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OF FREE ELEMENTARY PARTICLE IN AN EXTERNAL GRAVITA-
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; We consider a particle characterized by its rest mass m,, coordinates x® and a vector r%
Q related to the coordinates, assuming it to be space-like of constant spatial length [ in the own
% reference system of the particle. Motion in Minkowski space is assumed to be determined by the
Ty
— variational principle & f Ldt = 0, where 7 is the proper time of the particle and the Lagrangian
— o —
Lis given by L = —mge(Y/uzut+ V—- #174)4- Aryr®. Moreover, ¢ is the velocity of light, ut — the
. dfdr . . .
ECD four-velocity, r; = :i;é’ and A — Lagrange’s factor to be determined from the equations of motion.
E The particle is found at be a spin particle. We denote the spin bi-vector by sa8(s®8 ~ rarf —fray,
S The constant [(r;r* = —I2} is a measure of the particle’s diffluence in its own reference system.
~ Considering it as a test particle, we search for its equations of motion in an external gravitational
@) field with potentials g,,,. In a first approach, we start from the same principle as in Minkowski
~ space. Albeit now the Lagrangian is expressed by the formula L= —mc(}/ glvulu”+]/— ) +
.o df
EC) +Agy M, with A = u’p Y7, is the covariant derivative). In a second approach we recur to
a ideal liquid representation, starting from the well-known principle of least action, assuming
S traditionally action of the field as S; = [R}/ —g d*x and action of matter as S = [ LV—g dbx.
e equations of motion obtained by the two methods are identical. It results that L is a first
= Th ions of motion obtained by th hods are identical. It results that L is a fi
A integral of the equations of motion, the module of spin (s4%s;,) is constant in the time, and the
<q gravitational field only modifies the shape of the equations to functions u® = u%(t) (thus modify-
% ing motion of the particle as a whole) but does not modify the shape of the equations of motion
< from which we obtain the dependence r® = r%(z); this vector and its derivative with respect to

the own time generate the bi-vector of spin of our particle.

1. Introduction

In our previous paper [1] on the ‘‘Equations of Motion of a One-Point Model of Ele-
mentary Particle in an External Gravitational Field” we proposed a procedure for deriving
the equations of motion of a test free spin particle in an external gravitational field. That
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was a particle defined by motion of a point singularity, whose Lagrangian in Minkowski
space was of the form L; = —mqc ( Vu,'u‘-— 3 wlw‘) , with mg denoting the rest mass, u* —

the four-velocity, w* — the four-acceleration, ¢ — the velocity of light and / — a charac-
teristic constant having the dimension of a length, which (as resulted from the equations of
motion) was a measure of the diffluence of our particle? [2].

Since L, depends on the w®, the four-vector of energy-momentum p® of the particle is
not in general parallel to its four-velocity and consequently we have a spin-particle. From
the equations of motion of eur singularity a relation was obtained between the rest mass of
the particle, its spin, and the constant [ the interpretation of which as applied to the case of
barion resonance permits to obtain a relationship between the mass (energy) and spin not
greatly divergent from the experimental data. Exactly the same result can be obtained by
the construction of the relativistic two-point model of free elementary particle proposed
in [3]. That model was evolved in connection with certain concepts of bi-local field theory [4].
The present paper is concerned with the derivation of equations of motion for precisely that
bi-point model of elementary particle in an external gravitational field. Herein, the particle
represented by the model is dealt with as a test particle i.e. its own gravitational field is
neglected. In particular, we shall be concerned with the following problems:

1) What will be the procedure to be followed when applying consequently the formalism
of general relativity for generalizing the variational principles defining motion of test particles
in Minkowski space to a world with curvature?

2) In what form will the effect of the external gravitational field become apparent in the
equations of motion of our particle?

It should be stressed, however, that (as in deriving the respective equations of motion
for the one-point model [1}) any application of the formalism of a patently macroscopic
theory such as general relativity to typically and essentially microscopic models of elementary
particles can claim to be no more than an attempt to assess qualitatively the results thus
derived.

2. Short discussion of the bi-point model of elementary particle in Minkowski space

Let us consider in Minkowski space (with metric —, —, —, +) a free system of two
point singularities with relative coordinates r® and ‘‘ centre of mass” coordinates x*. We as-
sume motion of this system (bi-point) to be given by the principle of least action

8 [ L(* P, uhyda =0, @2.1)

1 Einstein’s summation convention is applied. Greek indices take the values 1, 2, 3, 4, Latin indices —

., dd*
1,2, 3. A dot denotes the derivative with respect to the own time { e.g. a* = 7) and from Section 3 onward
T

(i.e. when recurring to tensor calculus in Riemann space) — the absolute derivative with respect to the own

time taken along the trajectory of the particle (e. g. b.A = u’y,by, with [, standing for the covariant derivative).
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wherein

8a%(my) = 3%(rry) = Or%(my) = Or%(my) = O, 2.2

. . . df dx® . .
with 7t denoting an as yet arbitrary parameter, u® == T x% and r® considered as independent,
T

and 8 — symbolizing variation of the functions x* () and r* (n) without variation of .
Ty
The postulate that the action S= f L(r*, r*% u®)dmn shall be invariant with respect to a change

7y _
in parametrization s = 7 (@) (where 7 is a new, also arbitrary parameter) leads [3] to L

in the (simplest) form

L= —my (Vu;u‘— M “+ V—’r“i,-{— w) ,
rart ra®

. df dr%
(r“ = ) . 2.3)

Introducing the canonical momenta we split them in two groups: the ‘‘external momenta”
p® and ““‘internal momenta” k* as follows:

af L
=7, (2.4)
af OL
s 2.5)
Eqs (2.4), (2.5) and (2.3) now yield
pipt = —k k= m3 c? (2.6)

whence p; is seen to be a time-like and k; a space-like four-vector. From (2.4) and (2.3)
we have moreover

npt=0 2.7

and 7 is space-like in an inertial reference system wherein p' = 0 and r* vanishes also.
On the assumption that in the reference system considered the spatial distance between the
point singularities is constant amounting to ! we obtain from what has been said an addi-
tional condition which, subsequent to isoperimetrization, has to be taken into account in
deriving equations of motion from (2.1). This condition is of the form

r;* = const L pe (2.8

Eqs (2.8), (2.7), (2.4), (2.6) with (2.3) yield r;/* =0
and
u;rt =0 2.9)
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and the total Lagrangian L, i.e. on considering the condition (2.8) is of the form

L, = —mg ( wut 4V —r) + 4 T;fz, (2.10)

where A is Lagrange’s factor to be determined from the equations of motion. Putting w = =
where 7 is the proper time of the centre of our bi-point, we obtain from the variational
principle (2.1), (2.2) with L replaced by L, of Eq. (2.10) equations of motion which, in the
reference system X, (i.e. wherein p' = 0), can be written thus:

w® == 0, 2.11)
. rrt
re == — Py ré. (2.12)

From the above equations it results that the singularities move along a circumference of
radius l. The constant [ provides a measure of the diffluence of the particle at rest in X,

u® £2 0) as represented by the system of both singularities as a whole to ether with their
p y Y g 8
path in the reference system.
It is found that the total torque of the bi-point (¢f. {3]) is given by the formula

K% = %P —5Pp= 4 5%, (2.13)
where
T 2.14)

so that s% represents its spin.
From the equations of motion, it results that in 2, the spin sz of the particle is constant
and is given as

sz, = Vs®s_y = V2mycl = const. 2.15
] < )

This is precisely the relation between the spin and mass of the particle to which reference
was made in the Introduction.

Incidentally, we have nowhere recurred to the fact that r*is a difference of two four-
vectors. Thus, we can state the problem otherwise, by requiring that the new procedure
shall yield the same results as the old procedure but that it shall be better adapted for
generalizations to Riemann space. Namely, we assume that a physical reality (of the type of
an elementary spin particle) is represented in Minkowski space by a point-moment x* and
space-like four-vector r® of constant space-length [ in the reference system 2, (i.e. in the
system wherein the space-momentum of the particle wanishes). Its motion is defined by the
variational principle

8 f Ldz =0, (2.16)

with the condition (2.2) Its spin is obviously that of Eq. (2.14) and all results derived hitherto
remain the same.
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3. Derivation of the equations of motion of the our ‘‘ bi-point” in an external gravitational

field

In deriving the equations of motion we shall use (as when deriving those of the point
singularity whose Lagrangian depended on higher derivatives of x*[1]) two procedures.
The one is a simple generalization of the principle (2.16), (2.2) in Riemann space and yields
the equations of motion, whereas the other is closer to the field approach and yields simulta-
neously the field equations and those of motion. We shall now state in brief what they consist in.

Let us consider Riemann space with metric tensor gw, and a particle whose motion in

plane space is determined by the variational principle 6 f Ldt = 0. The Lagrangian is a

scalar function of certain four-vectors a* and b* which are functions of the proper time of
the particle along its trajectory, which we are searching for. Its equations of motion in a
gravitational field of potential g,, are found as follows: we replace in the Lagrangian the
products a,b*, a,a?, b,b* by 2,0, 8,0’ a’, £;,b*b” and consider a set of competing trajec-
tories with points P; and P, in common corresponding to the values 7, and 7, of the own
time. Motion of the particle is now determined by the variational principle

P f L(g,,a*b", g,,a*a", g,,b*b" dr = 0. 3.1)

so that the equations of motion are given by the Euler-Lagrange equations resulting from
the above principle.
In the other approach, we start from the principle of least action 8(S;+kS;,) = 0.

Here, ng [ RV—gd%, where R is the tensor of curvature and gg Det (g,,)<0.
S = f LY —g d4x. Sy is the action of the field alone, and S;

i int
acting with the field. The symbol 8 stands for variation of the metric tensor as well as for va-
riation of the four-vectors a* and b* (involved in L) due to an infinitesimal transformation of

the coordinates x* Hence, by the principle of least action we have

— that of the particle inter-

[(G"”— ET*) 8gu V —g d®x -+ fﬁiaLﬁ_ dat Y —g dix+

[ 5 OV V—gdix =0 (3.2)

with the notation:

é
——- — variational derivative with respect to ¢* and similarly with respect to %,
o tional derivat th respect * and larly with respect to *
a
G* — Einstein’s tensor,

oL
T* — the tensor of momentum-energy of the particle (T“” = —2 5 ),

Euv

k — the well-known constant involving the constant of gravitation equalizing the
dimensions of the two preceding tensors.
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Hence, we obtain simultaneously the equations of motion:

oL
da®
oL
B 0, (3.3)
and the field equations
& = k1”, (3.4)

the latter resulting from the former, but not necessarily inversely.

We now proceed to derive in detail the equations of motion of our bi-point, whose
Lagrangian in Minkowski space is given by (2.10). Indeed, one can readily show that on the
assumption that it is given by (2.3) and on taking into account the assumption (2.8), the
relation of Eq. (2.9) is fulfilled in Riemann space also.

A. First approach

We consider in Riemann space with metric tensor g,, a particle characterized by a point
singularity with coordinates x* and space-like four-vector r* related to the singularity.
We assume motion of the singularity to be detemined by the variational principle

8 f Ldr =0, (3.5)

the Lagrangian L being given by the formula
L= —my(V g v +V— g3, ")+ Ag 1", (3.6)

with the notation:

mg — rest mass of the particle,
¢ — velocity of light,
af dx” . .
u":d— — four-velocity of the particle,
T
r= ulVAr”, where r” is the four-vector characterizing the particle,
A —a Lagrange factor to be determined from the equations of motion, and
T — the proper time of the particle.
The four-vector r* is a function of the x* Since motion of the particle is given by the set of
functions x* = x%(7), we shall consider in this approach the components r* as functions of
the own time of the particle:

* = fHaB(7)) = (). 3.7

With regard to this, we supplement the principle (3.5) by the condition (2.2). Accordingly,
the Euler-Lagrange equations resulting from (3.5), (2.2) as well as {3.7) are of the form

—_— = 0, (3.8
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d 9L oL
T om o O 3.9)
oL _sL
dre 9@
? dr
On introducing the canonical momenta
a“€ 9L
pi= 73 (3.10)
and
a 9L,
k= ey (3.11)

{p; to be referred to as the external momentum, and %; — as the internal momentum) we
rewrite the equations of motion as

d oL ,
E Pr= —9? s (3.8 )
d oL ,
T ky = o7 3.9
or equivalently
. &‘L v 7
=gz = Lup.u", (3.8")
hd 9[4 v 1
b=, (3.9")

where I';, are Christoffel’s symbols of the second kind, and P2 k; —the absolute derivatives
with respect to the own time of the two four-momenta along the trajectory of the particle.

By (3.10), (3.11) and (3.6) we have

mg, €
]C — 0 .
= (3.12)
and
My .
pa= — myl; + ij 7 am (3.13)
@

7, standing for the covariant derivative. We note that k; and p; are vectors and that %, is
parallel to r, but p, is not parallel to w,, which is characteristic of spin particles. We first
consider Egs (3.9). On substituting into Eqs (3.9”) £, from (3.12) and L from (3.6), we
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obtain after some computations the following form of Egs (3.9):
fe_, _(ie a4
V=r7 (=m0 Tme

(obviously, 7,”” = g, ™). On multiplying both sides of (3.14) by 7%, effecting summation,

ra=0 (3.14)

and recurring to the fact that ry* = const = — Pi.e. ry* =0, we obtain
moc V—r, 7 = 24 17" = const (3.15)
whence
r,r* = const {3.16)
and

A= CV Nl V=it . (3.17)

T 2n,m
Thus, the Lagrangian L is a first integral of the equations of motion (as in Minkowski space)

and Egs (3.9) with regard to (3.12), (3.16) and (3.17) become

jo A (3.18)

1
Iyl

thus being identical with Eqs (2.12). Here we have equations which in Minkowski space
give the dependence of r* = r*(7) since they do not involve the four-velocity and can thus
be at once effectively integrated. From Eq. (3.18) it is seen that the external gravitational
field does not affect the above equations.

The same equations can be derived in a somewhat different manner. Indeed, if we con-
sider the components of the four-vector r* as functions not of the time proper v but rather
of the coordinates &% of the particle, we obtain instead of Eqgs (3.9) the following equations:

d oL oL
v — — = 0
dx 5 (Qru) ors (3.19)

ox”
. . . . c A ¥ dr* A e
which differ in form Egs (3.9). However, on considering that 7* = v’ V,/* = == + 1, r'u’,
T

we obtain from (3.6)

d oL
dx” 5 (2 = ket Il hqun (3.20)
ox”
and
A maC
oL _ T tp I, un + 241, (3.21)

e Y=
From the above relations and (3.12) we obtain that Egs (3.19) take the form (3.18), as was
to be expected.
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We shall now proceed to write out in full the equations of motion (3.8). By (3.10),
(3.8") and (3.8'"), they can be written as follows:

~
: L
B+ Taqipr— 52 = 0. (3.22)

Substituting herein L from Eq. (3.6) and p, from (3.13), we obtain after some easy calcula-
tions the following form of the equations:

m C .. -
— mgwe+ 7:»«——“,7; (FaV P+ i@V Vo~ Co)—

- m/—in“:%ﬁ Vi i)y — AV g(rar*) = 0, (3.229
where
C,= (7 2) (V,7).
Now, ry* = —I2 = const, and since [ being a measure of diffluence of the particle at rest

is independent of the x%
V(ri?) = —V 12 =0. (3.23)
Hence and by (3.17), we have also
V) =0 (3.24)

(indeed, by introduction of the constant A, V,A4 = 0). Consequently, after some slight
transformations and on recurring to (3.18), Egs. (3.21) become

mee . ,
MW+ l—/:’—r—i—r; (Vo Voe—V Vo )rm =10 (3.25)
but
(VW e—V V)T = — ru’ Rlyer® = % R w(Pr7 — rir#), (3.26)

where R}, is the tensor of curvature.

Thus if we define the bi-vector of spin s of our particle in the same manner as without
a gravitational field (the shape of the equations of motion determining the dependence of
* on T remains unaffected by the gravitational field, and r* as well as 7 enter the spin-bi-
vector of the particle) i.e. in accordance with Eq. (2.14), then from (2.14), (3.12), (3.25)

and (3.26) after easy calculations we obtain finally the equations of motion in the form
1
mowa + 5 Rgyay S = 0. (3.27)

(From (2.16) and (3.14) it is seen that in the gravitational field, too, 5,5 s% = const).
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Thus, the effect of a gravitational field is seen to cause solely a change in the form
of the equations of motion determining the dependence u® = u*(t) i.e. defining motion of
the particle as a whole. It leaves unaffected the shape of the **equations of motion” defining
the dependence of the r* on the &° (i.e. of the r* on 7) and consequently has no bearing on
the diffluence of the particle and its spin. These are just the results one would be entitled
to expect for the test particle.

B. Second approach

We shall now recur to a different method of deriving the equations of motion. For this
purpose, we shall adapt the well-known method employed e.g. by Fok in his monograph [5]
to our case of a bi-point particle. Let us consider the model of an ideal liquid of density
p = p(x*). We assume the continuily equation

Vi(uu’) =0 (3.28)

to be fulfilled (u” = u"(x® )is now the velocity field, and r* — a vector field r* = r*(x%)).
We start from the principle of least action

(Sp+kES;) = 0, (3.29)
where S; is the action of the gravitational field alone,
SZ [RV—g dt (3.30)

and S, the ‘“‘action of matter” interacting with it:

S = [LV—g d*x. (3.31)

Here, R is the scalar of curvature, g = Det(g,;) <0, while L denotes the Lagrangian density
as given by (3.6) with m, replaced by the function y = u(x*) i.e. mass by mass density,
and £ is the well-known constant equalizing the dimensions of S; and S;;, (% contains the
gravitation constant). The integral extends over the whole four-space (d%x is the element of
four-volume). Variation denoted by the symbol ¢ comprises both variation of g;, and va-
riation of the four-vectors u® and r* resulting from an infinitesimal transformation of the
coordinates:

x'% = x® &5 (3.32)
It will be remembered that dg,, is expressed as follows:
5g/'lv = Vl§a+ Vvél' (3‘33)

On introducing the Lagrange parameters [* and their variations generated by the transfor-
mation (3.32) and expressed by the 2%, and denoting them by 7% the variations du®as well-
-known from [5] are given by the %% as follows:

out = wV,n* —nV,u*— 21? uew (VoM ua. (3.34)
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On the other hand, it will be remembered that the variations dr* can be expressed as

ot = &V AV £ (3.35}

It the & are arbitrary, the 6r* are so too. We note that the postulate that the dr* shall vanish
on the surface X encompassing the region of integration is equivalent to assuming that both
the vector field £ and its first derivatives with respect to the x* vanish on 2.
The principle of least action (3.29), by (3.30), (3.31) and (3.34) can now be rewritten
thus
é

Ognw

— ?12— usu’ (V,,n‘)ul) dix + k f:ﬁ%‘ (V— g L) éreddx = 0. (3.36)

é —_ .
V—g R+ L)égmd“x—!-kfm V=gl (n“—n’Vyu“-

We note that g;, does not depend on the r"ﬁ whence (?_5: 0. Integrating the second term

in (3.36) per partes, recurring to the continuity equation (3.28), and employing the Ostro-
gradsky-Gauss theorem as well as the assumption of %* vanishing on X (i.e. on the surface
enclosing the region of integration), with the substitution of (3.6) for L, we have, after
appropriate calculations (see also {5])

[V=g(6"—kT")0g,,d%+ [V —gQuds+ [V—gR drd% = o. (3.37)

oL
Here, G* is Einstein’s tensor, 7" — the tensor of momentum-energy(T"”: -2 3 ),
Eny
af 2 3 —= . 1
Q.= 3 (1 + % ]/— 2 r‘) Wo—Eq—2Al o U+ = U . (U zalte) » (3.38)
with
2 df ;',,Vﬂ” 339
1= — .
V=rp (3.39)
a T it .
R, — -+ e T —2A4r,. X
% V——;'l_.r_i (_ A r;‘) A & @ (3 4'0)
The field equations are obtained on equating to zero the coefficients of dg,,. We thus obtain
G = kT (3.41)

and as 4,6 =0, we obtain the ‘‘dynamical equations”
V,T* = 0. (341)
The tensor T*” (as seen from (3.14)) is symmetric.

The equations of motion are obtained equating to zero turn in turn the coefficients Q,
and R, of the mutually independent variations #* and 6r*. We thus have

Q. =0. (3.42)
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and simultaneously
R,=0. (3.43)

As seen from (3.37), the equations of motion imply the field equations; the inverse, however,
is not generally true.
Multiplying both sides of (3.40) by %, we obtain (by (3.43))

rt = —4A42(r,;r")? = const (3.44)
so that (by (3.44) and (3.40)) Eqs (3.43) assume the form:

nrr

fpo=— r, (3.45)

rprm

which is identical with that of the respective equations obtained in our previous, first approach.
Multiplying now (3.42) by u® and recurring to (3.39), we have

u 2 =—V — r;r* = const. (3.46)

From (3.38), (3.39), (3.45), (3.46) as well as by (3.23) and (3.24) it results that Eqs. (3.42)
can be put in the form

We +

(Vo g~V oV ) 1* = 0. (3.47)

—TI

This, however, is identical with Eq. (3.25). Consequently, on introducing the bi-vector of

spin s” as previously we obtain

HWe+ % R, 2y w's™ = 0. (3.48)

Thus, the two methods lead to the same equations of motion, as could have been expected.
To conclude, we shall derive explicitly the rensor of momentum-energy of our particle.

To this aim, we take the variation of the integral f V —g L d*x applying the symbol é to the
gravitational potentials g;, only. By (3.30) we have £

(5Sim=(3f]/_gl,d4x= aé V=g L éd, 4x=——~é—fT“"5g,wV—-gdx4. (3.49)
-4 b4 uy

Introducing herein L from (3.6) and after well-known and easy calculations (see, e.g. [5]),
we obtain

c P
6Sm:—f((—~~—Mu“u + ‘L; My iw/l”") V—g 88w +
+ —V: rlar,,,urnv g) b, (3.50)

— I, 7T

where M is a constant. However, obviously

oIy, = g‘ﬂ(v 888s +V 588m — V50gm) - (3.51)
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Substituting (3.51) in (3.50), integrating per partes, making use of the continuity equation
and the Ostrogradsky-Gauss theorem and assuming that dg;, vanishes on the surface
bounding the integration region, we obtain after some computations that

T = Mutw — —Eee 0374 24 +
— T3
et W (P P wt ) — L e ), (3:52)
V— Ta T':' 2

with

V=T g
s (1+ ’”l;“l(’* )). (3.53)

The tensor, consequently, is symmetric. On comparing its first component with the mo-
mentum-energy tensor of an ordinary (spinless) point particle we see that the constant M
is the counterpart of the latter’s mass. If we search to interprete it as the energy of the
particle (in its own reference system), we find that it differs from the energy of the spinless

V=1 +Aryr*
¢

to the energy characteristic of spin particles, the energy refered to by Mathisson as
‘‘accelerattional” [6].

The author wishes to thank Professor J. Weyssenhoff, Professor B. Sredniawa and A.
Staruszkiewicz, M. Sci., for their valuable discussions and numerous helpful hints.

particle by the term which, accordingly, would appear to correspond

REFERENCES

[1] Borelowski, Z., Acta Phys. Polon., in press.

2] Borelowski, Z., Acta Phys. Polon., in press.

[3] Borelowski, Z., Sredniawa, B. Acta Phys. Polon., 24, 609 (1964).
[4] Rayski, J., Helv. Phys. Acta, 36, 1081 (1963).

[5] Fok, V., Teoria Prostranstva Vremyeni i Tyagotyenya, Moskva 1961.
[6] Mathisson, M., Acta Phys. Polon., 6, 163 (1937).



