of 90°-wall’. Here, 4 and B denote respectiv elythe dipolar and quadrapolar
coupling constants of the cubic dipole-laitice {¢/. [9]). In contradistinction to Egs. (48)
and (49), Eqs. (42A) and (47) do not coincide with Eqs. (42B-1) and (45) when passing
— ‘46 = /ICE/L Ba :Bb =

to the cubic-lattice case, i.e. when putting a =b =¢, A
= B, = B. Instead we have

a

o,;ubic> O_%vcn,’tcn/cubic> Gj;n/mbic, (50)

(s;ubic> 6&Bvenlcubic> 6§ubic’ (51)

ggbic ; gevenfeenieubic ; geubne _ 15.; 4V412)/2 : 4(1+12),. (52)
gebic., gevenjeubic, gcubic _ V3.2 Vorya ) (53)
O.cﬂycn/ren/cubic — 0.70_2.1hi(:’ a,;’en/cubic — 0.650,Cubic’ (54)
ggyenieubic () Tqfubic | geubic __ 65q0ubie, (55)

Eqs. (54) and (55) being approximate.

There are three conclusions following from our results which are worth while emphasizing.
First, the thickness as well as the (renormalized) energy of the 90°-wall as actually calculated
are smaller than the respective values obtained in [9]. Second, these quantities actually
differ according to whether the domains are polarized in crystallographic directions of
type [001] (AB>0) or [011] (4B <O0), and, third, they are smaller in the former case. All
the conclusions are comprised in inequalities (50) and (51). With respect to experimental
data they have to be considered as rather satisfactory for the numerical value ofr the energy
of the wall as roughly estimated in [9] was still pretty high (265 erg/cm?).

It must be noted, however, that it is hardly the different choice of variational parameters
that might explain the difference between the present results and those obtained in [9].
Instead, it is rather the additional cosine-series-approximation one usually is forced to do
when working in the “@-representation’ that should solely be responsible for this discrepancy
(¢f- Eq. (36) in [9]). Thus it would seem reasonable to draw the conclusion that the ““e,-re-
presentation’ as demonstrated in the present paper is more advantageous, to some extent,
than the “g-representation” for it permits to derive the variational principle with a better
approximation and thus to seize more subtle effects, in spite of the approximate solution
of the Euler-Lagrange equation (21) (i.e. when either u, = 0 or u; = 0 can be assumed).
On the other hand, it must not be forgotten that the (less accurate) variational principles
derived by means of the “¢@-representation” lead to Euler-Lagrange equations that often
can rigorously be solved, even when imposing periodic boundary conditions [3—9, 23].
Hence, which of the two representations is to be decided for depends upon the problem
under consideration, and the proper choice requires every time some preliminary analysis.

7 The coefficients u, in the present paper and in [9] are exactly the same, while the coefficient ug used in
the present paper corresponds to the coefficient u, in [9]. Furthermore, to simplify the notation we actually write
P instead of £P which means that P is to be understood as the elementary polarization of the given material,
whereas in the notation &P it denotes Debye’s elementary polarization unit (see Eqs. (2), (3), (6), and (85) in {9]).
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6. Final remarks

Our examination proves that in some cases the description of the domain struecture
can be more efficient, at least with respect to certain effects, when choosing the direction
cosines e, as variational parameters and putting the rotating angle ¢ = z. Although we
are concerned with a microscopic formalism, this may also be true in case phenomenological
methods are employed as the basic idea which consists in introducing rotational parameters
is in both the approaches identic. However, it is also true that the differential equations
one arrives at in the ‘“‘e,-representation” are usually more complicated than those obtainable
in the “g-representation”®, their integration being therefore much more difficult if at all
possible, particularly when periodic solutions are aimed at. For example, it is difficult to
find the general non-periodic solution of Eq. (21). Were we able to do it we would have
a solution that in the limit cases u,—0 or u,~>0 should coincide with solutions (27A), (27B)
or (34A), (34B), respectively. Such a solution would describe the transition, for instance,
from 90°-walls to 180°-walls as a consequence of a continuous tetragonal deformation of
the cubic dipole-lattice. From this point of view, the less accurate ”@-representation” hap-
pens to be favourable in so far as it much easer enables a suitable description of such proce-

sses (cf. [9]).

APPENDIX

The boundary conditions (23A) and (23B) (see also Footnote 3) are by far not the only
ones that can be imposed upon Eq. (21) when putting u, = 0. On the contrary, there are
infinite many asymptotic boundary conditions for which solutions of this simplified dif-
ferential equation do exist, although they have to be chosen according to a certain rule
if imaginar solutions are excluded. So for instance the boundary conditions

JT T
@n—1) o <<@a+1) o (56)

when imposed upon the simplified Eq. (21), i.e.
— (— DAy cos 48, +C;

b2 — — 7
' ug(cos 29, —1) (7
imply
C, =0, (58)
as condition (22) still holds. Hence, Eq. (57) becomes
: 2sin229;~1 -
A (1A :
‘92 - ( 1) (u4/u0) 2 Siﬂzﬂj . (39)

Because of the denominator in Eq. (59), not all the intervals (56) are permissible. The integer
n in (56) must obey the exclusion condition (37B). If, moreover, we demand the solution

8 For the general form of these equations see [1].
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to be symmetric further intervals are interdicted, according to condition (46). In this case
A = 2 provides real solutions for uyuy<0, and A = 3 for uyu,>0.

One easily verifies that Eq. (59) though differing from Eq. (32B) deseribes 90°-walls
of similar character, i.e. the adjacent domains are polarized in crystallographic directions
of the type [011] (¢f* Eqgs. (15a), (15b), (37B), (46), (56) and (59), and Fig. 2 and 4 (B)).

Similarly, it can be proved that boundary conditions of the type

—;—n<z‘)

A

w| ko

7, (60)

when imposed upon Eq. (57) imply 2C; = (—1)*u, and lead to 120°-walls, boundary con-
ditions of the type

7, (61)

Z 62)

imply 2C; = (—1)**1u, V2 and lead to 45°-walls, and so on. For all those intervals condition
(22) is automatically fulfilled, and the respective solutions will be symmetric.

The rule of selecting the permissible intervals is rather simple. Let 9,(x; = — 00) = 97
and 9,(x; = + 00) = ;. Then, #; and ¥} must be such as to satisfy the following condi-
tions:

. £ - 7 kL .

1) 0< (‘é— ~*l9;_ ) = (’49; — 5) < ‘2—, (63)
7i) cos 407 = cos 497, (64)
iti) sign (cos 40, —cos 40)) = const  for ¥; <9, <¥;, (65)

as €y = (—1)**1u, cos 48], according to Eqgs. (22) and (57). The angle between directions
of polarization of adjacent domains amounts 2(#; —9;°), and this angle determines the type
of wall (¢f. Fig. 2). The generalization of these conditions beyond the interval (0, ) is quite
obvious. Of course, the above conditions are ascribed to Eq. (57) and subject to proper
modification according to the differential equation to be solved.

It is thus clear that boundary conditions (35A) and (35B), too, are particular ones
when examining Eq. (21) in the other limit case, that is when putting u, = 0, and that
the full set of admissible boundary conditions can similarly be selected as in the preceding
case.

Hence, we see that, in general, the Euler-Lagrange equation has a great variety of
solutions which all resemble (asymptotic or periodic) domain structures whose domains
are polarized in directions that are determined by the boundary conditions imposed upon
the problem. True, these conditions are not quite arbitrary, and the variety of domain-struc-
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ture-resembling solutions is thus somehow restricted. None the less, there will still be (usually
infinitely many) different domain structures that are described by a single differential equa-
tion. This important fact seems to be permanently overlooked by many authors dealing
with domain-structure investigations theoretically [10—17, 20, 21].
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