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The refinement of Dyson’s spin wave formalism for bilinear spin Hamiltonians as proposed
in a former paper [la] is here extended to the case of fourth-order interactions. The external
magnetic field is included. Without specifying the interaction tensors and the crystal lattice, and
without limiting the interaction to any particular neighbourhood the conditions are derived under
which the bilinear part of the ideal spin wave Hamiltonian can be diagonalized by employing
Bogolyubov’s transformation. Instead of using the standard or any particular spin wave representa-
tion the considerations are carried through for the wider class of representations corresponding
to arbitrary inhomogeneous rotations of the lattice spins. This allows to choose in each particular
case a representation that is most convenient (or otherwise preferable) in calculating the parti-
tion function (or any other thermodynamic quantity). Within the linear Bloch approximation
results obtained by other authors in the standard approach are shown to be easily derivable from
our formalism.

1. Introduction

Recently [1a], a refinement of Dyson’s spin wave formalism was proposed, by intro-
ducing generalized spin wave representations generated from the standard one by means
of a unitary operator which corresponds to inhomogeneous rotations of the (effective)
atomic spins assigned to the lattice sites of a ferromagnetic crystal. The Hamiltonian was
assumed to be quadratic with respect to spin operators (second-order interactions). Linear
terms corresponding to external magnetic field were not considered. Neither the interaction
tensors nor the crystal lattice were specified, and no restriction was imposed on the range
of the interaction between the lattice spins. Under these assumptions it was shown that
the mapping of the Hamiltonian from the space of Bloch’s physical spin waves onto the
space of Dyson’s ideal spin waves can be carried through quite easily, by means of a simple
substitution procedure (see also [8]) which was proven to be applicable to any spin Hamilto-
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nian of Heisenberg’s type. Diagonalization of the spin wave Hamiltonian within Bloch’s
linear approximation can always be achieved by employing Bogolyubov’s general trans-
formation [6] to the ideal spin wave creation and destruction operators. Thus, it has been
shown that all the specifications and simplifications of the problem that are usually made
at the very beginning can be deferred until one has to calculate thermodynamic quantities
(such as the partition function, free energy, magnetic susceptibility), including the eventual
choice of the most suitable spin wave respresentation.

As for the energy spectrum, a set of general equations has been derived which are to
be specified and solved in each particular case. These equations actually represent the condi-
tions under which the (approximate) diagonalization of the Hamiltonian is automatically
ensured. A detailed examination [la] of those conditions shows, inter alia, that the appli-
cation of the spin wave formalism in its present form to hexagonal crystal lattices is
admissible, which justifies the employment of the spin wave method to the very important
group of uniaxial ferromagnets. On the other hand, the anisotropic effects of cubic
ferromagnetic lattices to be counted for require in the Heisenberg approach a Hamiltonian
with at least quartic couplings between the lattice spins [9]. It thus appears that the formalism
proposed in [la] to be applicable to real ferromagnets has to be extended to interactions
of fourth order whilst the presence of external magnetic field requires linear terms to be
added. Tt is precisely this extension which is the main purpose of the present paper, the
other assumptions as well as the mathematical approach being essentially the same as in [la].
In particular, no specifications will be made about the crystal lattice and the form of the
interaction tensors, nor the interaction limited to any particular neighbourhood. The linear
Bloch approximation will also be retained, that is, interactions between the (ideal) spin
waves are being neglected. The justification of this restriction resides partly in the fact
that those interactions have usually no (or very little) influence on the diagonalization of
the bilinear part of the Hamiltonian, and partly in the supposition that Dyson’s proof of
the negligibility of these interactions in the isotropic case is very likely to be generally valid.

Within these limitations we show also the approaches of Dyson [2], Charap and Weiss
[3], and Szaniecki [4] to be particular cases following easily from our general formalism,
under proper specifications and simplifications.

While merely indicating major steps in our calculations, we shall frequently refer to
{la] where all the details can be found.

2. Diagonalization of the Hamiltonian

We start with the Hamiltonian

H= 3 I°5+ D) (HESiSh+QeSe St SiSh), (1)
J ik

where a, b, ¢, d (= 1, 2, 3) are tensor indices, and j, k denote the spatial vectors pointing to

the corresponding lattice sites. (To simplify the notation we shall not use arrows above

lattice vector symbols). For tensor indices Einstein summation convention is adopted

throughout the paper.
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To avoid self-interaction we put H; = Q;;= 0. In the Zeeman term L° = gluy|7¢°,
where g denotes Lande’s factor, up — Bohr’s magneton and J€ = (F*FH%)"% is the ex-
ternal magnetic field strength.

H3? and Q% stand for the interaction tensors of the second and fourth rank, respecti-
vely, and the only restriction we impose on them has the form

ab __
H;'k - Hk]’

IECd __ Jb:cd — Jbgdc bdc Qabcd _— acd. (2)

The spin operators S} satisfy the well-known commutation rules
(5, $2] = i8S}, )

where &% is the antisymmetric unit pseudo-tensor.
One can define the operators S by the relation

SF = S} +iS}. )
Commutation rules for these operators follow easily from (2) and (3), and are of the form
[SF2 Se1= 2035}, 1S, Sil= 8aSi, [S% S{1= 8,57 ©)

These operators act in the space of simultaneous eigenvectors of the operators S}’ where the
ground state of an isotropic ferromagnet is defined by [1, 1a, 2]

SH0y = —S|oy; S0y = <0ls; = o, ©)

S being the maximum eigenvalue of Sjs.
One can generate an arbitrary eigenstate |u) of the operators S}’ by applying repeatedly
the operators (3) to the ground state (5)

|...uj...>E|u)={I;I [(%ST%] (5" }|o> )

u; being @ positive integer. This is an orthonormal and complete set of (25+1)" inde-
pendent vectors where NV is the number of lattice sites. One can easily verify that

0, <25. ®)

The states (7) however, are not eigenstates of the isotropic Hamiltonian, much less so for
a Hamiltonian of the form (1). None the less, in the isotropic case (i. e., H”b ké"b nd

%74 = 0) the use of the representation (7) is reasonably justified, at least in two limiting
cases when either the external (uniform) magnetic field is sufficiently strong or the tempera-
ture much lower than the respective Curie temperature. This is so because in the first case

one can take advantage of the fact that the operator )} Sf’ is diagonal in the representation (7)

J
and commutes with the isotropic part of the Hamiltonian, and in the second case one still
has the argument that [0> is the ground state of the Hamiltonian. It is the latter argument
which fails in the anisotropic case. For many reasons which were given in [la] it seems suit-
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able to widen the representation (7) by introducing the unitary operators U; causing rota-
tions of the spin vectors Sf by the angles ¢; around rotation axes with direction cosines ¢f.
These operators have the form

U; = exp {ig;efS7}, :][_I U, = U. (9
This is equivalent to introducing the rotation matrices R defined as
UStUF = R®S;, 10
where
R]‘-’b = e“‘be; sin @; + 6 cos (pj—{—e]‘-’e]’-’(l — cos @;) (11

(cf> Ref. [14] in [la]).

The operators (9) when applied to the states (7) give the class of representations
[v> = Utju>. (12

Since U is a unitary transformation, it is obvious that the vectors [v> are orthonormal.

It was shown in [la] that instead of working with the representation [v> one can
transform the Hamiltonian and further on use the standard representation (7). When applying
the transformation (9) to the Hamiltonian (1) and utilizing Eq. (10) one obtains

UHU+ = H = ; LSt + ) (A2 S2SE + Q2452 SPSESaY, (13)
where
I}= I°R®, A% — HERCRE, (%= Q' ReRPRERMY. (14)
The coefficients A% and Q% have the properties
AR = A (15)
which follow from Eqs (2) and (11), and
Jated — (et — Qe = O (16)
which implies
(QRI"RERERY = (Qf“RI"R")RERY. (17)

The next step consists in introducing the complete and orthonormal set of oscillatory

states
oty > = |us> = {H (u; Yy (")} 0> (18)
i

where u; is an integer taking values from 0 to co. The notation | ->> is used to distinguish
these states from those defined by Eq. (7). The oscillatory operators #; and #;" attached to
the lattice sites satisfy the familiar commutation rules

(s 18] = o [mj> med = T 1= 0. (19)
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Now, it was pointed out in [1] that the easiest way of mapping the Hamiltonian from the
space of physical onto the space of ideal spin waves is to pass from the operators (5) to the
operators (19), and that this is equivalent to the substitution

¢ @S)yhnTs S~ (@8) ( 1- ”g;?") i o =Sty (@0)
(see also [8]) which corresponds to the transition (i) — -— = ([) in [1]. When applying this

substitution to the Hamiltonian (13) and neglecting all terms involving more than two opera-
tors (19) one obtains

H=¥} (—SLE+ Ly ny+@S) Ll +@S) %L} ) +
7

{S%M,Z BY)— (25)%S(BY+ M) m* — (2S)AS(BY+ M) my +

ik
1 = 5
Eeas SBh+ M) i + S( 5+ M) 0+ S(Bj + M) 1y -+
g d 4y + Loonrz, e Loange Al 1
+S(My—2B3) 0" n; + 5 SM(n;7) 2+ 5 SM, (n;) I» @2
where
1~ 5 ~
e Ll g
Bllk — ‘4]1kl—A22_ ( 12 4 21 , Bk _ _Alkl + 1k ,
Bjy = (70 —iAR) + (A3, *‘A?kg » Bh= AR 22)
and Mj(r==0, ..., 5) are rather lengthy combinations of “”Cd which are listed in the
Appendix.

By carrying out the Fourier transformation

5= N3 o o (23)
A

we pass 1o the reciprocal lattice with lattice vectors 4. (Here we again drop the arrows above
vector symbols. Note that 4/ is thus the scalar product of two vectors).

The operators a;, ;" obey commutation rules which may be obtained directly from
Egs (23) and (19):

lepof] =68, [wal=[af,2f]=0,
afay=a,; a,=0,1,2,.. (24)

Here g, can be interpreted as the number of spin waves having the wave vector 4, the corres-
ponding (orthonormal) states being defined as

gy .. >=la> = ‘IAI (az1) " ()} | 0> (25)
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Transformation (23) applied to the Hamiltonian (21) provides

i~ zz {SNIS(MZ, +B3,) — L2, 1 8308,0—
4 4

- (2SN) % 6/‘,0[5(82” +Mi:.l/4) —L}.—}-,u] “;- -
—(2SNY% 8, [S(BS, + ML) — L3, Jo, +

1 R -
+ 5 S[B},y'**Mziy,o‘f‘iMfu]“j af + ) S[B;l.,,u‘5‘]‘4:12-;44,0‘*‘]Vlza,u]0‘;."‘,;“-L

+[S(B%;,—2B 10+ M o+ M; _)+LE_af«

u

(26)

where the coefficients Bj,(¢=1,2,3,4) and M;,(r=0,1,...,5) are the Fourier
transforms of Bf, and M}, respectively (see Eq. (22) and Appendix), and

L5, = 1N D} Liexp {—j(A+p)}, t=1,2 27
i

with L defined by Eq. (22).

It is useful to introduce the abbreviations

qu = Mf,u’ Pi]:,u = Mll,w Pf,a = Mf+u,0+M?,u
Pl= M} o+M;_, (28)
and
W= (Pt BY) — I3 W, = — (Bl PL) — oIk,
2 4 b B 45 - s B 2 2oth 5dk 25 S
1 1 1
W‘f = -4‘_ (B%_,y +PZ;,¢)’ ;Vi.?y = _2_' (B%—L,u_2B:—l,0 +“ng) + §§L§-y' (29)

Hence, the Hamiltonian (26) takes the form

H=2S ;} {@SN) W2, 8,08, 0— @SN AW L i + Wk, a,18,0+
"

FIWEaf af + WEa,a]+ Wi o). (30)
To eliminate the terms linear in the operators «;, @} we use the ‘“ shifting” transforma-
tion
a, = b+ (3
Insertion of (31) into the Hamiltonian (30) yields

T = 25(2SN) Ey+2S@2SN)* 3 [Ci +ChBi] +
A

+25 ; [CB7 By +CLuBiB+CBT B, (32)
s
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where
1 1 , - = ,
Ey= o Y. Whi— 5 @SN)=4 Y Whbit Whubs] +
ip Ap
1 - = =
+ Z (25]\7)—1 Z [le,yb/lbg“f" W).%yblbp] ‘}‘4 Z W:ifubpbl H (33)
Au Ap
1 1 -
=3 ¥ Wl @ty [z (W2t W23) Bt W,f’:abu] 78
u I3
1 L e I%
Cl,u = ‘[‘L‘ Wl, "= C%,y P (35)
Cg,u - WR?: u (36)
To determine the constants b, one has to solve the set of linear algebraic equations
Cy=0 (37)

Had we not imposed the condition (17), the Hamiltonian (32) would not be self-adjoint,
and in consequence instead of N equations (37) for the constants b, we would have 2N
equations

Ci=0,C=0 (38)

It would be therefore necessary to introduce the consitency condition
Cl=C? (39)
restricting rather strongly the class of permissible rotations (9). After solving Eqs (37) one can

employ the general transformation of Bogolyubov [6] by passing to new Bose operators

Vor Vo
By = 2] (UAQV9+;197:) (40)
e

These operators will diagonalize the Hamiltonian (32) provided the following conditions are
fulfilled (see also [7]):
Cr,=C,, C,—C. (41)
As in [la] conditions (41) are here automatically satisfied.
The situation is much the same as in [1a], i. e. the neglect of higher order terms in the
Hamiltonian (30) does not change the conditions (41) as long as the linear terms in (30)
vanish automatically, that is if

Wip=0, “2)

as the transformation (31) produces contributions to the bilinear terms following from the
interactions of higher order.
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For the Hamiltonian (1) condition (42) has the form

1
(S . ‘2_> Z abed [(Rast3Rc3Rd3 RastlR Rga) ST

7

1
+ _5 (R}le}Jlele:i _’_R;IR-?:BR;leI +R;1RJI_73R22R22 +

1
Q. [ ab 4 : R
+ RﬁRj?szlRZ"')} +Z H(RERY + RPRY) — o Z e

™
'Lfi abcd RalelRCZRd:S Ra2Rb3Rcle1 Ra2R62Rc2Rd3
s = (R Ry Ry R+ RPPRPRy Ry + RFR R R +
—~ 1 N
15 +R;12RJI>3R Ra‘2) (S . _) +(R33Rb3R R§2+R“3R52R Rd3) J +
=)
1
— al a2 b a apa (
3 + ) HARSRE A RPRE) — o ) IR =0 (43)
2 j j
. as can be deduced from Eqgs (29, (28), (22), (14) and Appendix.
= Substituting the transformation (40) into the Hamiltonian (32) and taking into account
Eqs (37) and (41) one has
E:) H=2§ (2SN) Ey+2S X D, +2S D) [Dyyive +Dlgygy(, 1425 3 DS viyve  (44)
Z 3 Qo [
QO  where
8 _
A D,= Z [C%,u”l,eu‘ug + Cll,#ulevyg + Cgu”levue]’ (45)
~ Qd E [CI ;zule HO + (‘lyz’}.() =+ C},uu/lgv,uc]' (4'6)
N
- 0 1 1 = 0 — Pl I -
S Dy, = b [26;.,,}1;.9%0‘5‘261,,‘”;@%0'*'C;.,,‘u;.yu,w‘*‘Cz,#”zg”#a]- (47)
\u
E As the operators y,, p5 and f;, 7 obey identical commutation rules, we have
O -
< Z (ule ue ™ Vig ue) 61u’

Z (ukj}”g—};@uﬂg) =0, (48)

[

and, from the reverse transformation [7],
Z (ulgula_v}tgvﬂ.d) = 690’
i

; (20020 — Vsgltas) = O. (49)
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Thus to diagonalize the Hamiltonian (44) one has to solve the equations

DL=0, D% =K. (50)

e eo?

or the equivalent set of linear equations [6,7]

Eou'ia Z (261;4 /w lu ,ucr)’

—Ep,= 2 (2(]1 M—.—Cl#zw). (51)

N

In this way the Hamiltonian (44} becomes

H = 25E;+25 3 Eyiv, (52)
[

where

Eg = 2SN Ey+ X D, (53)
e

3. Correspondence to other authors

We shall show briefly what specifications and simplifications have to be made to obtain
the spin wave Hamiltonians considered by Dyson [2], Charap and Weiss [3] and Szaniecki
[4]. In all those papers cubic crystal lattices were considered and the interactions restricted
to the nearest neighbours. The external magnetic field was taken into acount, the remaining
part of the Hamiltonian being isotropic in [2] and anisotropic in [3, 4].

In [3], the anisotropic part was expressed in terms of pseudo-dipolar interactions, and
in [4] quadrupolar interactions were included. In all three papers the standard representa-
tion (7) has been used. The linear part of the Hamiltonians which in [2] was automatically
diagonal has in [3] and [4] not been fully diagonalized. Although in the latter cases the diagona-
lization can easily be carried out by means of a rather simple transformation of the type (40),
we will show the correspondence to the nondiagonalized Hamiltonians as used by those
authors, in order to make the comparison of the respective expressions easier. Our notation
differs slightly, but not significantly from that used in those papers.

Dyson’s [2] assumptions are as follows: isotropic interactions of the second order,
homogeneous external magnetic field parallel to the x,-axis, nearest neighbours interaction,
cubic erystal lattice (s. c., b. c. c., and f. c. ¢.), standard representation (7). Denoting by 4
the nearest neighbour lattice vectors we thus have:

k=j+4, RP=RY=4§"
1
HY =HY = — S J& L= L6%, (54)

QB = Qb — M, = M, = P}, =0

(/'::0,...,5); (S:()’ 17273)
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(see Egs (1), (14), (26), (28) and Appendix). Hence, from (14) and (22) we obtain

Bh—By—0, Bi——J,
By=— ) I}=0 IL=L
and in the reciprocal lattice, after the transformation (23),
Bl= B, =0, Bl=—Js(i+py,
B, = —Jo(A+wWy, Ly, = Lo(A+p),
V= 2"
a

By inserting (54) into the Hamiltonian (30) we get, because of Eq. (29),

where

1
H= —LSN— — JNS*y,+ ) L+edaia,
i

where
&y = JS(yo—72)-

This is exactly the spin wave energy spectrum obtained by Dyson.

(55)

(56)

7

(58)

(59)

Charap and Weiss [3] made the following assumptions: isotropic interactions of Heisen-
berg type, anisotropic interactions of pseudo-dipolar form, uniform external magnetic field,
nearest neighbour approximation, cubic crystal lattice, standard representation (7) and

S = $. Hence,
;= j+4, RP®=R¥= 6%,
HY = Hf = —J6*+2:4° 4%, 1° = Lo,

abed ~abcd,__ r r . ps __
O™ = O™ = Mjy = Mj, = P;, =0,

where A%a = 1, 2, 3) are the components of 4.
With A% defined as

A% = A +iA?
one has because of Eqgs (14) and (22)
B, =2e0(A+p) 3, (A%)2 ¥4,
a

B, = —2J3(A—u) AZ e 4 2e8(A—p) ; (A A7),
Bl = 260(0+p) 3 (4 49),

Biso = —J 3 0(—p)+2¢ 3 (47)20(2—p),

Biw= =IOy, +2e0(A+p) 3] oH4(42,

=1L, I}=0.

J

(60)

(61)

(62)
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The insertion of (62) into (29) and (30) yields

1 1 1
H— — = JNy,+—eN Y (43— = NL
3ot N D (49 o NL

-+ 7 P Z [e#4( 44 2afat —Le_”‘"(A")%c” a_ ]

—]zA] (e —Data,+ > Lojfo,+
u u
+e Z; [e# 1A+ A=—2(A%)% ;] o, (63)
"
The terms linear with respect to ; and «; in Eq. (30) vanish because of the cubic symmetry.
Rearranging (68) we get
H— — é— LN— 2117 INpo+ % Ne ; (A9)2+

-3 {L+J§] (1—cos ptd)—e ; [2(43)2—(4+ A7) cos pdl} o, -+

1 -
+ e Z wofat o2 ), (64)
I3

where

v, = 2 (492 e
4

Eq. (64) is identical with the bilinear part of the Hamiltonian used by Charap and Weiss.

The assumptions made by Szaniecki [4] are as follows: cubic crystal lattice (s. c. and
b. c. ¢.), nearest neighbour approximation, isotropic pseudo-dipolar and quadrupolar
interactions, uniform external magnetic field, standard representation (7). This corresponds to

k———]—LA Rab Rab 6“,

a Ab
HE = H% — —Jow +1/2D [a«b— SAMN e Lew,
| (4)*
e = = 04_4 (4,4,4,4,)- (65)

Therefore, by virtue of Eqs (14) and (22) we have

>

3 .
Bhu=— 5D Z ia( ] A)? 8(A+p),
LAY aA-
BY = —2J0(A+4) pu+DO(h+4) yu—32D ) | 64 S 0+,
a4

B}, = —3/2D Z Af) S(A+ ),
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B, = (12D—J)y, A+ ) —3/2D 3] €#4( 4% )5(A-+ ).

L2, =Ld(A—w), L}, =0, (66)

and the quadrupolar coefficienis P; , are (see Appendix and Egs (28))

1 {1
Py = M= 5 Q49300 3 e L A) 200,40+ A+
|

+S [(41)2+(42)2](A3)2+52(A3)4},

1 .
PA}: = —‘Mf,y - “‘2‘ 04—45(2"{”#) Z emA {252(43)3411_5[(43)2*(41)2_(Az)z]AlAsr
A

1 . 1
) (4% + (4214, 45—i (S[(A1)2+(Az)z_(A3)2]A2A3 + 5 [(A1)2+(A2)2]/12A3)} )
1
P}, = M} o+ M, = 504_45(1 +u) Z {282[( A7) 2— (A2 43)2+ S[(Ay)* —(4x)%] +
]

+ (25“1)2(413)2{(/_11)2*([]2)2] eiyd+{(452(43)24142+
L2S[(A))2+(A)2] Ay Ay + (2S—1)2(Ag)2 A, A, €4)),

. - 1
P = Mt i = Q47460 Y 2S(A)* + (42— 2(A)U( A9+
y
+S[(A)2+(42)2]P +25(4g)*—35(A3)*[(4,)*+(42) ] —
1
iy [(Ay)2+(A2)?1+(45)*[(41) 2+ (4R)*] +
+ (A2 +(4)%(45)*(25—1)%. (67)
Finally, making use of Egs (19), (30), (6€), (67) we have

1 1 )
H — —LSN—]NS%,+QS*N {-8« P < 7olS=10)+ (rr+af) (S 1)? ] -

+ 23 {eu +LADS(y,—5w,) + QS(S— 1) (1 +yab) +2.1} 2l @+

“

+ ; ; e {QSA—‘*(S— V)2 %[(A+)2+(A-)2](A3)2— —Z— SD(A*‘/A)?}cz: at,+

) 1 3
+ 2 D0 {054‘4(5—’/2)25[(A+)2+(A")2](A3)2—ZSD(A‘/A)z}%“—,.-
(69)
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The coefficients W, and W, vanish again because of the cubic symmetry of the crystal

A
lattice. In Eq. (68) we used the notation
1 for s.c. v — —2 for s. c.
L 7V4/9 for bocoe. 27 \16/9 for b.c.c.

and
2 2.2 2.2
6 = alad+ agas-+ asas,

Where «,, &,, @, are direction cosines of the external magnetic field relative to the crystal
lattice axes. Furthermore,

w, = A2 ZA(A+A-) G = 245 (A+A7)(A%)2 &4,

{-4 for s.c. { 12 for s.c.
Yy =

0 for b.c.c. %7 {—32/3 for b.c.c.

Eq. (68) corresponds exactly to the bilinear part of Szaniecki’s Hamiltonian, though the
explicit form of some coefficients was not given in [4].

4. Concluding remarks

The method of dealing with the Hamiltonian including the fourth order interactions, as
proposed in this paper, supplements the formalism for the second-order interactions given
in [1a]. For the sake of brevity, many steps in the calculations which have been presented in
full in [1] and [la] are only shortly outlined here.

The Hamiltonian we consider here is quite general. Neither the type of the interaction
tensors nor the crystal lattice is specified throughout the paper, nor is the interaction limited to
any particular neighbourhood. In fact, the only approximation made is the neglect of the
contributions of higher terms to the bilinear part of the Hamiltonian (21), which may be
produced by the “shifting” transformation (31). If this transformation is not required, i. e.,
if the coefficients W, and W2, in Eq. (30) vanish automatically (as is the case, e. g., in
(2.3.4]), Eqs (41) are exact conditions for diagonalizing the bilinear part of the ideal spin
wave Hamiltonian (30). It is clearly seen that they are related to fourth-order interactions
hetween the lattice spins, and that they impose the symmetry condition (43) on the respective
interaction tensors and rotation matrices.

As in [la], the Hamiltonian (44) can be fully diagonalized, provided the set of linear
equations (51) can be solved, and conditions (48) and (49) are satisfied.

The author expresses his gratitude to Dr W. J. Zietek for suggesting the problem and
for valuable discussions during the preparation of this paper.

APPENDIX
To simplify the notation we shall use here the abbreviation

;‘f‘d = (abed)
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hence, the coefficients M} are of the form

Mg = S (3333)+ % S[(3311) -+(1133) +(3322) +(2233)] +
+ % [(1111) +(1122) +(2211) +(2222)],

M = (s — ;) {S[(3331) +(3133)] + % [(1311) + (1113) -+ (1322) + (2213)]} -

&

; —i (s - %) [(1123) +(2311) -+ (2223) +(2322) — (3332)— (3233)],
= M3 = S*{[(3311) +(1133) — (3322)— (2233)] +2i[(3312) + (1233)]} +

§ +S{[(1111)—(2222)] -+ [(1112) + (1211) +(2122) +(2221)]},

; M3 = (25—1)2{[(3131)—(3232)] +4[(3132+(2313)]},

§ M= —4S (s - %) (3333) + (S - %) {(S—1)[(3311) +(1133) +

< +(3322) -+ (2233)] + [(1111) +(2212) +(1122) -+ (2222)]3,

MS = (25—1)2[(3131) +(3232)].
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