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PROPAGATION OF CORRELATION TENSORS OF THE ELECTRO-
MAGNETIC FIELD INTENSITIES

By L. Kantowskr*
Department of General Physics at the Military Technical Academy
( Received August 2, 1965)

The analysis of the correlations between the electromagnetic field intensities is performed.
Special attention is given to the propagation of the quantities describing the degree of the coher-
ence. In the first part the problem is formulated and the necessery definitions are introduced.
In the second part there is derived the dependence of the correlation tensor in two arbitrary space
points on the correlation tensors values and the values of their first and second time derivatives
on the surface surrounding both the points.

1. Introduction

The present paper deals with the problem of the propagation of physical quantities
describing the correlations between the electromagnetic field states in different points in
space and at different time instants.

In the theory eoncerning the correlation of these quantities we use the complex for-
malism for describing the field. The conecept of analytical signals is also introduced
(Born and Wolf 1959). The analytical signals connected with the intensities of the electric
and the magnetic field will be furtheron denoted by E(a-c’, t) and Ij(;, t) respectively, the
physical fields will be Re E = E'(') and Re I;T = ﬁ('). One can verify that in vacuum, where
no field sources exist, the above quantities satisfy the Maxwell eqations (Roman and Wolf

1960)

mE+%ﬁ=0 mH—%Ezﬂ

divE=0 divH=0 1)

Roman and Wolf have introduced in the description of the correlations of a stationary field
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four tensors comstiructed from the components of the vectors E and H

Cjk(;\;lv Xy, T) == <E](521 s t‘I‘T)E;(;z’ t)
Wl » %, 7) = K3, 0+ D) Hy (R, )
ﬁfjk(z‘;l ) Xy, T) = <E}(5C’1’ t+7)Hy (g £))
Q%jk(;l Xy, T) = <H;(;1 s b+ T) ER(y, 1)) @

where the expressions in brackets { ) are averaged over time. [t is shown in the following,
how the values of these tensors for any arbitrary pair of points 551 and Zv’; depend on their
values and the respective time derivatives given on any surface.

2. Derivation of the formulas describing the propagation of the correlation tensors

The problem of the propagation of the correlation tensors can be solved directly by
using the differential equations concerning these tensors which have been derived by Ro-
man and Wolf (1960). One can also derive formulae for the propagation of analytical sig-
nals E—:(;, ) and ]}(EE, t), and calculate on their basis the propagation of the correlation
tensors. The latter method has been accepted in the present paper. The calculations are
based on the principle formula of the vector calculus which is the vector analog of Greens
theorem. The derivation of this theorem can be found ia the monography by Stratton
1941). In vector notation the formula is as follows

f(é - rot rot P—P - rot rot @dv = f(f’x rot (5—(§Xrot }-;) - nds, 3
v $

where S is the surface enclosing the volume ¥, 7 is a unit vector perpendicular to the surface

element ds, and (_5: P are arbirtary vector functions which are regular inside the volume V.

It is convenient to apply this formula to the Fourier transforms of analytical signals,
since the corresponding equations are identical with those describing an electromagnetic
field depending harmonically on time. The expansions of the analytical signals into harmonic
components are

[s o}

]-z:(;, £) = f e(x, w)e " dew
HG, 1) = [ A, w)e™ ™ do. )
Thus from Maxwell’s equations it follows that the functions € and h satisfy the simple equa-
tions
rotezﬂiz rotiz.:—gé’
¢ ¢
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Formula (3) can be also applied to the quantities defined as follows:
. 1. rdf, - .
Q=a—é “=ap, P=¢ (or P=h)
r
where a is an arbitrary vector, r = [;—Zv”l, % an arbitrary point contained in ¥ and x an
arbitrary point on the surface S. In the description of the vectors ¢ and h we can make use

of the formulae derived by Stratton (Stratton p. 466) which have a somewhat simpler form
owing to the fact that there are no sources there

-, ]- - - - - 1 - jnd
e(x’, w)y = — i f[(nx e)xVo+(n-e)Vep+ —l~ca~) (n Xh)qa:lds (5a)
§

- & 1 - 7 - 7 ; -«
hx', w) = — in [[(nx WxVeo+(n-h)Veo— sz (nX e)(p] ds. (5b)
§

The functions in the integral depend on % i.e. on points of the surface over which we inte-
grate.

In order to obtain formulae for the propagation of the functions E and H we have
to multiply (5) by exp|—iwt| and integrate over dw

fi folaearn 2 - 2
E(x,t)—"“— ds |do|(rxe)xVr-{— — — - +

v (2 ) e Gy e_—_'w(r_7)].

c r

©)

r

The integration over dw can be here done effectively. E.g.

oo

) il = T t
fdw(ﬁXE)XVr-%-e \ C):~[nx(—zw)[ dw:|><l7(lnr)

= — (ﬁxa—E-‘t_L) ><l7(lnr)-?: — <n>< [Z—f]) XV(lnr)-%

It
The symbol [aa—f] denotes the derivative of the field intensity calculated at the retarded

r . - .
time t— — . In the following we will always use square brackets as denoting time retardation.
¢

The expressioas under the integral symbols (6) contain the factor iw, that is they are
of the same type as those calculated above. Besides

oo (8ol o ) o o)

XV (%) = (WX [E))XV (%)
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Formula (6) becomes thus after integration

E® t)..—l ds {(nx[E])xV(—})

m]n—-—a

(ﬁx [g]) X V(In r)+
vt v () - L5 [8]) ven- L (< [E]) aw

Similarly, one can calculate H from (5b)

A1) = —-1— ds {(ﬁx[il])xv (%) — % (ﬁx B—I{{]) X P(inr)+

et

The space argument of the functions E and H under the integral is of course %, i.e. coordi-
nates of points on the integration surface S.

Now we can start with the construction of formulas describing the propagation of
products of the electromagnetic field vector components. From now on we have to abandon
the vector notation and shall use the tensor (subscripted variables) notation. We will of
course make use of the sum convention. Let us consider for example the product Ey(x, ¢,) -
. E;(;;, ty). After carrying out the multiplication of the integrals on the right hand side
of Formula (7a) we obtain products of the functions Ej (E;, t— %) and E, (xz, tzmr—c2

/

as well as of their time derivatives of different type (evidently r; = |%;,—%;] and ry = |[Z,—2).
After introducing the notation (xl, t— %) (Py and ( Xy, tg— ;:-) (P,), we shall deal
with the following quantities:

FuPYEL(Py,

QE;,(Pz) i {Ex(P1) - En(Py},

Ex(P,) -

QE(Py) IEL(Py) 92

(Ex(P1) - En(Py)),

dty dt, Ity
SHAP) O .
Epy 210 f 2 _ = o, (E(PD) Hi(P),..

"The behaviour of the produ:ts of the components of E and H will be quite similar.

While restricting the considerations to the stationary case it is common to introduce

. . 3 @ &

the parameter 7= §;—1#,. It is then evident that — — — = — =,
& d ot

Otl T 4
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After averaging the particular products with respect to the time ¢,, there appear com-
ponents of different correlation tensors or their derivatives with respect to 7. (Definitions
(2) of these teasors introduced by Roman and Wolf will be used here). Thus for example:

92
(ang;, ty) é)Eng, tz)) (at 5% E(xl, AT IHEN t2)>

92 - . A =
== - -a-;;(E}(xl, ta+7) - Ex(%p, 1)) = — 5;‘2 Cirlxy 5 %y, T).

Since in the stationary case the time average does not depend on the selection of zero time,
. . Ty .
one can introduce a new time parameter ¢’ = t,— — and average over this parameter. If
c

besides this we take into account the time retardation, we will obtain as a result:

92 , ry—r , T L o4 .

2.2 <‘EJ( 1 2) - Ej(¢ )) = [g;; k(%15 Xo, T)]
d2 - - ry—T,

55%—26,* (xl,xz,t—— lc 2).

The square bracket symbol introduced here, will from here on denote the retardation of 7
—r,

!
by the quantity

After these remarks one can already write the formulas for the componeats of the
particular correlation tensors. They all are quite similar, if we suitably group the terms
of the sum in the integral and extract from the brackets the components of the correlation
tensors. Thus the formula describing the tensor of(xy, %3, 7) will look as follows (g, = 1,
(—1) if the numbers klm are an even (odd) permutation of the numbers 1, 2, and 3, and
&4y = 0 in the remaining cases.):

1

re

1 1 1 1
+ [dmw] {Syksjimsstuemnlnx%( > (—) + nhn 120< > . <—) +
Ty kN2 [ u i \Te/,s
e 1 1
+ & Iy | — - + ExtubronTlmlle
1 /,ke\Tg
af 1 1 1
[9_9{,,,,,,] Eiik Ejtm Estu Ervw n}n,, p — In fz + nmnw ‘;— ln Ty +
,k r'E 1
2 1 1
“+eijagjm nind | — =1Inr} 4+ ewubronnmni In r2
Iy /,e\C 58

1
o s {eijkejlmé‘smstm n}ni (% In r1> k< > + nin2 - nr1> ( ) . -+

ar s 1 (.. .. ~
Hi(x1, x2, 1) = E j f dy; * d2x2<[9 2 Ao VEitm EsrwtINE +
S S

ﬁlp—a
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1 1 1
+ ik Ejm NN (— In ’1) (—) + estus,vwn}nn,z,(— In ’1) (l) } _
4 k\Te /.5 4 si\le /s

1 1
- [a 2~§7qmw] ez'jkgjlmestuetvwn}nzzy (— In I'l) (_ In Ty + nyl,,na,(l In r l In Ty -+
c e\ C U c ,i\ C ,s

1 1 1 1
EikEjpmning, <? In rl),k(? In r2)’:+ EsrubronTane (? In r1>,i(? In rz),u} 4
1 1 1 1
et [9 émw] {sijksstusxtw n}n? (-) — =+ Esrw nrlnnz(_) _} -+
Iy /e 7€ Ty [ ,iTeC

1 /1 141
- [aq{mw] {silmastuetvwn}n'lz} - (’—) + Eitm Tbllng; — (—) } +
e \"y /,u ne\ry /,s

1 1 1
+ [92C ms] {Sz'jksjlm Esewy NITIE (? In r1) — + Egp inE (% In r1) —} +

ok ToC s ToC

— [0 o] {e,-;masms,mn}n,z, %c (% In rz)’u—i— Eilm n}nﬁ,i—c (% In r2),:}) . (8)
In order to make shorter the formulas, the symbols & and &2 have been introduced here,
which correspond to the first and the second derivative with respect to v. Besides n} and
n? denote the I-th component of the unit vector perpendicular to dy¥; and the ¢-th component
of the unit vector perpendicular to d2;2 respectively.

An analogous formula for (o{;) can be 6btained from the above one, if we replace
the expressions [ ), [0 Aopy] a0d [02A,0] DY [ Armao)s [0 Aomeo] 304 [02 e g,] and then [OE ],
[92C,)s [0 ] and [929,,,,] by [—0U i)y [—92W o]y [—9Epp] and [—I2E,,, ], as well as
[92¢,,,] by [0241,,,]. The formula for the tensor €, can be obtained from (8), after substitu-
ting ontheright hand side [€,,,], [9 €, ], and [#3C,,,,] instead of [A,,,,)], [ A ] and [2A e] -
Besides, we will have [—9A,,,] and [—92A,,,] instead of [0E,,,,] and [92E,,,,], then [9 A )
and [92A,,,] instead of [09,,,] and [92K,,,], and [-~P2K,,,] instead of [92A,,,,]. The last
formula for [9;] can be obtained from (8) after substituting everywhere [¥,.,1, [0 uewl
and [92%K,,,] instead of [&A,,,], [9 ] and [924,,,]. Next we have to write [— A,,,] and
[—92A,,] instead of [99,,,] and [92K,,,]. Besides, [9&,,,] and [0%C,,, | have o be replaced
bY [95Tms] and [2e7mpls a0 [82Tms) by [~O%C ).

The formula thus obtained is a certain counterpart to the Huyghens principle. It de-
scribes the way of propagation of the quantities characterizing the wave, the main difference
being in the fact that we have here a two points phenomenon in the sense of space time.
This fact leads to a considerable complexity of the formula, compared with those describing
the Huyghens principle.

If we want to find by means of (8) the value of any of the components of the correlation
tensors in two points of the region ¥V, we have to know not only the values of all components
of this tensor together with their respective first and second v — derivatives given on the
surface § surrounding ¥, but also the values of the first and second v — derivatives of all
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remaining tensors. A similar situation exists in the theory of the propagation of the values
of the electromagnetic field strengths, where if we want to describe e.g. the electric field
strength, in a point, we have to put the values of all components of this field on the surface
surrounding this point, their time derivatives, but also the time derivatives of the magnetic
field strength. Not till all this information is known, can the values of the electric field be.
determined so that both the wave and the Maxwells equations would be satisfied.

Formula (8) can be derived more directly from the equations given by Roman and
Wolf (1960) which describe the correlatin tensors and which are analogous to Maxwell’s
equations. This leads to a formula identical with that obtained above. The reason for choosing
the method presented in this paper was its somewhat greater conciseness.

The anthor is much indebted to Professor B. Karczewski for suggesting this work
and for help during its course.

REFERENCES

Roman, P. and Wolf, E., Nuove Cimento, 17, 462 (1960).
Born, M. and Wolf, E., Principles of Optics, New York 1959.
Stratton, J. A., Electromagnetic Theory, New York 1949.



