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The formulae for the transverse momentum distribution based on the thermodynamic
approximation of phase-space integrals are applied to 7p interactions at 10 GeV. It is shown
that the thermodynamic approximation with the correction of the order of n~! agrees very
well with the experimental data. The agreement is much better than for the transverse mo-
mentum distributions proposed up to now.

L. Inthis paper we analyse the shape of the transverse momentum distribution of secon-
daries in the 7p collisions at accelerator energies. This problem has been already discussed
on the basis of some empirical formulae by several authors [2], [4], [7]. We propose to
describe the transverse momentum distribution of secondaries by the formula following
from the thermodynamical approximation to the statistical model (TF). The experimental
data for the #—p collisions show a rather good agreement with TF if one considers the tempe-
rature as a free parameter, not related to the total energy of the system. Such concept of
““transverse temperature’ has been already proposed ([6], [8]) and we consider our result
as supporting this hipothesis.

We have checked also that the TF represents a rather good approximation to the exact
prediction of the statistical model for the transverse momentum distribution. Our conclusion
is therefore that the transverse momentum distribution of secondaries in 7p collisions
with moderate multiplicities (e.g. n > 4) can be calculated from the corresponding phase-
space, if the energy of the phase-space is considered as a free parameter.

In Section II we discuss some of the transverse momentum distributions proposed
up to now. In Section III we introduce the thermodynamic formula (TF) for transverse
momentum distribution (i.e. the Boltzmann distribution integrated over the longitudinal
momentum) and compare it with the transverse momentum distribution obtained from the
statistical model. In Section IV we discusss the ‘‘transverse temperature‘‘. The dependence
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of the mean value of p; on the multiplicity of produced particles is discussed in Section V.
Our conclusions are given in the last Section.

II. Recently Bartke et al. [2] studied the distribution of transverse momentum for
pions in eight and ten prong stars resulting from ap collisions at 10 GeV. According to
these authors, the empirical formulae

o(pr) = a’pre™ T (0
and
o(pr) = 2a%ppe= T (2

disagree with the experimental distribution. (In these formulae @ is an empirical parameter
and the normalization is

f@(l’r)dprz 1). (3)
!
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Fig. 1. The best fits for transverse momentum distributions (1) (the curve 1), (2) (the curve 2) and (4) (the
curve 3). The data are taken from the Ref. [2]
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We found that the formula

3
e(pr) = %— pre”®T @

is also inconsistent with the above data.

Distributions (1), (2), (4) are compared with the experimental histogram in Fig. 1.
For the best fit curves y? equals 39,8 (¢~ = 125 MeV/c, (pr> = 250 MeV/c); 79.2 (a~! =
= 312 MeV/e, {pyy = 274 MeV/c) and 77 (a! = 90.9 MeV/c, {pry = 273 MeV/c) which
for 13 degrees of freedom corresponds to a rejection of all hypotheses at 4 confidence limit
of below 1073, (The mean vlues for these distributions are 2a1, } 7% a1 and 3a~1 respec-
tively). The experimental value of {p;> is 258§ MeV/e.

III. We noticed that the thermodynamic formula

+ o0
Q(PT)ZNfzine—ﬂpodpL: ﬂPTV]ﬁ*TnT:KI:(i%W) , 5

where

N — normalization constant,
2, 2 3
po= (pL+pr+m?)*,
m — pion mass,
K, (x) — MacDonald functions,

agrees very well with experiment, if § is interpreted as an empirical parameter. The best
fit curve (B! = 100 MeV/e, {pr> = 250 MeV/c) is compared with the experimental
histogram in Fig. 2. ¥ = 15.7 for 13 degrees of freedom, which means a good fit.

It is well known (e. g. Lurcat and Mazur [1], further quoted LM) that the thermo-
dynamic approximation is a limiting case of the statistical model, valid at high multipli-
cities. Formula (5) corresponds to Fermi — noncovariant formulation of the model. In
the thermodynamic approximation to the covariant version the integrand in (5) contains
an additional factor pgt.

Consequently
+o0
’ 27pr e Phe BrrK, (BVpt+m?)
=N — d, . 6
Q(pT) _»[ Po PL InKl(“l,B\'. ( )

This distribution is compared with experiment in Fig. 2.

We obtain y2% = 21.33 (! == 143 MeV/c, {p;> = 215 MeV/c) which again means an
acceptable fit (but for others distributions the noncovariant formula agrees better than the
covariant one). Thus we find the TF formulae (5) or (6) certainly better than (1), (2) and (4).

In order to test the relation of formulae (5) and (6) to the exact predictions of the statis-
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Fig. 2. The best fits for the transverse momentum distributions (5) (the curve I) and (6) (the curve 2).
The data are taken from the Ref. [2].

tical model we evaluated higher order terms in the expansion of the statistical formula

+o0 0 n
j dpr f d¥n—VpéH p— Z pi) IIl u( poi) 27pr
—0 bt i

o(pr) = ; Y

f d3rp & (p— Zpi)g u(poi)

here
u(py) = 1 for the Fermi model,
u(py) = po * for the covariant model.
Using the steepest descents method (see LM for details) one obtains

o(pr) = e™(pp[1+Gu(pr) +0(n?); ®)

where ¢®(py) is the thermodynamic approximation (5) or (6). G,(py) for each model is a com-
bination of the MacDonald functions and elementary functions and is of the order of n~L.
Explicit formulae for G,(pr) are given in the Appendix.

The corrected distributions are shown in Fig. 3 (for noncovariant model, for =1 =
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Fig. 3. The corrected transverse momentum distributions for §~ = 100 MeV/c (the curve I’ corrected to 1)
and for f-1 111 MeV/c (the curve 2’ corrected to 2). The data are taken from the Ref. [2].
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Fig. 4. The corrections for G,(py) for f~1 = 100 MeV/c for N8 production (the curve I) and 87 production

(the curve 2)
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=: 100 MeV/c and 111 MeV/c. The corrections were calculated for the N+8n production
at 10 GeV. From these plots one can see that the corrected formulae give a slightly better
agreement with the experimental histogram. One can also see that the corrections are small.
Consequently, the thermodynamic formulae may be considered as reasonable approxima-
tion to the prediction of the statistical model.

IV. We would like to make two additional remarks. 1. It is known (see e. g. LM) that
for the total phase-space integral the thermodynamic approximation is very poor for reason-
able multiplicities. Here it turns out to be good. The reason is that in the caleulation of the
total phase-space integral there is a large multiplicative correction term which corresponds
to the transitioa from the thermodynamic approximation of the application of central limit
theorem of theory of probabilities. This term does not appear when distributions for small
subsystems (as for one particle) are evaluated. Consequently the thermodynamic model
should yield good results for any one or even two particles distribution already at moderate
multiplicities.

2. When applying the steepest descents method to the evaluation of phase-space
integrals one obtains an equation which determines the temperature as a function of the
total energy. In our analysis § was adjusted as an empirical parameter. The result is near to,
but not identical with the result which would be obtained by solving the equation (A.11).
For example for N+8n production at 10 GeV g~ = 117 MeV/c, whereas our 1=
= 100 MeV/c. This effect may be interpreted as a suggestion of the existance of a ‘‘trans-
verse temperature’”’ which may be used to find the transverse momentum distribution, but
which is not identical with the equilibrium temperature. The idea is that a thermodynamic
formula with a suitable temperature might be applicable to the transverse motion, while
the longitudinal motion is very complicated and does not corresponds to the same equili-
brium situation. References to the hydrodynamical model may be traced from Roinishvili
[8], for a recent discussion see Hegedorn {5].

V. We have also fitted the transverse momentum distribution in p+6x production
in zp collision at 10 GeV [1]. Also in this case TF represents a better agreement with
the experiment than all others ([1], [2] and [4]). The parameters f~* for this reaction is given
in Table I. It is seen that f-1 decreases with increasing multiplicity. The energy from Eqg.
(A.22) for each experimental parameter § is also given in Table L

VI. Our conclusions can be formulated as follows.

We have investigated the transverse momentum distribution in 7p inelastic collision
in the region of few GeV/c of primary momentum. The experimental data have been com-
pared with the approximate predictions of the statistical model.

The analysis shows that:

1. The thermodynamic formula for transverse momentum distribution agrees better
with the experimental data than all others proposed up to now.

2. This formula represents a reasonable approximation to the transverse momentum
distribution predicted by the statistical model. The first correction of the order of n~1 calcul-
ated by steepest descents method from the statistical model improves slightly the agreement
with the experiment.
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TABLE I
. Prab | Eo Bt 1/ pryexp | yifor 2y | confidence | pryth| E
Reaction GeV/c| GeV |MeV/c| MeV/e |TF fit % level |MeV/c| GeV
= +p—>3n-+27+p 10 4.5 143 | 33012 | 104 18 0.92 312 3.6
T +p—>dn+3nt+a0+p 10 4.5 100 | 258+10 | 15.7 13 0.28 250 4.0

Ey — total CMS energy, Ey = |/2ME +- m? + M?, M — mass of the nucleon, E — energy from phase-space

Ky(mif)

n
in CMS, E—3n -1 + Z m; =)
Py : Kz(miﬂ)

3. The thermodynamical approximation of transverse momentum distribution from the
noncovariant Fermi model gives a better agreement with experiment than from the co-
variant model.

4. The *‘transverse temperature” corresponding to the transverse momentum distribu-
tion differs from the equilibrium temperature.

5. The mean value of pr (see also [3]) and the parameter -1 both depend on the multi-
plicity in the investigated energy region (10 GeV).

The author would like to thank Dr K. Zalewski for suggesting this investigation and
for many useful remarks as well as to Dr A. Bialas for discussion. He also thanks Dr J.
Bartke and J. Danysz for discussion of the experimental data.

APPENDIX

Using the steepest descents method (see LM) we obtain from (7)

e(pr) = ¢™(pr) [1+G,(pr) +0(n~3)], (A.1y

where
Gn(PT) == 11—123 (AZ)
L= % [% + i—d] , (A.3)

d| ¢ 3(b—a)
I, = 5 [Zz— + = ] (A4)
and

a = —3n— Y R(m;f), (A.5)
b= 3n—3 31 R(m;p)+p2 >, mf, (A.6)

¢c= —6n—6 Z R(m,f3)+3p2 Z m?—9 Z [R(m,B)]*
+28% 3 miR(m,B)—2 3 [R(mf)]°, (A7)
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BH pF+m?)
d - 4‘— e R mpj, *
R(BV p%+m?) +R(mp) (A.8)
3B pr+m?) ., B pF+m;)?
e= —4+ ——2" b — e
RV P RV A
+3R(mp)y+[R(mP)]% (A9)
Here
Kl(x)
Kz(x) '

The condition for parameter f (see LM (2.28)) reads
3n+ ) R(mB) = BE. (A.11)

One can see from these formulae that G,(pr) is of order of n-t.
For n particles with equal masses we have

Gulpr) = K(pr)/n- (A.12)

In practice we use the formulae (A.2)—(A.9).

In the similar way we calculate the correction for the momentum distribution given by
covariant phase-space integral. The result is identical with (A.2)—(A.4) only the constants
denote here

R(x) =«

(A.10)

a = —2n— > R(m,f)- (A.13)
b= 4dn—BE+B2 > mi— > [R(m;B)]% (A.14)
c= —dntf 5 mE 4262 3 miR(m ) — 3} [R(mp)]?
—2 2} [R(m;B)]?, (A.15)
_(pram?) B
d=2— +R (mp), Al6
R(ﬁl PT*m 2) o) ( )
(Pt +m? p? pHpF+m?)*
c= —2 Y SE R i 2,82 __ PR 3 A . S
R T RV AT
+ R(mp) +[R(mP]2, (A17)
with
Kofx)
R(x) = T((_) (A.18)
The condition (A.11) reads now
2n+ Y, R(mB) = BE (A.19)

with the definition of R given by (A.18).
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